Characterizing Meteorological Droughts in Nepal: A Comparative Analysis of Standardized Precipitation Index and Rainfall Anomaly Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Standardized Precipitation Index (SPI)
2.3.2. SPI Calculation
2.3.3. Rainfall Anomaly Index (RAI)
2.3.4. RAI Calculation
- is the average monthly/seasonal/annual precipitation of historical series;
- is the average of ten highest monthly/seasonal/annual precipitations;
- is the average of ten lowest monthly/seasonal/annual precipitations;
- N − represents the positive anomaly and negative anomaly based on positive or negative values.
2.3.5. Identification of Contributing Determinants for Agricultural Production
3. Results and Discussion
3.1. Observed Rainfall Distribution
3.2. SPI Using Observed Data
3.2.1. Temporal Analysis
3.2.2. Temporal Fluctuation of SPI Events
3.2.3. Spatial Analysis
3.2.4. SPI Events
3.3. RAI Using Observed Data
3.3.1. Temporal Analysis
3.3.2. Spatial Analysis
3.4. Drought Characteristics: Severity, Frequency, and Duration of Drought Events
3.5. Impact of Drought on Crop Yield
3.5.1. Observed Crop Data
3.5.2. Impact on Crop Production
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kundu, A.; Patel, N.R.; Denis, D.M.; Dutta, D. An estimation of hydrometeorological drought stress over the central part of India using geo-information technology. J. Indian Soc. Remote Sens. 2020, 48, 1–9. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Gitlin, A.R.; Sthultz, C.M.; Bowker, M.A.; Stumpf, S.; Paxton, K.L.; Kennedy, K.; Muñoz, A.; Bailey, J.K.; Whitham, T.G. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conserv. Biol. 2006, 20, 1477–1486. [Google Scholar] [CrossRef] [PubMed]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Fensham, R.J.; Fairfax, R.J.; Ward, D.P. Drought-induced tree death in savanna. Glob. Chang. Biol. 2009, 15, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Rivera, J.A.; Penalba, O.C.; Villalba, R.; Araneo, D.C. Spatio-temporal patterns of the 2010–2015 extreme hydrological drought across the Central Andes, Argentina. Water 2017, 9, 652. [Google Scholar] [CrossRef] [Green Version]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Duan, K.; Mei, Y. Comparison of meteorological, hydrological and agricultural drought responses to climate change and uncertainty assessment. Water Resour. Manag. 2014, 28, 5039–5054. [Google Scholar] [CrossRef]
- Tallaksen, L.M.; Van Lanen, H.A.J. Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Leng, G.; Tang, Q.; Rayburg, S. Climate change impacts on meteorological, agricultural and hydrological droughts in China. Glob. Planet. Chang. 2015, 126, 23–34. [Google Scholar] [CrossRef]
- Haslinger, K.; Koffler, D.; Schöner, W.; Laaha, G. Exploring the link between meteorological drought and streamflow: Effects of climate-catchment interaction. Water Resour. Res. 2014, 50, 2468–2487. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Van Lanen, H.A.J. A process-based typology of hydrological drought. Hydrol. Earth Syst. Sci. 2012, 16, 1915–1946. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Ertsen, M.W.; Svoboda, M.D.; Hafeez, M. Propagation of drought: From meteorological drought to agricultural and hydrological drought. Adv. Meteorol. 2016, 2016, 6547209. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Spinoni, J.; Naumann, G.; Vogt, J.; Barbosa, P. European drought climatologies and trends based on a multi-indicator approach. Glob. Planet. Chang. 2015, 127, 50–57. [Google Scholar] [CrossRef]
