Socio-Economic and Environmental Implications of Bioenergy Crop Cultivation on Marginal African Drylands and Key Principles for a Sustainable Development
Abstract
:1. Introduction
2. Materials and Methods
3. Review Linked to the SDG Aspects
3.1. Socio-Economic Review
- Poverty (SDG 1—Poverty);
- Food security (SDG 2—Zero hunger);
- Land grabbing (SDG 16—Peace, justice and strong institutions);
- Gender equality (SDG 5—Gender equality);
- Clean and affordable energy access (SDG 7—Affordable and clean energy).
3.1.1. Poverty
3.1.2. Food Security
3.1.3. Land Grabbing
3.1.4. Gender Inequality
3.1.5. Affordable and Clean Energy
3.2. Environmental Review
- Biodiversity (SDG 15—Life on land) and Climate change (SDG 13—Climate action);
- Water scarcity and drinking water and sanitation (SDG 6—Clean water and sanitation);
- Eutrophication and life below water (SDG 14—Life below water).
3.2.1. Biodiversity and Climate Change
3.2.2. Water Scarcity
3.2.3. Drinking Water and Sanitation
3.2.4. Eutrophication
4. Key Principles for the Sustainable Development of Bioenergy Cropping Systems on Marginal African Drylands
4.1. People-Centered-Approach Based Strategies
4.2. Inclusive and Fair Consultation Process and Transparent Contracts
4.3. Equal Legal Support and Collective Registration of Community Land
4.4. Experimental-Serious Games and Raise Female Workforce Demand
4.5. Small scale Bioenergy Initiatives
4.6. Agrivoltaic System
4.7. Land-Sharing and Land-Sparing Management System
4.8. Potential Species for Marginal African Drylands
4.9. Carbon Sequestration and Bioenergy with Carbon Capture Storage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Theuerl, S.; Herrmann, C.; Heiermann, M.; Grundmann, P.; Landwehr, N.; Kreidenweis, U.; Prochnow, A. The Future Agricultural Biogas Plant in Germany: A Vision. Energies 2019, 12, 396. [Google Scholar] [CrossRef] [Green Version]
- Szarka, N.; Scholwin, F.; Trommler, M.; Jacobi, H.F.; Eichhorn, M.; Ortwein, A.; Thrän, D. A novel role for bioenergy: A flexible, demand-oriented power supply. Energy 2013, 61, 18–26. [Google Scholar] [CrossRef]
- Yadav, P.; Priyanka, P.; Kumar, D.; Yadav, A.; Yadav, K. Bioenergy Crops: Recent Advances and Future Outlook. Prospect. Renew. Bioprocess. Syst. 2019, 315–335. [Google Scholar] [CrossRef]
- Geneletti, D.; Scolozzi, R.; Esmail, B.A. Assessing ecosystem services and biodiversity tradeoffs across agricultural landscapes in a mountain region. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2018, 14, 188–208. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Socolow, R.; Foley, J.A.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; Searchinger, T.; Somerville, C.; et al. Beneficial Biofuels—The Food, Energy, and Environment Trilemma. Science 2009, 325, 270–271. [Google Scholar] [CrossRef] [Green Version]
- May, M.; Levine, I.; Woods, J.; Flagella, Z.; Lee, K.T.; Sharma, S.; Gresshoff, P.; Hanley, S.; Ceulemans, R.; Vogel, K. Energy Crops; Royal Society of Chemistry: Cambridge, UK, 2010; ISBN 978-1-84973-204-8. [Google Scholar]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)–Managing Systems at Risk; Food and Agriculture Organization of the United Nations: Rome, Italy; London, UK, 2011. [Google Scholar]
- Kang, S.; Post, W.M.; Nichols, J.A.; Wang, D.; West, T.O.; Bandaru, V.; Izaurralde, R.C. Marginal Lands: Concept, Assessment and Management. J. Agric. Sci. 2013, 5, 129. [Google Scholar] [CrossRef] [Green Version]
