Reconstructing the Changes in Sedimentation and Source Provenance in East African Hydropower Reservoirs: A Case Study of Nyumba ya Mungu in Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Sampling Strategy
2.3. Radiometric and Geochemical Laboratory Analysis
2.3.1. Radiometric Analysis
2.3.2. Geochemical Analysis
2.4. Data Analysis
2.4.1. Sediment Chronology and Mass Accumulation Rates
2.4.2. Bayesian Mixing Model (BMM) for Source Apportionment
Tracer Conservation Test
Principal Component Analysis (PCA)
Model Build and Running Protocols
3. Results and Discussion
3.1. 210Pbex and 137Cs Vertical Profiles
3.2. PCA for Statistical Analysis of Data
3.3. Proportional Tributary and Land Use Contribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Core AC1 | |||||||
---|---|---|---|---|---|---|---|
Depth (cm) | Mass Depth (g/cm2) | Date (y) | MAR (g/cm2/y) | Date Fit (y) | MAR Fit (g/cm2/y) | 210 Pbex (Bq/kg) | 137Cs (Bq/kg) |
2 | 2.26 | 2019 | 0.879 | 2018 | 1.03 | 60.81 | 2.67 |
4 | 5.13 | 2016 | 1.12 | 2015 | 1.32 | 44.01 | 2.30 |
6 | 8.26 | 2014 | 1.52 | 2013 | 1.83 | 29.75 | 1.82 |
8 | 11.33 | 2012 | 1.2 | 2012 | 1.45 | 35.29 | 2.14 |
10 | 14.62 | 2009 | 0.91 | 2009 | 1.1 | 42.98 | 1.85 |
12 | 17.29 | 2005 | 0.79 | 2006 | 0.99 | 43.82 | 1.83 |
14 | 20.17 | 2001 | 0.65 | 2003 | 0.83 | 47.5 | 2.83 |
16 | 22.57 | 1997 | 0.86 | 2001 | 1.18 | 31.07 | 2.38 |
18 | 24.83 | 1994 | 0.42 | 1998 | 0.58 | 57.42 | 2.02 |
20 | 27.42 | 1988 | 0.44 | 1994 | 0.63 | 46.47 | 2.75 |
22 | 30.18 | 1981 | 0.404 | 1989 | 0.63 | 41.05 | 2.99 |
24 | 33.07 | 1974 | 0.29 | 1984 | 0.48 | 45.08 | 2.80 |
26 | 36.01 | 1962 | 0.17 | 1977 | 0.33 | 53.41 | 4.90 |
28 | 38.78 | 1937 | 0.09 | 1968 | 0.27 | 48.14 | 2.40 |
Core AC2 | |||||||
2 | 1.87 | 2019 | 1.4 | 2018 | 1.25 | 59.66 | 2.32 |
4 | 3.99 | 2017 | 0.865 | 2016 | 1.05 | 67.26 | 1.99 |
6 | 6.25 | 2015 | 1.2 | 2014 | 1.48 | 44.92 | 2.41 |
8 | 8.84 | 2013 | 0.863 | 2012 | 1.06 | 58.66 | 2.45 |
10 | 11.22 | 2010 | 1.05 | 2010 | 1.34 | 43.7 | 2.83 |
12 | 13.82 | 2007 | 0.771 | 2008 | 0.99 | 55.31 | 4.26 |
14 | 16.47 | 2004 | 0.701 | 2005 | 0.92 | 54.44 | 3.06 |
16 | 18.96 | 2000 | 0.649 | 2003 | 0.89 | 51.9 | 2.45 |
18 | 21.40 | 1996 | 0.519 | 2000 | 0.73 | 57.18 | 2.53 |
20 | 23.85 | 1990 | 0.404 | 1996 | 0.59 | 62.74 | 3.00 |
22 | 26.45 | 1984 | 0.479 | 1992 | 0.77 | 42.86 | 3.12 |
24 | 29.04 | 1978 | 0.61 | 1989 | 1.08 | 28.12 | 2.13 |
26 | 31.86 | 1973 | 0.35 | 1986 | 0.65 | 42.11 | 2.37 |
28 | 34.81 | 1964 | 0.27 | 1981 | 0.57 | 40.71 | 2.18 |
30 | 37.67 | 1951 | 0.383 | 1977 | 1.08 | 19.31 | 2.47 |
32 | 41.0702 | 1942 | 0.27 | 1973 | 0.56 | 32.53 | 2.64 |
Core AC3 | |||||||
2 | 3.37 | 2019 | 1.69 | 2018 | 2.23 | 42.77 | 1.36 |
4 | 6.88 | 2017 | 1.86 | 2016 | 2.26 | 36.4 | 2.00 |
6 | 11.37 | 2015 | 2.12 | 2015 | 2.57 | 30.15 | 1.61 |
8 | 15.18 | 2013 | 0.92 | 2012 | 1.12 | 64.73 | 2.32 |
10 | 19.69 | 2008 | 1.12 | 2009 | 1.38 | 46.53 | 1.48 |
12 | 23.05 | 2004 | 1.26 | 2006 | 1.67 | 36.08 | 2.00 |
14 | 26.5 | 2001 | 0.85 | 2004 | 1.13 | 49.38 | 1.57 |
16 | 30.37 | 1997 | 1.01 | 2001 | 1.39 | 36.11 | 1.72 |
18 | 35.04 | 1993 | 1.21 | 1998 | 1.73 | 26.54 | 1.47 |
20 | 38.68 | 1989 | 0.60 | 1995 | 0.89 | 46.78 | 1.64 |
22 | 41.86 | 1982 | 0.47 | 1991 | 0.76 | 49.13 | 2.03 |
24 | 45.35 | 1974 | 0.61 | 1987 | 1.13 | 29.3 | 1.49 |
26 | 49.63 | 1968 | 0.46 | 1983 | 0.89 | 32.5 | 1.66 |
28 | 52.29 | 1957 | 0.24 | 1979 | 0.58 | 44.43 | 1.82 |
30 | 55.49 | 1943 | 0.19 | 1974 | 0.62 | 35.01 | 1.82 |
32 | 59.62 | 1920 | 0.13 | 1968 | 0.70 | 25.46 | 1.55 |
Appendix G
Appendix H
Tributary | Total | AC1 | AC2 | AC3 | ||||