- Bayissa, Y.; Tadesse, T.; Demisse, G.; Shiferaw, A.; Hong, Y.; Wen, Y.; Thenkabail, P.S. Evaluation of satellite-based rainfall estimates and application to monitor meteorological drought for the Upper Blue Nile Basin, Ethiopia. Remote Sens. 2017, 9, 669. [Google Scholar] [CrossRef] [Green Version]
- Spinoni, J.; Barbosa, P.; Bucchignani, E.; Cassano, J.; Cavazos, T.; Christensen, J.H.; Christensen, O.B.; Coppola, E.; Evans, J.; Geyer, B.; et al. Future global meteorological drought hot spots: A study based on CORDEX data. J. Clim. 2020, 33, 3635–3661. [Google Scholar] [CrossRef]
- Khanna, M. Hydrological Drought Indices; Indian Agriculture Research Institute: New Delhi, India, 2009. [Google Scholar]
- Dalezios, N.R.; Blanta, A.; Spyropoulos, N.V. Assessment of remotely sensed drought features in vulnerable agriculture. Nat. Hazards Earth Syst. Sci. 2012, 12, 3139–3150. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J.; Azorin-Molina, C.; Morán-Tejeda, E. Accurate computation of a streamflow drought index. J. Hydrol. Eng. 2011, 17, 318–332. [Google Scholar] [CrossRef] [Green Version]
- Manton, M.J.; Della-Marta, P.M.; Haylock, M.R.; Hennessy, K.J.; Nicholls, N.; Chambers, L.E.; Collins, D.A.; Daw, G.; Finet, A.; Gunawan, D.; et al. Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. Int. J. Climatol. 2001, 21, 269–284. [Google Scholar] [CrossRef]
- Nicholls, N.; Murray, W. Workshop on indices and indicators for climate extremes: Asheville, NC, USA, 3–6 June 1997 breakout group B: Precipitation. In Weather and Climate Extremes: Changes, Variations and a Perspective from the Insurance Industry; Karl, T.R., Nicholls, N., Ghazi, A., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 23–29. [Google Scholar]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to the time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 17–22. [Google Scholar]
- Van Rooy, M. A Rainfall Anomally Index Independent Of Time And Space. Weather Bur. S. Afr. 1965, 14, 43–48. [Google Scholar]
- Guttman, N.B. Accepting the standardized precipitation index: A calculation algorithm. J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- Wu, H.; Svoboda, M.D.; Hayes, M.J.; Wilhite, D.A.; Wen, F. Appropriate application of the standardized precipitation index in arid locations and dry seasons. Int. J. Climatol. 2007, 27, 65–79. [Google Scholar] [CrossRef]
- Moreira, E.E. SPI drought class prediction using log-linear models applied to wet and dry seasons. Phys. Chem. Earth Parts A/B/C 2016, 94, 136–145. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, M.; Singh, V.P.; Chen, X. Copula-based risk evaluation of droughts across the Pearl River basin, China. Theor. Appl. Climatol. 2013, 111, 119–131. [Google Scholar] [CrossRef]
- Pramudya, Y.; Onishi, T. Assessment of the Standardized Precipitation Index (SPI) in Tegal City, Central Java, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 129, 012019. [Google Scholar] [CrossRef]
- Hayes, M.J. Drought Indices. What Is Drought? National Drought Mitigation Center: Lincon, NE, USA, 2006. [Google Scholar]
- Mishra, A.K.; Desai, V.R. Spatial and temporal drought analysis in the Kansabati river basin, India. Int. J. River Basin Manag. 2010, 3, 43–52. [Google Scholar] [CrossRef]