- Elbersen, B.; Van Verzandvoort, M.; Boogaard, S.; Mucher, S.; Cicarelli, T.; Elbersen, W.; Mantel, S.; Bai, Z.; MCallum, I.; Iqbal, Y.; et al. Definition and Classification of Marginal Lands Suitable for Industrial Crops in Europe (EU Deliverable); Wageningen University and Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Dale, V.H.; Kline, K.L.; Wiens, J.; Fargione, J. Biofuels: Implications for Land Use and Biodiversity; Ecological Society of America: Washington, DC, USA, 2010. [Google Scholar]
- Meijninger, W.; Elbersen, B.; Eupen, M.; Mantel, S.; Ciria, P.; Parenti, A.; Gallego, M.S.; Ortiz, P.P.; Acciai, M.; Monti, A. Identification of early abandonment in cropland through radar-based coherence data and application of a Random-Forest model. GCB Bioenergy 2022. [Google Scholar] [CrossRef]
- Prăvălie, R. Drylands extent and environmental issues. A global approach. Earth-Sci. Rev. 2016, 161, 259–278. [Google Scholar] [CrossRef]
- Prăvălie, R.; Bandoc, G.; Patriche, C.; Sternberg, T. Recent changes in global drylands: Evidences from two major aridity databases. CATENA 2019, 178, 209–231. [Google Scholar] [CrossRef]
- Schimel, D.S. Drylands in the Earth System. Science 2010, 327, 418–419. [Google Scholar] [CrossRef]
- UN. The UN Decade for Deserts and the Fight against Desertification: The Purpose | UNCCD. Available online: https://www.unccd.int/un-decade-deserts-and-fight-against-desertification-purpose (accessed on 4 October 2021).
- Michalscheck, M.; Groot, J.C.J.; Fischer, G.; Tittonell, P. Land use decisions: By whom and to whose benefit? A serious game to uncover dynamics in farm land allocation at household level in Northern Ghana. Land Use Policy 2020, 91, 104325. [Google Scholar] [CrossRef]
- Niemeijer, D.; Puigdefabregas, J.; White, R.; Winslow, M.; Ziedler, J.; Prince, S.; Archer, E.; King, C. Dryland Systems. In Millennium Ecosystem Assessment—Ecosystems and Human Well-Being; World Resources Institute: Washington, DC, USA, 2005; pp. 623–662. [Google Scholar]
- Batterbury, S.; Ndi, F. Land-Grabbing in Africa. In The Routledge Handbook of African Development; Taylor & Francis Group: London, UK, 2018; ISBN 978-1-315-71248-2. [Google Scholar]
- Von Cossel, M.; Wagner, M.; Lask, J.; Magenau, E.; Bauerle, A.; Von Cossel, V.; Warrach-Sagi, K.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; et al. Prospects of Bioenergy Cropping Systems for A More Social-Ecologically Sound Bioeconomy. Agronomy 2019, 9, 605. [Google Scholar] [CrossRef] [Green Version]
- Lynd, L.R.; Sow, M.; Chimphango, A.F.; Cortez, L.A.B.; Cruz, C.H.B.; Elmissiry, M.; Laser, M.; Mayaki, I.A.; Moraes, M.A.; Nogueira, L.A.; et al. Bioenergy and African transformation. Biotechnol. Biofuels 2015, 8, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations. Sustainable Development Goals: The 17 Goals; Department of Economic and Social Affairs of the United Nations (UN): New York, NY, USA; Available online: https://sdgs.un.org/goals (accessed on 23 February 2022).
- World Bank. World Bank Poverty and Shared Prosperity 2020: Reversals of Fortune; World Bank: Washington, DC, USA, 2020; ISBN 978-1-4648-1602-4. [Google Scholar]
- Beegly, K.; Christiaensen, L. Accelerating Poverty Reduction in Africa; World Band Publications: Washington, DC, USA, 2019; ISBN 978-1-4648-1232-3. [Google Scholar]
- Fatona, P.; Abiodun, A.; Olumide, A.; Adeola, A.; Abiodun, O. Viewing Energy, Poverty and Sustainability in Developing Countries Through a Gender Lens; IntechOpen: Rijeka, Croatia, 2013; ISBN 978-953-51-1040-8. [Google Scholar]
- African Development Bank Light Up and Power Africa—A New Deal on Energy for Africa. Available online: https://www.afdb.org/en/the-high-5/light-up-and-power-africa-%E2%80%93-a-new-deal-on-energy-for-africa (accessed on 12 August 2020).