---|---|---|---|---|---|---|---|---|
Mean | Diag | Mean | Diag | Mean | Diag | Mean | Diag | |
Kikuletwa | 0.603 | 1.002 | 0.572 | 1.002 | 0.446 | 1.001 | 0.482 | 1.003 |
Ruvu | 0.397 | 1.001 | 0.428 | 1.001 | 0.554 | 1.000 | 0.518 | 1.002 |
Land Uses | Kikuletwa | Ruvu | ||
---|---|---|---|---|
Mean | Diag | Mean | Diag | |
Bush (BS) | 0.105 | 1.006 | 0.064 | 1.005 |
Channel Bank (CB) | 0.255 | 1.006 | 0.310 | 1.003 |
Agricultural land (CU) | 0.384 | 1.002 | 0.446 | 1.002 |
River bank (RB) | 0.256 | 1.002 | 0.180 | 1.001 |
Cores | AC1 | AC2 | AC3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Core groups | Kikuletwa | Ruvu | Kikuletwa | Ruvu | Kikuletwa | Ruvu | ||||||
Mean | Diag | Mean | Diag | Mean | Diag | Mean | Diag | Mean | Diag | Mean | Diag | |
1 | 0.532 | 1.002 | 0.468 | 1.001 | 0.461 | 1.001 | 0.539 | 1.003 | 0.301 | 1.003 | 0.699 | 1.003 |
2 | 0.693 | 1.002 | 0.307 | 1.001 | 0.469 | 1.001 | 0.531 | 1.002 | 0.392 | 1.003 | 0.608 | 1.003 |
3 | 0.69 | 1.001 | 0.31 | 1.001 | 0.652 | 1.005 | 0.348 | 1.005 | 0.359 | 1.002 | 0.641 | 1.002 |
4 | 0.677 | 1.002 | 0.323 | 1.001 | 0.679 | 1.004 | 0.321 | 1.004 | 0.367 | 1.001 | 0.633 | 1.002 |
5 | 0.638 | 1.002 | 0.362 | 1.001 | 0.7 | 1.001 | 0.3 | 1.001 | 0.287 | 1.001 | 0.713 | 1.001 |
6 | 0.713 | 1.000 | 0.287 | 1.002 | 0.806 | 1.005 | 0.194 | 1.005 | 0.317 | 1.000 | 0.683 | 1.001 |
7 | 0.548 | 1.001 | 0.452 | 1.001 | 0.829 | 1.004 | 0.171 | 1.004 | 0.29 | 1.001 | 0.71 | 1.001 |
8 | 0.831 | 1.000 | 0.169 | 1.001 | 0.247 | 1.002 | 0.753 | 1.002 | ||||
9 | 0.216 | 1.002 | 0.784 | 1.002 |
AC1 | Bush (BS) | Channel Bank (CB) | Cultivated (CU) | River Bank (RB) | ||||
---|---|---|---|---|---|---|---|---|
Mean | Diag | Mean | Diag | Mean | Diag | Mean | Diag | |
Recent sections | 0.101 | 1.002 | 0.154 | 1.002 | 0.596 | 1.001 | 0.149 | 1.001 |
Older sections | 0.116 | 1.001 | 0.205 | 1.001 | 0.476 | 1.000 | 0.203 | 1.000 |
AC3 | ||||||||
Recent sections | 0.087 | 1.001 | 0.103 | 1.002 | 0.710 | 1.002 | 0.100 | 1.002 |
Older sections | 0.161 | 1.001 | 0.151 | 1.002 | 0.535 | 1.005 | 0.153 | 1.002 |
Sources | MeanP | SDP | MeanS | SDS | MeanTi | SDTi | MeanMn | SDMn |
---|---|---|---|---|---|---|---|---|
KL | 950.2616 | 48.20195 | 326.3333 | 84.79141 | 8580.739 | 1220.911 | 1051.489 | 82.5998 |
RV | 2053.058 | 258.8152 | 187.1743 | 16.75044 | 17823.24 | 2159.02 | 2159.326 | 170.9282 |
Sources | MeanFe | SDFe | MeanCo | SDCo | MeanNi | SDNi | MeanCu | SDCu |
KL | 49217.61 | 3679.799 | 94.91481 | 29.39974 | 92.2 | 13.10954 | 70.27222 | 83.57394 |
RV | 83718.41 | 2917.351 | 168.9583 | 35.11014 | 116.7857 | 18.39945 | 87.95238 | 17.01872 |
Sources | MeanZn | SDZn | MeanGa | SDGa | MeanSr | SDSr | MeanNb | SDNb |
KL | 82.18333 | 7.642855 | 23.11667 | 5.156064 | 566.9944 | 19.58032 | 61.56481 | 5.145065 |
RV | 155.919 | 6.807609 | 30.65952 | 3.143632 | 1131.869 | 52.35281 | 244.7286 | 15.60219 |
Sources | MeanBa | SDBa | MeanHf | SDHf | n | |||
KL | 900.1019 | 218.458 | 14.36111 | 8.813769 | 18 | |||
RV | 1647.236 | 327.3033 | 23.2 | 7.059854 | 14 |
References
- Goldsmith, E.; Hildyard, N. The Social and Environmental Effects of Large Dams. Volume 1: Overview; Wadebridge Ecological Centre: Cornwall, UK, 1984. [Google Scholar]
- Khagram, S. Dams and Development: Transnational Struggles for Water and Power; Cornell University Press: New York, NY, USA, 2004. [Google Scholar]
- Ehsani, N.; Vörösmarty, C.J.; Fekete, B.M.; Stakhiv, E.Z. Reservoir operations under climate change: Storage capacity options to mitigate risk. J. Hydrol. 2017, 555, 435–446. [Google Scholar] [CrossRef]
