The Use of Weather Radar Data: Possibilities, Challenges and Advanced Applications
Abstract
:1. Introduction
- Section 1 provides a brief introduction to the theoretical background of Weather radar;
- Section 2 shows the potential use of weather radar resources in various applications such as military, nautical, aviation, marine, meteorology, biology and weather surveillance;
- Section 3 describes the hydrologic applications of weather radar with a focus on catastrophic impacts caused by floods;
- Section 4 summarizes the recent advanced worldwide applications and report the result of the Italian case history and, in detail, the Puglia Region case study with a brief discussion;
- Section 5 reports conclusions and opportunities for future work.
Theoretical Background
2. Potential Use of Weather Radar Resources
3. Hydrologic Applications of Weather Radar
Floods Forecasting
4. Overview of Recent Advanced Worldwide Applications
4.1. Italian Case Studies
4.2. The Puglia Region Case Study
START |
defining bounding box |
defining time of the query |
executing query via urllib.urlretrieve method |
saving the tiles provided as the response from DPC servers |
load the image tiles in the memory |
transform the images into NumPy array |
for each X Y dimension of the NumPy array do this: |
if parameters of X and value of Y is more than 250 for component |
Red and equal to 0 for the components Green and Blue of the |
colours: |
save these coordinates in another NumPy array |
open this second array of coordinates |
for each couple of coordinates memorised and considering the X and |
Y coordinates of the bounding box: |
add a line to a file with attributes coordinate_X and |
coordinate_Y |
save the file |
END |
(An array is a grid of values and it contains information about the |
raw data, how to locate an element and how to interpret an element. |
It has a grid of elements that can be indexed in various ways.) |
5. Conclusions and Future Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bonci, L.; Malcevschi, S.; Belvisi, M.; Piccini, C.; D’Ambrogi, S.; Ercole, S.; Giovagnoli, M.C.; Franchi, G.; Morelli, E.; Parente, S. Dynamic Glossary for the Environment and Landscape; Manuals and Guidelines 78/2012; ISPRA: Rome, Italy, 2012. [Google Scholar]
- Mahoney, J.R. AMS 2000: A Strategic Review. Bull. Am. Meteorol. Soc. 1990, 71, 504–506. [Google Scholar] [CrossRef] [Green Version]
- Mapes, J.A.; Johnson, R.H.; Mapes, B.E. Mesoscale Processes and Severe Convective Weather. In Severe Convective Storms; American Meteorological Society: Boston, MA, USA, 2001; pp. 71–122. [Google Scholar] [CrossRef]
- Economic Losses from Climate-Related Extremes in Europe. Available online: https://www.eea.europa.eu/ims/economic-losses-from-climate-related (accessed on 19 December 2021).
- Bringi, V.; Zrnic, D. Polarization Weather Radar Development from 1970–1995: Personal Reflections. Atmosphere 2019, 10, 714. [Google Scholar] [CrossRef] [Green Version]
- Battan, L.J. Radar Observation of the Atmosphere; University of Chicago Press: Chigago, IL, USA, 1981. [Google Scholar]
- File: Weather-Radar-Blind-Zone.png—Wikimedia Commons. Available online: https://commons.wikimedia.org/wiki/File:Weather-radar-blind-zone.png (accessed on 8 January 2022).
- Sokol, Z.; Szturc, J.; Orellana-Alvear, J.; Popová, J.; Jurczyk, A.; Célleri, R. The Role of Weather Radar in Rainfall Estimation and Its Application in Meteorological and Hydrological Modelling—A Review. Remote Sens. 2021, 13, 351. [Google Scholar] [CrossRef]
- Rahimi, A.R.; Holt, A.R.; Upton, G.J.G.; Krämer, S.; Redder, A.; Verworn, H.R. Attenuation Calibration of an X-Band Weather Radar Using a Microwave Link. J. Atmos. Ocean. Technol. 2006, 23, 395–405. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V. Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge University Press: Cambridge, UK, 2001; p. 636. [Google Scholar]
- Anagnostou, E.N.; Krajewski, W.F.; Smith, J. Uncertainty quantification of mean-areal radar-rainfall estimates-Web of Science Core Collection. J. Atmos. Ocean. Technol. 1999, 16, 206–215. Available online: https://biblioproxy.cnr.it:3009/wos/woscc/full-record/WOS:000078683100003 (accessed on 24 November 2021). [CrossRef]
- Mahmood, D.A. Estimation of Dual Polarization Weather Radar Variables. Al-Mustansiriyah J. Sci. 2018, 28, 1. [Google Scholar] [CrossRef]
- Morin, E.; Krajewski, W.F.; Goodrich, D.C.; Gao, X.; Sorooshian, S. Estimating Rainfall Intensities from Weather Radar Data: The Scale-Dependency Problem-Web of Science Core Collection. 2003. Available online: https://biblioproxy.cnr.it:3009/wos/woscc/full-record/WOS:000185945200002 (accessed on 23 November 2021).