- Heinrich, G.; Gobiet, A. The future of dry and wet spells in Europe: A comprehensive study based on the ENSEMBLES regional climate models. Int. J. Climatol. 2012, 32, 1951–1970. [Google Scholar] [CrossRef]
- Vidal, J.P.; Martin, E.; Kitova, N.; Najac, J.; Soubeyroux, J.M. Evolution of spatio-temporal drought characteristics: Validation, projections and effect of adaptation scenarios. Hydrol. Earth Syst. Sci. 2012, 16, 2935–2955. [Google Scholar] [CrossRef] [Green Version]
- Tilahun, K. Analysis of rainfall climate and evapo-transpiration in arid and semi-arid regions of Ethiopia using data over the last half a century. J. Arid Environ. 2006, 64, 474–487. [Google Scholar] [CrossRef]
- Keyantash, J.; Dracup, J.A. The quantification of drought: An evaluation of drought indices. Bull. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Vasiliades, L.; Dalezios, N.R.; Loukas, A.; Vasiliades, L.; Dalezios, N.R. Intercomparison of meteorological drought indices for drought assessment and monitoring in Greece prediction. In Proceedings of the 8th International Conference on Environmental Science and Technology, Lemnos Island, Greece, 8–10 September 2003; pp. 484–491. [Google Scholar]
- Hänsel, S.; Schucknecht, A.; Matschullat, J. The Modified Rainfall Anomaly Index (mRAI)—Is this an alternative to the Standardised Precipitation Index (SPI) in evaluating future extreme precipitation characteristics? Theor. Appl. Climatol. 2016, 123, 827–844. [Google Scholar] [CrossRef]
- Adhikari, S. Drought impact and adaptation strategies in the Mid-Hill farming system of western Nepal. Environments 2018, 5, 101. [Google Scholar] [CrossRef] [Green Version]
- Joshi, G.R. Agricultural Economy of Nepal: Development Challenges and Opportunities; Nepal Policy Research Centre: Kathmandu, Nepal, 2018. [Google Scholar]
- United Nations Development Programme (UNDP). Country Report Climate Risk Management for Agriculture in Nepal: Regional Integrated Multi-Hazard Early Warning System for Africa and Asia; United Nations Development Programme (UNDP): New York, NY, USA, 2013. [Google Scholar]
- Ghimire, Y.N.; Shivakoti, G.P.; Perret, S.R. Household-level vulnerability to drought in hill agriculture of Nepal: Implications for adaptation planning. Int. J. Sustain. Dev. World Ecol. 2010, 17, 225–230. [Google Scholar] [CrossRef]
- Talchabhadel, R.; Karki, R.; Yadav, M.; Maharjan, M.; Aryal, A.; Thapa, B.R. Spatial distribution of soil moisture index across Nepal: A step towards sharing climatic information for agricultural sector. Theor. Appl. Climatol. 2019, 137, 3089–3102. [Google Scholar] [CrossRef]
- Talchabhadel, R.; Karki, R.; Thapa, B.R.; Maharjan, M.; Parajuli, B. Spatio-temporal variability of extreme precipitation in Nepal. Int. J. Climatol. 2018, 38, 4296–4313. [Google Scholar] [CrossRef]
- Sigdel, M.; Ikeda, M. Spatial and temporal analysis of drought in Nepal using Standardized Precipitation Index and its relationship with climate indices. J. Hydrol. Meteorol. 2010, 7, 59–74. [Google Scholar] [CrossRef]
- Dahal, P.; Shrestha, N.S.; Shrestha, M.L.; Krakauer, N.Y.; Panthi, J.; Pradhanang, S.M.; Jha, A.; Lakhankar, T. Drought risk assessment in central Nepal: Temporal and spatial analysis. Nat. Hazards 2016, 80, 1913–1932. [Google Scholar] [CrossRef] [Green Version]
- Central Bureau of Statistics (CBS). National Population and Housing Census; Central Bureau of Statistics (CBS): Kathmandu, Nepal, 2011.