- EU. Directive 2009/28/EC of the European parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/Ec and 2003/30/EC. Off. J. Eur. Union 2009, 5, 2009. [Google Scholar]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earths Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Palmieri, A.; Shah, F.; Annandale, G.; Dinar, A. Reservoir Conservation: Economic and Engineering Evaluation of Alternative Strategies for Managing Sedimentation in Storage Reservoirs. Vol. 1: The Rescon Approach; World Bank: Washington, DC, USA, 2003. [Google Scholar]
- Lumbroso, D.; Woolhouse, G.; Wallingford, H. Using climate information for large-scale hydropower planning in sub-saharan Africa. 2015. Available online: file:///C:/Users/hp/Downloads/Future_Climate_For_Africa_PolicyBrief_hydropower (accessed on 13 March 2015).
- Lumbroso, D.; Woolhouse, G.; Jones, L. A review of the consideration of climate change in the planning of hydropower schemes in sub-saharan africa. Clim. Chang. 2015, 133, 621–633. [Google Scholar] [CrossRef] [Green Version]
- Foley, R.D.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byerlee, D.; Stevenson, J.; Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Secur. 2014, 3, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Said, M.; Komakech, H.C.; Munishi, L.K.; Muzuka, A.N.N. Evidence of climate change impacts on water, food and energy resources around Kilimanjaro, Tanzania. Reg. Environ. Chang. 2019, 19, 2521–2534. [Google Scholar] [CrossRef]
- Stenfert Kroese, J. Understanding Sediment Dynamics and Hydrology to Manage Water Resrouces in A Tropical Montane Forest of Kenya; Lancaster University: Lancaster, UK, 2020. [Google Scholar]
- Wynants, M.; Kelly, C.; Mtei, K.; Munishi, L.; Patrick, A.; Rabinovich, A.; Nasseri, M.; Gilvear, D.; Roberts, N.; Boeckx, P. Drivers of increased soil erosion in east Africa’s agro-pastoral systems: Changing interactions between the social, economic and natural domains. Reg. Environ. Chang. 2019, 19, 1909–1921. [Google Scholar] [CrossRef] [Green Version]
- Blake, W.H.; Rabinovich, A.; Wynants, M.; Kelly, C.; Nasseri, M.; Ngondya, I.; Patrick, A.; Mtei, K.; Munishi, L.; Boeckx, P. Soil erosion in east africa: An interdisciplinary approach to realising pastoral land management change. Environ. Res. Lett. 2018, 13, 124014. [Google Scholar] [CrossRef] [Green Version]
- Brown, K. Resilience, Development and Global Change; Routledge: London, UK, 2015. [Google Scholar]
- Neff, R.; Chang, H.; Knight, C.G.; Najjar, R.G.; Yarnal, B.; Walker, H.A. Impact of climate variation and change on mid-atlantic region hydrology and water resources. Clim. Res. 2000, 14, 207–218. [Google Scholar] [CrossRef]
- Hemp, A. Climate change and its impact on the forests of Kilimanjaro. Afr. J. Ecol. 2009, 47, 3–10. [Google Scholar] [CrossRef]
- Ndomba, P.M. Modeling of Erosion Processes and Reservoir Sedimentation Upstream of Nyumba Ya Mungu Reservoir in the Pangani Basin; University of Dar es Salaam: Dar es Salaam, Tanzania, 2007. [Google Scholar]
- Msuya, T.S.; Kajembe, G.C.; Ngana, J.O. Developing Integrated Institutional Framework for Sustainable Watershed Management in Pangani River Basin, Tanzania; Sokoine University of Agriculture: Morogoro, Tanzania, 2010. [Google Scholar]
- Notter, B. Water-Related Ecosystem Services and Options for Their Sustainable Use in the Pangani Basin, East Africa; Geographisches Institut der Universität Bern: Bern, Switzerland, 2010. [Google Scholar]
- Tadross, M.; Wolski, P. Climate change modelling for the pangani basin to support the iwrm planning process. In Pangani Basin Water Board, Moshi and IUCN Eastern and Southern Africa Regional Programme, Nairobi, Kenya; IUCN: Gland, Switzerland, 2010. [Google Scholar]