- Michaelides, S.; Levizzani, V.; Anagnostou, E.; Bauer, P.; Kasparis, T.; Lane, J.E. Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res. 2009, 94, 512–533. [Google Scholar] [CrossRef]
- Ku, J.M.; Na, W.; Yoo, C. Parameter estimation of a dual-pol radar rain rate estimator with truncated paired data. Water Supply 2020, 20, 2616–2629. [Google Scholar] [CrossRef]
- Levizzani, V.; Schmetz, J.; Lutz, H.J.; Kerkmann, J.; Alberoni, P.P.; Cervino, M. Precipitation estimations from geostationary orbit and prospects for METEOSAT Second Generation. Meteorol. Appl. 2001, 8, 23–41. [Google Scholar] [CrossRef]
- Villarini, G.; Krajewski, W.F. Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys. 2010, 31, 107–129. [Google Scholar] [CrossRef]
- Ośródka, K.; Szturc, J.; Jurczyk, A. Chain of data quality algorithms for 3-D single-polarization radar reflectivity (RADVOL-QC system). Meteorol. Appl. 2014, 21, 256–270. [Google Scholar] [CrossRef]
- Hsu, S.Y.; Chen, T.B.; Du, W.C.; Wu, J.H.; Chen, S.C. Integrate Weather Radar and Monitoring Devices for Urban Flooding Surveillance. Sensors 2019, 19, 825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapant, P.; Kolejka, J. Dynamic Pluvial Flash Flooding Hazard Forecast Using Weather Radar Data. Remote Sens. 2021, 13, 2943. [Google Scholar] [CrossRef]
- McCarthy, N.; Guyot, A.; Dowdy, A.; McGowan, H. Wildfire and Weather Radar: A Review. J. Geophys. Res. Atmos. 2019, 124, 266–286. [Google Scholar] [CrossRef] [Green Version]
- Maki, M.; Kim, Y.; Kobori, T.; Hirano, K.; Lee, D.I.; Iguchi, M. Analyses of three-dimensional weather radar data from volcanic eruption clouds. J. Volcanol. Geotherm. Res. 2021, 412, 107178. [Google Scholar] [CrossRef]
- Marzano, F.S.; Barbieri, S.; Vulpiani, G.; Rose, W.I. Volcanic ash cloud retrieval by ground-based microwave weather radar. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3235–3245. [Google Scholar] [CrossRef]
- Voormansik, T.; Rossi, P.J.; Moisseev, D.; Tanilsoo, T.; Post, P. Thunderstorm hail and lightning detection parameters based on dual-polarization Doppler weather radar data. Meteorol. Appl. 2017, 24, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Kranstauber, B.; Bouten, W.; Leijnse, H.; Wijers, B.-C.; Verlinden, L.; Shamoun-Baranes, J.; Dokter, A.M. High-Resolution Spatial Distribution of Bird Movements Estimated from a Weather Radar Network. Remote Sens. 2020, 12, 635. [Google Scholar] [CrossRef] [Green Version]
- McLaren, J.D.; Buler, J.J.; Schreckengost, T.; Smolinsky, J.A.; Boone, M.; Emiel van Loon, E.; Dawson, D.K.; Walters, E.L. Artificial light at night confounds broad-scale habitat use by migrating birds. Ecol. Lett. 2018, 21, 356–364. [Google Scholar] [CrossRef]
- Nilsson, C.; Dokter, A.M.; Verlinden, L.; Shamoun-Baranes, J.; Schmid, B.; Desmet, P.; Bauer, S.; Chapman, J.; Alves, J.A.; Stepanian, P.M.; et al. Revealing patterns of nocturnal migration using the European weather radar network. Ecography 2019, 42, 876–886. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, K.V.; Dokter, A.M.; Blancher, P.J.; Sauer, J.R.; Smith, A.C.; Smith, P.A.; Stanton, J.C.; Panjabi, A.; Helft, L.; Parr, M.; et al. Decline of the North American avifauna. Science 2019, 366, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Trombe, P.-J.; Pinson, P.; Vincent, C.; Bøvith, T.; Cutululis, N.A.; Draxl, C.; Giebel, G.; Hahmann, A.N.; Jensen, N.E.; Jensen, B.P.; et al. Weather radars—The new eyes for offshore wind farms? Wind. Energy 2014, 17, 1767–1787. [Google Scholar] [CrossRef] [Green Version]
- Qian, Z.; Yang, C.; Xu, H.; Cui, Y.; Han, Y.; Zhao, C.; Lv, Q. Analysis and Study on the Interference of Wind Farms to the New Generation Weather Radar Echoes. In Proceedings of the 5th International Conference on Information Science and Control Engineering (ICISCE), Zhengzhou, China, 20–22 July 2018; pp. 1086–1092. [Google Scholar] [CrossRef]