- Hayes, M.J.; Svoboda, M.D.; Wilhite, D.A.; Vanyarkho, O.V. Monitoring the 1996 drought using the Standardized Precipitation Index. Bull. Am. Meteorol. Soc. 1999, 80, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2017, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; Academic Press: Cambridge, MA, USA, 2011; ISBN 0128165278. [Google Scholar]
- Lloyd-Hughes, B.; Saunders, M.A. A drought climatology for Europe. Int. J. Climatol. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- Thom, H.C.S. A Note on the Gamma Distribution. J. Franklin Inst. 1958, 86, 1–8. [Google Scholar] [CrossRef]
- Fernandes, D.S.; Heinemann, A.B.; da Paz, R.L.; Amorim, A.D.O.; Cardoso, A.S. Índices Para a Quantificação da Seca; Embrapa Arroz e Feijão-Documentos (INFOTECA-E): Santo Antônio de Goiás, Brazil, 2009. [Google Scholar]
- De Araújo, L.E.; de Moraes Neto, J.M.; de Sousa, F.D.A.S. Classification of annual rainfall and the rainy quarter of the year in the Paraíba river basin using Rain Anomaly Index (RAI). An Interdiscip. J. Appl. Sci. 2009, 4, 93–110. [Google Scholar] [CrossRef]
- Sanches, F.O.; Verdum, R.; Fisch, G. The Rainfall Anomaly Index (RAI) in the evolution of annual precipitation in the Alegrete/RS. Caminhos Geogr. 2014, 15, 73–84. [Google Scholar]
- dos Santos, E.C.A.; de Araújo, L.E.; dos Marcelino, A.S. Climatic analysis of the Mamanguape River Basin. Rev. Bras. Eng. Agrícola Ambient. 2015, 19, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Yoon, J.H.; Gillies, R.R.; Cho, C. What caused the winter drought in western Nepal during recent years? J. Clim. 2013, 26, 8241–8256. [Google Scholar] [CrossRef]
- Hamal, K.; Sharma, S.; Pokharel, B.; Shrestha, D.; Talchabhadel, R.; Shrestha, A.; Khadka, N. Changing pattern of drought in Nepal and associated atmospheric circulation. Atmos. Res. 2021, 262, 105798. [Google Scholar] [CrossRef]
- Khatiwada, K.R.; Pandey, V.P. Characterization of hydro-meteorological drought in Nepal Himalaya: A case of Karnali River Basin. Weather Clim. Extrem. 2019, 26, 100239. [Google Scholar] [CrossRef]
- Cavus, Y.; Aksoy, H. Spatial drought characterization for Seyhan River Basin in the Mediterranean region of Turkey. Water 2019, 11, 1331. [Google Scholar] [CrossRef] [Green Version]
- Meshram, S.G.; Gautam, R.; Kahya, E. Drought analysis in the Tons River Basin, India during 1969–2008. Theor. Appl. Climatol. 2018, 132, 939–951. [Google Scholar] [CrossRef]
- Gumma, M.K.; Gauchan, D.; Nelson, A.; Pandey, S.; Rala, A. Temporal changes in rice-growing area and their impact on livelihood over a decade: A case study of Nepal. Agric. Ecosyst. Environ. 2011, 142, 382–392. [Google Scholar] [CrossRef]
Category | Values | Category | Values |
---|---|---|---|
Extreme wet | ≥2.00 | Moderate drought | −1.0~−1.49 |
Severe wet | 1.50~1.99 | Severe drought | −2.00~−1.50 |
Moderate wet | 1.0~1.49 | Extreme drought | ≤−2.00 |
Near normal | −0.99~0.99 |
Category | Values | Category | Values |
---|---|---|---|
Extreme humid | >4.00 | Dry | −2.0~0.0 |
Very humid | 2.0~4.0 | Very dry | −4.0~−2.0 |
Humid | 0.0~2.0 | Extreme dry | <−4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aryal, A.; Maharjan, M.; Talchabhadel, R.; Thapa, B.R. Characterizing Meteorological Droughts in Nepal: A Comparative Analysis of Standardized Precipitation Index and Rainfall Anomaly Index. Earth 2022, 3, 409-432. https://doi.org/10.3390/earth3010025
Aryal A, Maharjan M, Talchabhadel R, Thapa BR. Characterizing Meteorological Droughts in Nepal: A Comparative Analysis of Standardized Precipitation Index and Rainfall Anomaly Index. Earth. 2022; 3(1):409-432. https://doi.org/10.3390/earth3010025
Chicago/Turabian StyleAryal, Anil, Manisha Maharjan, Rocky Talchabhadel, and Bhesh Raj Thapa. 2022. "Characterizing Meteorological Droughts in Nepal: A Comparative Analysis of Standardized Precipitation Index and Rainfall Anomaly Index" Earth 3, no. 1: 409-432. https://doi.org/10.3390/earth3010025
APA StyleAryal, A., Maharjan, M., Talchabhadel, R., & Thapa, B. R. (2022). Characterizing Meteorological Droughts in Nepal: A Comparative Analysis of Standardized Precipitation Index and Rainfall Anomaly Index. Earth, 3(1), 409-432. https://doi.org/10.3390/earth3010025