- Ndomba, P.M.; Mtalo, F.W.; Killingtveit, Å. A guided swat model application on sediment yield modeling in Pangani river basin: Lessons learnt. J. Urban Environ. Eng. 2008, 2, 53–62. [Google Scholar] [CrossRef]
- Valimba, P. In Spatial variation of hydrological floods during the short rains in northeast Tanzania. In Proceedings of the International Conference on Climate and Water, Helsinki, Finland, 3–6 September 2007. [Google Scholar]
- Collins, A.L.; Walling, D.E. Documenting catchment suspended sediment sources: Problems, approaches and prospects. Phys. Geogr. 2004, 28, 159–196. [Google Scholar] [CrossRef]
- Pulley, S.; Foster, I.; Antunes, P. The uncertainties associated with sediment fingerprinting suspended and recently deposited fluvial sediment in the nene river basin. Geomorphology 2015, 228, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Nosrati, K.; Fathi, Z.; Collins, A.L. Fingerprinting sub-basin spatial suspended sediment sources by combining geochemical tracers and weathering indices. Environ. Sci. Pollut. Res. 2019, 26, 28401–28414. [Google Scholar] [CrossRef]
- Haddadchi, A.; Ryder, D.S.; Evrard, O.; Olley, J. Sediment fingerprinting in fluvial systems: Review of tracers, sediment sources and mixing models. Int. J. Sediment. Res. 2013, 28, 560–578. [Google Scholar] [CrossRef] [Green Version]
- Walling, D.E. The evolution of sediment source fingerprinting investigations in fluvial systems. J. Soils Sediments 2013, 13, 1658–1675. [Google Scholar] [CrossRef]
- Wynants, M.; Millward, G.; Patrick, A.; Taylor, A.; Munishi, L.; Mtei, K.; Brendonck, L.; Gilvear, D.; Boeckx, P.; Ndakidemi, P.; et al. Determining tributary sources of increased sedimentation in east-African rift lakes. Sci. Total Environ. 2020, 717, 137266. [Google Scholar] [CrossRef]
- Blake, W.H.; Boeckx, P.; Stock, B.C.; Smith, H.G.; Bodé, S.; Upadhayay, H.R.; Gaspar, L.; Goddard, R.; Lennard, A.T.; Lizaga, I. A deconvolutional bayesian mixing model approach for river basin sediment source apportionment. Sci. Rep. 2018, 8, 1–12. [Google Scholar]
- Collins, A.L.; Pulley, S.; Foster, I.D.L.; Gellis, A.; Porto, P.; Horowitz, A.J. Sediment source fingerprinting as an aid to catchment management: A review of the current state of knowledge and a methodological decision-tree for end-users. J. Environ. Manag. 2017, 194, 86–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, A.; Walling, D.; Webb, L.; King, P. Apportioning catchment scale sediment sources using a modified composite fingerprinting technique incorporating property weightings and prior information. Geoderma 2010, 155, 249–261. [Google Scholar] [CrossRef]
- Appleby, P. Chronostratigraphic techniques in recent sediments. In Tracking Environmental Change Using Lake Sediments. Basin Analysis, Coring, and Chronological Techniques; Kluwer: Dordrecht, The Netherlands, 2001; pp. 171–203. [Google Scholar]
- Walling, D.; He, Q. The global distribution of bomb-derived 137cs reference inventories. Final. Rep. IAEA Tech. Contract 2000, 10361, 1–11. [Google Scholar]
- Du, P.; Walling, D.E. Using 210pb measurements to estimate sedimentation rates on river floodplains. J. Environ. Radioact. 2012, 103, 59–75. [Google Scholar] [CrossRef] [PubMed]
- Mabit, L.; Benmansour, M.; Abril, J.; Walling, D.; Meusburger, K.; Iurian, A.; Bernard, C.; Tarján, S.; Owens, P.; Blake, W. Fallout 210 pb as a soil and sediment tracer in catchment sediment budget investigations: A review. Earth Sci. Rev. 2014, 138, 335–351. [Google Scholar] [CrossRef]