- African Development Bank. Empowering African Women: An Agenda for Action; African Development Bank: Abidjan, Côte d’Ivoire, 2015. [Google Scholar]
- FAO. FAO Country Profiles. Available online: http://www.fao.org/countryprofiles/lifdc/en/ (accessed on 5 August 2020).
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable, Healthy Diets. Available online: http://www.fao.org/3/ca9692en/online/ca9692en.html (accessed on 25 February 2021).
- Abdelhedi, I.T.; Zouari, S.Z. Agriculture and Food Security in North Africa: A Theoretical and Empirical Approach. J. Knowl. Econ. 2020, 11, 193–210. [Google Scholar] [CrossRef]
- Brander, M.; Bernauer, T.; Huss, M. Improved on-farm storage reduces seasonal food insecurity of smallholder farmer households—Evidence from a randomized control trial in Tanzania. Food Policy 2020, 98, 101891. [Google Scholar] [CrossRef]
- Liu, T.T.; McConkey, B.G.; Ma, Z.Y.; Liu, Z.G.; Li, X.; Cheng, L.L. Strengths, Weaknessness, Opportunities and Threats Analysis of Bioenergy Production on Marginal Land. Energy Procedia 2011, 5, 2378–2386. [Google Scholar] [CrossRef] [Green Version]
- Cotula, L.; Dyer, N.; Vermeulen, S. Fuelling Exclusion? The Biofuels Boom and Poor People’s Access to Land; International Institute for Environment and Development: London, UK, 2008; p. 145. [Google Scholar]
- Markwei, C.; Ndlovu, L.; Robinson, E.; Shah, W.P. Summary for Decision Makers of the Sub-Saharan Africa (SSA) Report; International Assessment of Agricultural Knowledge, Science and Technology for Development: Washington, DC, USA, 2009. [Google Scholar]
- Benin, S. Agricultural Productivity in Africa: Trends, Patterns, and Determinants—Chapter 1; International Food Policy Research Institute: Washington, DC, USA, 2016. [Google Scholar]
- Diao, X.; Hazell, P.B.R.; Resnick, D.; Thurlow, J. The Role of Agriculture in Development: Implications for Sub-Saharan Africa; Research Reports; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2007. [Google Scholar]
- Van Crowder, L.; Lindley, W.; Truelove, W.; Ilboudo, J.P.; Del Castello, R. Knowledge and Information for Food Security in Africa: From Traditional Media to the Internet; FAO: Rome, Italy, 1998. [Google Scholar]
- Sheahan, M.; Barrett, C.B. Ten striking facts about agricultural input use in Sub-Saharan Africa. Food Policy 2017, 67, 12–25. [Google Scholar] [CrossRef] [Green Version]
- Affognon, H.; Mutungi, C.; Sanginga, P.; Borgemeister, C. Unpacking Postharvest Losses in Sub-Saharan Africa: A Meta-Analysis. World Dev. 2015, 66, 49–68. [Google Scholar] [CrossRef] [Green Version]
- Rosillo-Calle, F. Food versus Fuel: Toward a New Paradigm—The Need for a Holistic Approach. ISRN Renew. Energy 2012, 2012, e954180. [Google Scholar] [CrossRef] [Green Version]
- Mason, P.M.; Glover, K.; Smith, J.A.C.; Willis, K.J.; Woods, J.; Thompson, I.P. The potential of CAM crops as a globally significant bioenergy resource: Moving from ‘fuel or food’ to ‘fuel and more food’. Energy Environ. Sci. 2015, 8, 2320–2329. [Google Scholar] [CrossRef]
- Biofuels: Prospects, Risks and Opportunities. In The State of Food and Agriculture; FAO: Rome, Italy, 2008; ISBN 978-92-5-105980-7.
