Urban Intelligence for Planetary Health
Abstract
:1. Introduction
2. Urban Science and Urban Intelligence
3. Urban Intelligence for Planetary Health
4. Discussion & Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Stokstad, E. Human ‘Stuff’ Now Outweighs all Life on Earth: The Mass of Buildings and Other Infrastructure Exceeds that of All Trees, Shrubs, and Animals on the Planet. Science 2020, 9, 12. Available online: https://www.science.org/news/2020/12/human-stuff-now-outweighs-all-life-earth (accessed on 19 September 2021).
- UN Habitat. World Cities Report 2020: The Value of Sustainable Urbanization; United Nations Human Settlements Programme (UN-Habitat): Nairobi, Kenya, 2020. [Google Scholar]
- Townsend, A. Cities of data: Examining the new urban science. Public Cult. 2015, 27, 201–212. [Google Scholar] [CrossRef]
- Pineo, H.; Audia, C.; Black, D.; French, M.; Gemmell, E.; Lovasi, G.S.; Milner, J.; Montes, F.; Niu, Y.; Pérez-Ferrer, C.; et al. Building a methodological foundation for impactful urban planetary health science. J. Urban Health 2021, 98, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Acuto, M.; Parnell, S.; Seto, K.C. Building a global urban science. Nat. Sustain. 2018, 1, 2–4. [Google Scholar] [CrossRef]
- Sun, W.; Bao, P.; Zhao, X.; Tang, J.; Wang, L. Road traffic and urban form factors correlated with incidence of lung cancer in high-density areas: An ecological study in downtown Shanghai, China. J. Urban Health 2021, 98, 328–343. [Google Scholar] [CrossRef] [PubMed]
- Raifman, M.; Lambert, K.F.; Levy, J.I.; Kinney, P.L. Mortality implications of increased active mobility for a proposed regional transportation emission cap-and-invest program. J. Urban Health 2021, 98, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Symonds, P.; Verschoor, N.; Chalabi, Z.; Taylor, J.; Davies, M. Home energy efficiency and subjective health in greater London. J. Urban Health 2021, 98, 362–374. [Google Scholar] [CrossRef]
- Gabrys, J. Planetary health in practice: Sensing air pollution and transforming urban environments. Humanit. Soc. Sci. Commun. 2020, 7, 35. [Google Scholar] [CrossRef]
- Ravetz, J.; Miles, I. Foresight in cities: On the possibility of a “strategic urban intelligence”. Foresight 2016, 18, 469–490. [Google Scholar] [CrossRef] [Green Version]
- Lobo, J.; Alberti, M.; Allen-Dumas, M.; Arcaute, E.; Barthelemy, M.; Bojorquez Tapia, L.A.; Brail, S.; Bettencourt, L.; Beukes, A.; Chen, W.Q.; et al. Urban Science: Integrated Theory from the First Cities to Sustainable Metropolises; 2020. Report Submitted to the NSF on the Present State and Future of Urban Science. 2020. Available online: https://ssrn.com/abstract=3526940 (accessed on 17 November 2021).
- Kontokosta, C.E. Urban informatics in the science and practice of planning. J. Plan. Educ. Res. 2021, 41, 382–395. [Google Scholar] [CrossRef] [Green Version]
- Foth, M.; Choi, J.H.-j.; Satchell, C. Urban informatics. In Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work—CSCW’11, Hangzhou, China, 19–23 March 2011. [Google Scholar]
- NYC Buildings. Benchmarking. 2021. Available online: https://www1.nyc.gov/site/buildings/codes/benchmarking.page#:~:text=The%20NYC%20Benchmarking%20Law%2C%20Local%20Law%2084%20of,and%20water%20consumption%20through%20a%20process%20called%20benchmarking (accessed on 11 May 2021).