- Appleby, P.G.; Oldfield, F. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210 pb to the sediment. Catena 1978, 5, 1–8. [Google Scholar] [CrossRef]
- Sanchez-Cabeza, J.; Ruiz-Fernández, A. 210pb sediment radiochronology: An integrated formulation and classification of dating models. Geochim. Cosmochim. Acta 2012, 82, 183–200. [Google Scholar] [CrossRef]
- Krishnaswamy, S.; Lal, D.; Martin, J.; Meybeck, M. Geochronology of lake sediments. Earth Planet. Sci. Lett. 1971, 11, 407–414. [Google Scholar] [CrossRef]
- Lein, H. Migration, irrigation and land-use changes in the lowlands of Kilimanjaro, Tanzania. In Water Resources Management, the Case of Pangani River Basin. Issues and Approaches; Dar es Salaam University Press: Dar es Salaam, Tanzania, 2002; pp. 28–38. [Google Scholar]
- Lalika, M.C.; Meire, P.; Ngaga, Y.M.; Chang’a, L. Understanding watershed dynamics and impacts of climate change and variability in the Pangani river basin, Tanzania. Ecohydrol. Hydrobiol. 2015, 15, 26–38. [Google Scholar] [CrossRef]
- Mzuza, M.K.; Zhang, W.; Kapute, F.; Selemani, J.R. Magnetic properties of sediments from the Pangani river basin, Tanzania: Influence of lithology and particle size. J. Appl. Geophys. 2017, 143, 42–49. [Google Scholar] [CrossRef]
- Hellar-Kihampa, H.; Potgieter-Vermaak, S.; Van Meel, K.; Rotondo, G.G.; Kishimba, M.; Van Grieken, R. Elemental composition of bottom-sediments from Pangani river basin, Tanzania: Lithogenic and anthropogenic sources. Toxicol. Environ. Chem. 2012, 94, 525–544. [Google Scholar] [CrossRef]
- Shaghude, Y.W. Review of water resource exploitation and landuse pressure in the pangani river basin. West. Indian Ocean. J. Mar. Sci. 2006, 5, 195–208. [Google Scholar] [CrossRef] [Green Version]
- Ndomba, P.M.; Mtalo, F.W.; Killingtveit, Å. A proposed approach of sediment sources and erosion processes identification at large catchments. J. Urban. Environ. Eng. 2007, 1, 79–86. [Google Scholar] [CrossRef]
- Rohr, P.C.; Killingtveit, A. Rainfall distribution on the slopes of MT Kilimanjaro. Hydrol. Sci. J. 2003, 48, 65–77. [Google Scholar] [CrossRef] [Green Version]
- IUCN/PBWO. Scenario Report: The Analysis of Water Allocation Scenarios for the Pangani River Basin; The World Conservation Union (IUCN) and Pangani Basin Water Office (PBWO): Moshi, Tanzania, 2008. [Google Scholar]
- Kijazi, A.L.; Reason, C. Analysis of the 2006 floods over northern Tanzania. Int. J. Climatol. A J. R. Meteorol. Soc. 2009, 29, 955–970. [Google Scholar] [CrossRef]
- Mahongo, S.B.; Shaghude, Y.W. Modelling the dynamics of the Tanzanian coastal waters. J. Oceanogr. Mar. Sci. 2014, 5, 1–7. [Google Scholar]
- Turpie, J.; Ngaga, Y.M.; Karanja, F. Catchment Ecosystems and Downstream Water: The Value of Water Resources in the Pangani Basin, Tanzania; Lao PDR. IUCN Water, Nature and Economics Technical Paper No. 7; IUCN—The World Conservation Union, Ecosystems and Livelihoods Group Asia: Gland, Switzerland, 2005. [Google Scholar]
- Schlüter, T. Geological Atlas of Africa; Springer: Berlin, Germany, 2008; p. 307. [Google Scholar]
- Awulachew, S.B.; McCartney, M.; Steenhuis, T.S.; Ahmed, A.A. A Review of Hydrology, Sediment and Water Resource Use in the Blue Nile Basin; IWMI: Battaramulla, Sri Lanka, 2009; Volume 131. [Google Scholar]
- Hathaway, T. What Cost Ethiopia’s DAM Boom. A Look Inside the Expansion of Ethiopia’s Energy Sector: International Rivers, People Water, Life. 2008. Available online: https://archive.internationalrivers.org/sites/default/files/attached-files/ethioreport06feb08.pdf (accessed on 25 November 2020).