- Zewdie, G.K.; Lary, D.J.; Liu, X.; Wu, D.; Levetin, E. Estimating the daily pollen concentration in the atmosphere using machine learning and NEXRAD weather radar data. Environ. Monit. Assess. 2019, 191, 418. [Google Scholar] [CrossRef] [PubMed]
- Lischi, S.; Lupidi, A.; Martorella, M.; Cuccoli, F.; Facheris, L.; Baldini, L. Advanced polarimetric doppler weather radar simulator. In Proceedings of the International Radar Symposium, Gdansk, Poland, 16–18 June 2014. [Google Scholar] [CrossRef]
- Li, Z.; Perera, S.; Zhang, Y.; Zhang, G.; Doviak, R. Phased-Array Radar System Simulator (PASIM): Development and Simulation Result Assessment. Remote Sens. 2019, 11, 422. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, Y.; Zhang, G.; Brewster, K.A. A microphysics-based simulator for advanced airborne weather radar development. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1356–1373. [Google Scholar] [CrossRef]
- Zeng, Q.; He, J.; Shi, Z.; Li, X. Weather radar data compression based on spatial and temporal prediction. Atmosphere 2018, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- Vaccarono, M.; Chandrasekar, C.V.; Bechini, R.; Cremonini, R. Survey on Electromagnetic Interference in Weather Radars in Northwestern Italy. Environments 2019, 6, 126. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.A.; Kim, H.L.; Suk, M.K. Clutter Elimination Algorithm for Non-Precipitation Echo of Radar Data Considering Meteorological and Observational Properties in Polarimetric Measurements. Remote Sens. 2020, 12, 3790. [Google Scholar] [CrossRef]
- Nepal, R.; Zhang, Y.; Blake, W. Sense and Avoid Airborne Radar Implementations on a Low-Cost Weather Radar Platform. Aerospace 2017, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Nekrasov, A.; Khachaturian, A.; Veremyev, V.; Bogachev, M. Sea Surface Wind Measurement by Airborne Weather Radar Scanning in a Wide-Size Sector. Atmosphere 2016, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Barge, B.L.; Humphries, R.G.; Mah, S.J.; Kuhnke, W.K. Rainfall measurements by weather radar: Applications to hydrology. Water Resour. Res. 1979, 15, 1380–1386. [Google Scholar] [CrossRef]
- Seo, D.J.; Habib, E.; Andrieu, H.; Morin, E. Hydrologic applications of weather radar. J. Hydrol. 2015, 531, 231–233. [Google Scholar] [CrossRef]
- Wijayarathne, D.; Boodoo, S.; Coulibaly, P.; Sills, D. Evaluation of Radar Quantitative Precipitation Estimates (QPEs) as an Input of Hydrological Models for Hydrometeorological Applications. J. Hydrometeorol. 2020, 21, 1847–1864. [Google Scholar] [CrossRef]
- Chen, H.; Chandrasekar, V. The quantitative precipitation estimation system for Dallas-Fort Worth (DFW) urban remote sensing network. J. Hydrol. 2015, 531, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Seo, B.C.; Krajewski, W.F. Correcting temporal sampling error in radar-rainfall: Effect of advection parameters and rain storm characteristics on the correction accuracy. J. Hydrol. 2015, 531, 272–283. [Google Scholar] [CrossRef]
- Sandford, C.; Illingworth, A.; Thompson, R. The Potential Use of the Linear Depolarization Ratio to Distinguish between Convective and Stratiform Rainfall to Improve Radar Rain-Rate Estimates. J. Appl. Meteorol. Climatol. 2017, 56, 2927–2940. [Google Scholar] [CrossRef]
- Kwon, S.; Jung, S.H.; Lee, G.W. Inter-comparison of radar rainfall rate using Constant Altitude Plan Position Indicator and hybrid surface rainfall maps. J. Hydrol. 2015, 531, 234–247. [Google Scholar] [CrossRef]
- Scopus—Document Details—Comparison of Radar Algorithms for Quantitative Precipitation Estimations in the Canadian Precipitation Analysis (CaPA) from Operational Polarimetric Radars for Hydrological Applications|Signed in. Available online: https://www.scopus.com/record/display.uri?eid=2-s2.0-84964429128&origin=inward (accessed on 29 November 2021).