- Cross, A. Design intelligence: The use of codes and language systems in design. Des. Stud. 1986, 7, 14–19. [Google Scholar] [CrossRef]
- Gardner, H. Frames of Mind: The Theory of Multiple Intelligences; Heinemann: London, UK, 1983. [Google Scholar]
- Papamichael, K.; Protzen, J.-P. The limits of intellignece in design. In Proceedings of the 4th International Symposium on System Research, Informatics and Cybernetics, Baden-Baden, Germany, 30 July–3 August 1993. [Google Scholar]
- Li, W.; Wu, W.-j.; Wang, H.-m.; Cheng, X.-q.; Chen, H.-j.; Zhou, Z.-h.; Ding, R. Crowd Intelligence in AI2.0 era. Front. Inf. Technol. Electron. Eng. 2017, 18, 15–43. [Google Scholar] [CrossRef]
- Pykett, J.; Chrisinger, B.; Kyriakou, K.; Osborne, T.; Resch, B.; Stathi, A.; Toth, E.; Whittaker, A.C. Developing a Citizen Social Science approach to understand urban stress and promote wellbeing in urban. Palgrave Commun. 2020, 6, 85. [Google Scholar] [CrossRef]
- Erickson, T.; Crowdsourcing, G. Smarter Cities: Enabling urban intelligence in cities and regions. In Proceedings of the 1st International Workshop on Ubiquitous Crowdsourcing, Copenhagen, Denmark, 26–29 September 2010. [Google Scholar]
- Williams, S.; White, A.; Waiganjo, P.; Kloop, J. The digital matatu project: Using cell phones to create an open source data for Nairobi’s semi-formal bus system. J. Transp. Geogr. 2015, 49, 39–51. [Google Scholar] [CrossRef] [Green Version]
- NYC Department of Parks and Recreation. 2015 Street Tree Census Report 2017. Available online: http://media.nycgovparks.org/images/web/TreesCount/Index.html (accessed on 12 September 2021).
- Whitmee, S.; Haines, A.; Beyrer, C.; Boltz, F.; Capon, A.G.; de Souza Dias, B.F.; Ezeh, A.; Frumkin, H.; Gong, P.; Head, P.; et al. Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller Foundation-Lancet Commission on planetary health. Lancet 2015, 386, 1973–2028. [Google Scholar] [CrossRef]
- Horton, R.; Beaglehole, R.; Bonita, R.; Raeburn, J.; McKee, M.; Wall, S. From public to planetary health: A manifesto. Lancet 2014, 383, 847. [Google Scholar] [CrossRef]
- Seltenrich, N. Down to earth: The emerging field of planetary health. Environ. Health Perspect. 2018, 129, 1–7. [Google Scholar]
- United Nations Climate Change Secretariat. Highlighting the Unique Link between Climate Change and Health. 2016. Available online: https://newsroom.unfccc.int/news/human-health-needs-a-healthy-planet (accessed on 30 August 2021).
- Myers, S.S.; Samuel, S. Planetary health: Protecting human health on a rapidly changing planet. Lancet 2017, 390, 2860–2868. [Google Scholar] [CrossRef]
- Alberti, M. Grand challenges in urban science. Front. Built Environ. 2017, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Patz, J.A.; Siri, J.G. Toward urban planetary health solutions to climate change and other modern crises. J. Urban Health 2021, 98, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Egerer, M.; Haase, D.; McPhearson, T.; Frantzeskaki, N.; Andersson, E.; Nagendra, H.; Ossola, A. Urban change as an untapped opportunity for climate adaptation. NPJ Urban Sustain. 2021, 1, 22. [Google Scholar] [CrossRef]
- Horton, R.; Lo, S. Planetary health: A new science for exceptional action. Lancet 2015, 386, 1921–1922. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.; Yeung, W.; Celi, L.A. Urban intelligence for pandemic response: Viewpoint. JMIR Public Health Surveill. 2020, 6, e18873. [Google Scholar] [CrossRef] [PubMed]
- Chunara, R.; Smolinski, M.S.; Brownstein, J.S. Why we need crowdsourced data in infectious disease surveillance. Curr. Infect. Dis. Rep. 2013, 15, 316–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Sa, T.H.; Ludolph, R.; Hinsch, M.; Roebbel, N. Health at the heart of Urban and territorial planning: The WHO’s multi-sectoral leadership for human and planetary health. J. Urban Health 2021, 98, 438–441. [Google Scholar] [CrossRef]
- Zheng, Y.; Capra, L.; Wolfson, O.; Yang, H. Urban computing: Concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. 2014, 5, 1–55. [Google Scholar] [CrossRef]