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- FAO. Production/Crops Statistics. Food and Agriculture Organization of the United Nations Statistics Division. 2015. Available online: http://faostat3.Fao.Org/browse/q/qc/e (accessed on 26 February 2015).
- Kirchner, G. 210Pb as a tool for establishing sediment chronologies: Examples of potentials and limitations of conventional dating models. J. Environ. Radioact. 2011, 102, 490–494. [Google Scholar] [CrossRef]
- Gellis, A.C.; Noe, G.B. Sediment source analysis in the linganore creek watershed, maryland, USA, using the sediment fingerprinting approach: 2008 to 2010. J. Soils Sediments 2013, 13, 1735–1753. [Google Scholar] [CrossRef]
- Wilkinson, S.N.; Hancock, G.J.; Bartley, R.; Hawdon, A.A.; Keen, R.J. Using sediment tracing to assess processes and spatial patterns of erosion in grazed rangelands, Burdekin river basin, Australia. Agric. Ecosyst. Environ. 2013, 180, 90–102. [Google Scholar] [CrossRef]
- Laceby, J.P.; Evrard, O.; Smith, H.G.; Blake, W.H.; Olley, J.M.; Minella, J.P.; Owens, P.N. The challenges and opportunities of addressing particle size effects in sediment source fingerprinting: A review. Earth Sci. Rev. 2017, 169, 85–103. [Google Scholar] [CrossRef]
- Owens, P.; Blake, W.; Gaspar, L.; Gateuille, D.; Koiter, A.; Lobb, D.; Petticrew, E.L.; Reiffarth, D.; Smith, H.; Woodward, J. Fingerprinting and tracing the sources of soils and sediments: Earth and ocean science, geoarchaeological, forensic, and human health applications. Earth Sci. Rev. 2016, 162, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Laceby, J.P.; Olley, J.; Pietsch, T.J.; Sheldon, F.; Bunn, S.E. Identifying subsoil sediment sources with carbon and nitrogen stable isotope ratios. Hydrol. Proc. 2015, 29, 1956–1971. [Google Scholar] [CrossRef] [Green Version]
- Rawlins, B.; Turner, G.; Mounteney, I.; Wildman, G. Estimating specific surface area of fine stream bed sediments from geochemistry. Appl. Geochem. 2010, 25, 1291–1300. [Google Scholar] [CrossRef] [Green Version]
- IAEA. IAEA-Soil-7 Reference Sheet; International Atomic Energy Agency: Vienna, Austria, 2000. [Google Scholar]
- Goldberg, E.D. Geochronology with <210> pb. In Radioactive Dating; International Atomic Energy Agency: Vienna, Austria, 1963; pp. 121–131. [Google Scholar]
- Robbins, J.A. Geochemical and geophysical applications of radioactive lead. In Biogeochemistry of Lead in the Environment; Elsevier Scientific: Amsterdam, The Netherlands, 1978; pp. 285–393. [Google Scholar]
- Appleby, P.; Semertzidou, P.; Piliposian, G.; Chiverrell, R.; Schillereff, D.; Warburton, J. The transport and mass balance of fallout radionuclides in Brotherswater, Cumbria (UK). J. Paleolimnol. 2019, 62, 389–407. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Walling, D.E. The distribution of fallout 137cs and 210pb in undisturbed and cultivated soils. Appl. Radiat. Isot. 1997, 48, 677–690. [Google Scholar] [CrossRef]
- Aalto, R.; Nittrouer, C.A. 210pb geochronology of flood events in large tropical river systems. Philos. Trans. R. Soc. A 2012, 370, 2040–2074. [Google Scholar] [CrossRef]
- Baskaran, M.; Miller, C.J.; Kumar, A.; Andersen, E.; Hui, J.; Selegean, J.P.; Creech, C.T.; Barkach, J. Sediment accumulation rates and sediment dynamics using five different methods in a well-constrained impoundment: Case study from Union Lake, Michigan. J. Great Lakes Res. 2015, 41, 607–617. [Google Scholar] [CrossRef]
- Appleby, P. Three decades of dating recent sediments by fallout radionuclides: A review. Holocene 2008, 18, 83–93. [Google Scholar] [CrossRef]
- .Łokas, E.; Wachniew, P.; Ciszewski, D.; Owczarek, P.; Chau, N.D. Simultaneous use of trace metals, 210 pb and 137 cs in floodplain sediments of a lowland river as indicators of anthropogenic impacts. Wat. Air Soil Pollut. 2010, 207, 57–71. [Google Scholar] [CrossRef]
- Stock, B.C.; Jackson, A.L.; Ward, E.J.; Parnell, A.C.; Phillips, D.L.; Semmens, B.X. Analyzing mixing systems using a new generation of bayesian tracer mixing models. PeerJ 2018, 6, e5096. [Google Scholar] [CrossRef]
- Stock, B.C.; Semmens, B.X. Unifying error structures in commonly used biotracer mixing models. Ecology 2016, 97, 2562–2569. [Google Scholar] [CrossRef]
- Stock, B.; Semmens, B. Mixsiar Gui User Manual V3. 1; Scripps Institution of Oceanography: San Diego, CA, USA, 2017. [Google Scholar]