- Rafieeinasab, A.; Norouzi, A.; Kim, S.; Habibi, H.; Nazari, B.; Seo, D.-J.; Lee, H.; Cosgrove, B.; Cui, Z. Toward high-resolution flash flood prediction in large urban areas—Analysis of sensitivity to spatiotemporal resolution of rainfall input and hydrologic modeling. J. Hydrol. 2015, 531, 370–388. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Seo, D.J.; Noh, S.J.; Prat, O.P.; Nelson, B.R. Improving multisensor estimation of heavy-to-extreme precipitation via conditional bias-penalized optimal estimation. J. Hydrol. 2018, 556, 1096–1109. [Google Scholar] [CrossRef]
- Influence of Rainfall Spatial Variability on Hydrological Modelling: Study by Simulations-Web of Science Core Collection. Available online: https://biblioproxy.cnr.it:3009/wos/woscc/full-record/WOS:000313597100083 (accessed on 29 November 2021).
- Quantifying Catchment-Scale Storm Motion and its Effects on Flood Response-Web of Science Core Collection. Available online: https://biblioproxy.cnr.it:3009/wos/woscc/full-record/WOS:000313597100084 (accessed on 29 November 2021).
- Dyer, J.L.; Garza, R.C. A comparison of precipitation estimation techniques over Lake Okeechobee, Florida. Weather Forecast. 2004, 19, 1029–1043. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.P.; Ochoa-Rodríguez, S.; Simões, N.E.; Onof, C.; Maksimović, Č. Radar-raingauge data combination techniques: A revision and analysis of their suitability for urban hydrology. Water Sci. Technol. 2013, 68, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Radar-Based Pluvial Flood Forecasting over Urban Areas: Redbridge Case Study-Web of Science Core Collection. Available online: https://biblioproxy.cnr.it:3009/wos/woscc/full-record/WOS:000313597100102 (accessed on 29 November 2021).