- French, M.A.; Barker, S.F.; Taruc, R.R.; Ansariadi, A.; Duffy, G.A.; Saifuddaolah, M.; Agussalim, A.Z.; Awaluddin, F.; Zainal, Z.; Wardani, J.; et al. A planetary health model for reducing exposure to faecal contamination in urban informal settlements: Baseline findings from Makassar, Indonesia. Environ. Int. 2021, 155, 106679. [Google Scholar] [CrossRef]
- Allam, Z.; Dhunny, Z.A. On big data, artificial intelligence and smart cities. Cities 2018, 89, 80–91. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kominers, S.D.; Luca, M.; Naik, N. Big data and big cities: The promises and limitations of improved measures of urban life. Econ. Inq. 2018, 56, 114–137. [Google Scholar] [CrossRef]
- Gupta, K.; Zheng, Y.; Jain, J.K. Urban data integration using proximity relationship learning for design, management, and operations of sustainable urban systems. J. Comput. Civ. Eng. 2019, 33, 04018063. [Google Scholar] [CrossRef] [Green Version]
- Kontokosta, C.E.; Hong, B. Bias in smart city governance: How socio-spatial disparities in 311 complaint behavior impact the fairness of data-driven decisions. Sustain. Cities Soc. 2021, 64, 102503. [Google Scholar] [CrossRef]
- Ntoutsi, E.; Fafalios, P.; Gadiraju, U.; Iosifidis, V.; Nejdl, W.; Vidal, M.E.; Ruggieri, S.; Turini, F.; Papadopoulos, S.; Krasanakis, E.; et al. Bias in data-driven artificial intelligence systems—An introductory survey. WIREs Data Min. Knowl. Discov. 2020, 10, e1356. [Google Scholar] [CrossRef] [Green Version]
- The City of New York. NYC Automated Decision Systems Task Force. 2021. Available online: https://www1.nyc.gov/site/adstaskforce/about/about-ads.page (accessed on 17 November 2021).
- Chouldechova, A.; Roth, A. A snapshot of the frontiers of fairness in machine learning. Commun. ACM 2020, 63, 82–89. [Google Scholar] [CrossRef]
- Fantuzzo, J.; Culhane, D.P. Actionable Intellignece: Using Integrated Data Systems to Achieve a More Effective, Efficient, and Ethical Government; Palgrave Macmillan: Basingstoke, UK, 2015. [Google Scholar]
- Wilson, B.; Chakraborty, A. Planning smart(er) Cities: The promise of civic technology. J. Urban Technol. 2019, 26, 29–51. [Google Scholar] [CrossRef]
- C40 Cities Climate Leadership Group. Available online: https://www.c40.org (accessed on 11 May 2021).
- Global Consortium on Climate and Health Education. Columbia University. 2021. Available online: https://www.publichealth.columbia.edu/research/global-consortium-climate-and-health-education (accessed on 11 May 2021).
- Planetary Alliance. 2021. Available online: https://www.planetaryhealthalliance.org/planetary-health (accessed on 11 May 2021).
- Raimbault, J.; Denis, E.; Pumain, D. Empowering urban governance through urban science: Multi-scale dynamics of urban systems worldwide. Sustainability 2020, 15, 5954. [Google Scholar] [CrossRef]
Value | Domain Experts | Applications | |
---|---|---|---|
Data Intelligence | Extract information and gain knowledge of planetary health factors and their interactions by collecting and integrating various real-world data. | Data scientists, computer scientists, information managers | Urban environment monitoring, human mobility sensing, carbon emission prediction, data-driven decision-making |
Design Intelligence | Combines logical, verbal, graphic ability with spatial experience to shape the physical environment and human-machine-environment interface. | Architects, planners, product designers, UI/UX designers | Sustainable urban design, human-machine interaction design, prototype design |
Crowd Intelligence | Generate collaborative efforts from a large number of individuals and gain ground truth from local feedbacks. | Public agencies, community-based organizations, civic tech groups | Crowdsourcing, participatory decision-making, community-based acclimate actions |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y. Urban Intelligence for Planetary Health. Earth 2021, 2, 972-979. https://doi.org/10.3390/earth2040057
Lai Y. Urban Intelligence for Planetary Health. Earth. 2021; 2(4):972-979. https://doi.org/10.3390/earth2040057
Chicago/Turabian StyleLai, Yuan. 2021. "Urban Intelligence for Planetary Health" Earth 2, no. 4: 972-979. https://doi.org/10.3390/earth2040057
APA StyleLai, Y. (2021). Urban Intelligence for Planetary Health. Earth, 2(4), 972-979. https://doi.org/10.3390/earth2040057