- Motha, J.; Wallbrink, P.; Hairsine, P.; Grayson, R. Tracer properties of eroded sediment and source material. Hydrol. Proc. 2002, 16, 1983–2000. [Google Scholar] [CrossRef]
- Belmont, P.; Willenbring, J.K.; Schottler, S.P.; Marquard, J.; Kumarasamy, K.; Hemmis, J.M. Toward generalizable sediment fingerprinting with tracers that are conservative and nonconservative over sediment routing timescales. J. Soils Sediments 2014, 14, 1479–1492. [Google Scholar] [CrossRef]
- Koiter, A.J.; Lobb, D.A.; Owens, P.N.; Petticrew, E.L.; Tiessen, K.H.; Li, S. Investigating the role of connectivity and scale in assessing the sources of sediment in an agricultural watershed in the canadian prairies using sediment source fingerprinting. J. Soils Sediments 2013, 13, 1676–1691. [Google Scholar] [CrossRef]
- Smith, H.G.; Karam, D.S.; Lennard, A.T. Evaluating tracer selection for catchment sediment fingerprinting. J. Soils Sediments 2018, 18, 3005–3019. [Google Scholar] [CrossRef]
- Sherriff, S.C.; Franks, S.W.; Rowan, J.S.; Fenton, O.; Ó’hUallacháin, D. Uncertainty-based assessment of tracer selection, tracer non-conservativeness and multiple solutions in sediment fingerprinting using synthetic and field data. J. Soils Sediments 2015, 15, 2101–2116. [Google Scholar] [CrossRef]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Tyler, G. Vertical distribution of major, minor, and rare elements in a haplic podzol. Geoderma 2004, 119, 277–290. [Google Scholar] [CrossRef]
- Horowitz, A.J. A Primer on Sediment-Trace Element Chemistry; Lewis Publishers: Chelsea, MI, USA, 1991; Volume 2. [Google Scholar]
- Withers, P.; Jarvie, H. Delivery and cycling of phosphorus in rivers: A review. Sci. Total Environ. 2008, 400, 379–395. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.; Macklin, M.; Curtis, C.; Vaughan, D. Chemical remobilization of contaminant metals within floodplain sediments in an incising river system: Implications for dating and chemostratigraphy. Earth Surf. Process. Landf. 1998, 23, 671–684. [Google Scholar] [CrossRef]
- Owens, P.N.; Walling, D.E.; Leeks, G.J. Use of floodplain sediment cores to investigate recent historical changes in overbank sedimentation rates and sediment sources in the catchment of the River Ouse, Yorkshire, UK. Catena 1999, 36, 21–47. [Google Scholar] [CrossRef]
- Pulley, S.; Foster, I.; Antunes, P. The application of sediment fingerprinting to floodplain and lake sediment cores: Assumptions and uncertainties evaluated through case studies in the Nene Basin, UK. J. Soils Sediments 2015, 15, 2132–2154. [Google Scholar] [CrossRef] [Green Version]
- Cuven, S.; Francus, P.; Lamoureux, S.F. Estimation of grain size variability with micro X-ray fluorescence in laminated lacustrine sediments, Cape Bounty, Canadian high arctic. J. Paleolimnol. 2010, 44, 803–817. [Google Scholar] [CrossRef]
- D’Haen, K.; Verstraeten, G.; Degryse, P. Fingerprinting historical fluvial sediment fluxes. Phys. Geogr. 2012, 36, 154–186. [Google Scholar] [CrossRef] [Green Version]
- Cambray, R. Radioactive Fallout in Air and Rain: Results to the End of 1988; AERE-R 13575; Atomic Energy Authority: London, UK, 1989.
- Mabit, L.; Benmansour, M.; Walling, D.E. Comparative advantages and limitations of the fallout radionuclides 137cs, 210pbex and 7be for assessing soil erosion and sedimentation. J. Environ. Radioact. 2008, 99, 1799–1807. [Google Scholar] [CrossRef] [PubMed]
- Bryceson, D.F. Multiplex livelihoods in rural africa: Recasting the terms and conditions of gainful employment. J. Mod. Afr. Stud. 2002, 40, 1–28. [Google Scholar] [CrossRef]
- Fouéré, M.-A. Julius nyerere, ujamaa, and political morality in contemporary Tanzania. Afr. Stud. Rev. 2014, 57, 1–24. [Google Scholar] [CrossRef]
- Kane, R. Some characteristics and precipitation effects of the el nino of 1997–1998. J. Atmos. Sol. Terr. Phys. 1999, 61, 1325–1346. [Google Scholar] [CrossRef]
- Mbonile, M.; Misana, S.; Sokoni, C. Land Use Change Patterns and Root Causes on the Southern Slopes of Mountain Kilimanjaro, Tanzania; LUCID Working Paper, no. 25; Lucid International Ltd.: Nairobi, Kenya, 2003. [Google Scholar]
- NBS. Population and Housing Census: Population Distribution by Administrative Areas; Ministry of Finance: Dar es Salaam, Tanzania, 2012.