- Ochoa-Rodriguez, S.; Wang, L.P.; Willems, P.; Onof, C. A Review of Radar-Rain Gauge Data Merging Methods and Their Potential for Urban Hydrological Applications. Water Resour. Res. 2019, 55, 6356–6391. [Google Scholar] [CrossRef]
- Ochoa-Rodriguez, S.; Wang, L.-P.; Gires, A.; Pina, R.D.; Reinoso-Rondinel, R.; Bruni, G.; Ichiba, A.; Gaitan, S.; Cristiano, E.; van Assel, J.; et al. Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation. J. Hydrol. 2015, 531, 389–407. [Google Scholar] [CrossRef]
- Marra, F.; Morin, E. Use of radar QPE for the derivation of Intensity-Duration-Frequency curves in a range of climatic regimes. J. Hydrol. 2015, 531, 427–440. [Google Scholar] [CrossRef]
- Eldardiry, H.; Habib, E.; Zhang, Y.; Graschel, J. Artifacts in Stage IV NWS Real-Time Multisensor Precipitation Estimates and Impacts on Identification of Maximum Series. J. Hydrol. Eng. 2017, 22, E4015003. [Google Scholar] [CrossRef]
- Campos, E.; Wang, J. Numerical simulation and analysis of the April 2013 Chicago Floods. J. Hydrol. 2015, 531, 454–474. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.M.; Barros, A.P. Landform controls on low level moisture convergence and the diurnal cycle of warm season orographic rainfall in the Southern Appalachians. J. Hydrol. 2015, 531, 475–493. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Zhuge, X.Y.; Zhang, C.W. Rainfall retrieval and nowcasting based on multispectral satellite images. Part II: Retrieval study on daytime half-hour rain rate. J. Hydrometeorol. 2011, 12, 1271–1285. [Google Scholar] [CrossRef]
- Conti, F.l.; Francipane, A.; Pumo, D.; Noto, L.V. Exploring single polarization X-band weather radar potentials for local meteorological and hydrological applications. J. Hydrol. 2015, 531, 508–522. [Google Scholar] [CrossRef]
- Kundzewicz, Z.; Kanae, S.; Seneviratne, S.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Khalequzzaman, M. Recent floods in Bangladesh: Possible causes and solutions. Nat. Hazards 1994, 9, 65–80. [Google Scholar] [CrossRef]
- Amadio, M.; Scorzini, A.R.; Carisi, F.; Essenfelder, A.H.; Domeneghetti, A.; Mysiak, J.; Castellarin, A. Testing empirical and synthetic flood damage models: The case of Italy. Nat. Hazards Earth Syst. Sci. 2019, 19, 661–678. [Google Scholar] [CrossRef] [Green Version]
- Alfieri, L.; Feyen, L.; Salamon, P.; Thielen, J.; Bianchi, A.; Dottori, F.; Burek, P. Modelling the socio-economic impact of river floods in Europe. Nat. Hazards Earth Syst. Sci. 2016, 16, 1401–1411. [Google Scholar] [CrossRef] [Green Version]
- Pistrika, A.K.; Jonkman, S.N. Damage to residential buildings due to flooding of New Orleans after hurricane Katrina. Nat. Hazards 2010, 54, 413–434. [Google Scholar] [CrossRef]
- Horita, F.A.; Martins, R.G.; Palma, G.; Vilela, R.B.; Bressiani, D.A.; de Albuquerque, J.P. Determining flooded areas using crowd sensing data and weather radar precipitation: A case study in Brazil. In Proceedings of the 15th International Conference on Information Systems for Crisis Response and Management, Rochester, NY, USA, 20–23 May 2018; Boersma, K., Tomaszewski, B., Eds.; Available online: http://wrap.warwick.ac.uk/102615 (accessed on 25 November 2021).
- Millennium Ecosystem Assessment (MA). Ecosystems and Human Well-Being: Synthesisle; Insland Press: Washington, DC, USA, 2005. [Google Scholar]
- Cimini, D.; Romano, F.; Ricciardelli, E.; Di Paola, F.; Viggiano, M.; Marzano, F.S.; Colaiuda, V.; Picciotti, E.; Vulpiani, G.; Cuomo, V. Validation of satellite OPEMW precipitation product with ground-based weather radar and rain gauge networks. Atmos. Meas. Tech. 2013, 6, 3181–3196. [Google Scholar] [CrossRef] [Green Version]
- Radar Platform|Dipartimento della Protezione Civile. Available online: https://mappe.protezionecivile.gov.it/en/risks-maps/radar-map (accessed on 28 November 2021).
- Data Management and Production of the National Radar Network. 2018. Available online: https://www.mydewetra.org/wiki/images/8/8e/ReteRadatHDF5.pdf (accessed on 28 November 2021).
- Massarelli, C.; Losacco, D.; Tumolo, M.; Campanale, C.; Uricchio, V.F. Protection of Water Resources from Agriculture Pollution: An Integrated Methodological Approach for the Nitrates Directive 91–676-EEC Implementation. Int. J. Environ. Res. Public Health 2021, 18, 13323. [Google Scholar] [CrossRef]
- DTM. Available online: http://webapps.sit.puglia.it/freewebapps/DTM/index.html (accessed on 28 November 2021).
- Descrizione Della Piattaforma—radar-dpc-docs 1.0 Documentazione. Available online: https://dpc-radar.readthedocs.io/it/latest/platform.html (accessed on 28 November 2021).
- Accesso ai Servizi WMS e WMTS—Radar-dpc-docs 1.0 Documentazione. Available online: https://dpc-radar.readthedocs.io/it/latest/services.html (accessed on 28 November 2021).
- GeoServer. Available online: http://geoserver.org/ (accessed on 28 November 2021).
- The Home of Location Technology Innovation and Collaboration|OGC. Available online: https://www.ogc.org/ (accessed on 28 November 2021).
- Laender, A.H.F.; Ribeiro-Neto, B.A.; da Silva, A.S.; Teixeira, J.S. A brief survey of web data extraction tools. ACM SIGMOD Rec. 2002, 31, 84–93. [Google Scholar] [CrossRef]
- Welcome to Python.org. Available online: https://www.python.org/ (accessed on 28 November 2021).
- Welcome to the Python GDAL/OGR Cookbook!—Python GDAL/OGR Cookbook 1.0 Documentation. Available online: http://pcjericks.github.io/py-gdalogr-cookbook/index.html# (accessed on 28 November 2021).
- GDAL—GDAL Documentation. Available online: https://gdal.org/index.html (accessed on 28 November 2021).
- GeoWebCache. Available online: https://radar-geowebcache.protezionecivile.it/service/wmts?REQUEST=getcapabilities (accessed on 28 November 2021).
- Mappa Stazioni Meteo|Agrometeopuglia—ARIF PUGLIA. Available online: http://www.agrometeopuglia.it/osservazioni/mappa-stazioni-meteo (accessed on 28 November 2021).
- Meteo—Geoportale del Servizio Agenti Fisici—Lizmap. Available online: http://www.webgis.arpa.puglia.it/lizmap/index.php/view/map/?repository=1&project=meteo (accessed on 28 November 2021).
- Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 23rd ACM National Conference, Las Vegas, NV, USA, 27–29 August 1968; ACM Press: New York, NY, USA, 1968; pp. 517–524. [Google Scholar] [CrossRef]
- AGID, Agency for Digital Italy. Adoption of the "Technologies and Standards Guidelines for Interoperability Safety through the Computer Systems API “and the” Guidelines on the Technical Interoperability of the Publics Administration”. Available online: https://www.agid.gov.it/en/linee-guida (accessed on 28 November 2021).
Application | Principal Aim Application | Year of Publication | Reference | |
---|---|---|---|---|
Natural disasters | Flood events | Substantial reduction in false alarms | 2021 | [20] |
Volcanic ash | Understanding of volcanic eruption column dynamics and horizontal ash-fall transportation with three-dimensional analyses | 2021 | [22] | |
Wildfires | A better understanding of fire behaviour and fire atmosphere interaction | 2019 | [21] | |
Thunderstorm hail and lightning | Reduced financial losses and significant damage to infrastructure products by thunderstorm hail and lightning | 2017 | [24] | |
Enhancement of ecosystem services | Bird migration | Detailed information on bird movements in the landscape and aerial environment | 2020 | [25] |
Wind farms | Detecting interference from wind farm echoes | 2019 | [30] | |
Pollen concentration | Providing pollen alerts and predicting allergic pollen of different species | 2019 | [31] | |
Urban hydrology | Improve the applicability of radar and rain gauge rainfall estimates | 2019 | [55] | |
Airborne | Radar implementation low-cost for multi-mission applications | 2017 | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binetti, M.S.; Campanale, C.; Massarelli, C.; Uricchio, V.F. The Use of Weather Radar Data: Possibilities, Challenges and Advanced Applications. Earth 2022, 3, 157-171. https://doi.org/10.3390/earth3010012
Binetti MS, Campanale C, Massarelli C, Uricchio VF. The Use of Weather Radar Data: Possibilities, Challenges and Advanced Applications. Earth. 2022; 3(1):157-171. https://doi.org/10.3390/earth3010012
Chicago/Turabian StyleBinetti, Maria Silvia, Claudia Campanale, Carmine Massarelli, and Vito Felice Uricchio. 2022. "The Use of Weather Radar Data: Possibilities, Challenges and Advanced Applications" Earth 3, no. 1: 157-171. https://doi.org/10.3390/earth3010012
APA StyleBinetti, M. S., Campanale, C., Massarelli, C., & Uricchio, V. F. (2022). The Use of Weather Radar Data: Possibilities, Challenges and Advanced Applications. Earth, 3(1), 157-171. https://doi.org/10.3390/earth3010012