- National Bureau of Statistics, Tanzania (NBS, T). Population Estimates by Districts for the Year 2016 and 2017; Ministry of Finance: Dar es Salaam, Tanzania, 2018.
- Hu, Y.; Zhen, L.; Zhuang, D. Assessment of land-use and land-cover change in Guangxi, China. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Krishnaswami, S.; Lal, D. Radionuclide limnochronology. In Lakes; Springer: New York, NY, USA, 1978; pp. 153–177. [Google Scholar]
- Smith, H.G.; Blake, W.H. Sediment fingerprinting in agricultural catchments: A critical re-examination of source discrimination and data corrections. Geomorphology 2014, 204, 177–191. [Google Scholar] [CrossRef]
- Smith, H.G.; Evrard, O.; Blake, W.H.; Owens, P.N. Preface—Addressing challenges to advance sediment fingerprinting research. J. Soils Sediments 2015, 15, 2033–2037. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The uplift of soil nutrients by plants: Biogeochemical consequences across scales. Ecology 2004, 85, 2380–2389. [Google Scholar] [CrossRef]
- Lawler, D. River bank erosion and the influence of frost: A statistical examination. Trans. Inst. Br. Geogr. 1986, 11, 227–242. [Google Scholar] [CrossRef] [Green Version]
- Lawler, D.; Grove, J.; Couperthwaite, J.; Leeks, G. Downstream change in river bank erosion rates in the swale–ouse system, northern england. Hydrol. Proc. 1999, 13, 977–992. [Google Scholar] [CrossRef]
- Collins, A.; Walling, D.; Leeks, G. Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique. Catena 1997, 29, 1–27. [Google Scholar] [CrossRef]
- De Rose, R.; Wilson, D.J.; Bartley, R.; Wilkinson, S. Riverbank erosion and its importance to uncertainties in large scale sediment budgets. In Proceedings of the Sediment budgets Proceedings of 7th IAHS Scientific Assembly, Foz do Igunzu, Brazil, 3–9 April 2005; pp. 85–92. [Google Scholar]
- Marques, J.J.; Schulze, D.G.; Curi, N.; Mertzman, S.A. Major element geochemistry and geomorphic relationships in Brazilian cerrado soils. Geoderma 2004, 119, 179–195. [Google Scholar] [CrossRef]
- McLaughlin, R. Iron and titanium oxides in soil clays and silts. Geochim. Cosmochim. Acta 1954, 5, 85–96. [Google Scholar] [CrossRef]
- Dawson, B.S.; Fergusson, J.E.; Campbell, A.S.; Cutler, E.J. Depletion of first-row transition metals in a chronosequence of soils in the reefton area of New Zealand. Geoderma 1991, 48, 271–296. [Google Scholar] [CrossRef]
- Cornu, S.; Lucas, Y.; Lebon, E.; Ambrosi, J.P.; Luizão, F.; Rouiller, J.; Bonnay, M.; Neal, C. Evidence of titanium mobility in soil profiles, manaus, central Amazonia. Geoderma 1999, 91, 281–295. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amasi, A.I.M.; Wynants, M.; Kawalla, R.A.; Sawe, S.; Munishi, L.; Blake, W.H.; Mtei, K.M. Reconstructing the Changes in Sedimentation and Source Provenance in East African Hydropower Reservoirs: A Case Study of Nyumba ya Mungu in Tanzania. Earth 2021, 2, 485-514. https://doi.org/10.3390/earth2030029
Amasi AIM, Wynants M, Kawalla RA, Sawe S, Munishi L, Blake WH, Mtei KM. Reconstructing the Changes in Sedimentation and Source Provenance in East African Hydropower Reservoirs: A Case Study of Nyumba ya Mungu in Tanzania. Earth. 2021; 2(3):485-514. https://doi.org/10.3390/earth2030029
Chicago/Turabian StyleAmasi, Aloyce I. M., Maarten Wynants, Remegius A. Kawalla, Shovi Sawe, Linus Munishi, William H. Blake, and Kelvin M. Mtei. 2021. "Reconstructing the Changes in Sedimentation and Source Provenance in East African Hydropower Reservoirs: A Case Study of Nyumba ya Mungu in Tanzania" Earth 2, no. 3: 485-514. https://doi.org/10.3390/earth2030029
APA StyleAmasi, A. I. M., Wynants, M., Kawalla, R. A., Sawe, S., Munishi, L., Blake, W. H., & Mtei, K. M. (2021). Reconstructing the Changes in Sedimentation and Source Provenance in East African Hydropower Reservoirs: A Case Study of Nyumba ya Mungu in Tanzania. Earth, 2(3), 485-514. https://doi.org/10.3390/earth2030029