- Matondi, P.B.; Havnevik, K.; Beyene, A. Biofuels, Land Grabbing and Food Security in Africa. In Africa Now; Nordiska Afrikainstitutet: London, UK, 2011; ISBN 978-1-84813-878-0. [Google Scholar]
- Tenenbaum, D.J. Food vs. Fuel: Diversion of Crops Could Cause More Hunger. Environ. Health Perspect. 2008, 116, A254–A257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations Geneva GOAL 16: Peace and Justice Strong Institutions. Available online: https://sites.ungeneva.org/170actions/climate/en/goal16.html (accessed on 14 May 2022).
- Kachika, T.; Land Grabbing in Africa. A Review of the Impacts and the Possible Policy Responses. Available online: https://mokoro.co.uk/wp-content/uploads/land_grabbing_in_africa_impacts__policy_responses.pdf (accessed on 30 June 2020).
- Land Matrix Land Matrix. Available online: https://landmatrix.org/charts/agricultural-drivers/ (accessed on 30 June 2020).
- International Land Coalition. Tirana Declaration; International Global Assembly: Tirana, Albania, 2011. [Google Scholar]
- Amanor, K.S. Global Resource Grabs, Agribusiness Concentration and the Smallholder: Two West African Case Studies. J. Peasant. Stud. 2012, 39, 731–749. [Google Scholar] [CrossRef]
- Cotula, L.; Vermeulen, S.; Leonard, R.; Keeley, J. Land Grab or Development Opportunity? Agricultural Investment and International Land Deals in Africa; International Institute for Environment and Development: London, UK, 2009; p. 145. [Google Scholar]
- Arndt, C.; Benfica, R.; Thurlow, J. Gender Implications of Biofuels Expansion in Africa: The Case of Mozambique. World Dev. 2011, 39, 1649–1662. [Google Scholar] [CrossRef] [Green Version]
- Cotula, L.; Anseeuw, W.; Baldinelli, G.M. Between Promising Advances and Deepening Concerns: A Bottom-Up Review of Trends in Land Governance 2015–2018. Land 2019, 8, 106. [Google Scholar] [CrossRef] [Green Version]
- Borras, S.M., Jr.; Franco, J.C. Global Land Grabbing and Trajectories of Agrarian Change: A Preliminary Analysis: Global Land Grabbing and Trajectories of Agrarian Change. J. Agrar. Chang. 2012, 12, 34–59. [Google Scholar] [CrossRef]
- Von Braun, J.; Meinzen-Dick, R.S. “Land Grabbing” by Foreign Investors in Developing Countries; International Food Policy Research Institute: Washington, DC, USA, 2009. [Google Scholar]
- Goetz, A. Land Grabbing and Home Country Development: Chinese and British Land Acquisitions in Comparative Perspective; Transcript Verlag: Bielefeld, Germany, 2019; ISBN 978-3-8394-4267-8. [Google Scholar]
- Anseeuw, W. The rush for land in Africa: Resource grabbing or green revolution? South Afr. J. Int. Aff. 2013, 20, 159–177. [Google Scholar] [CrossRef] [Green Version]
- United Nations development program Gender Inequality Index (GII) | Human Development Reports. Available online: http://hdr.undp.org/en/content/gender-inequality-index-gii (accessed on 19 February 2021).
- Moodley, L.; Kuyoro, M.; Holt, T.; Leke, A.; Madgavkar, A.; Krishnan, M.; Akintayo, F. The Power of Parity: Advancing Women’s Equality in Africa; McKinsey & Company: New York, NY, USA, 2019. [Google Scholar]
- UN, Global Drylands. The Environment Management Group Global Drylands: A UN System-Wide Response; UN, Global Drylands: New York, NY, USA, 2011. [Google Scholar]
- Arndt, C.; Benfica, R.M.S.; Thurlow, J. Gender Implications of Biofuels Expansion in Africa: The Case of Mozambique. In Proceedings of the 2012 Conference of International Association of Agricultural Economists, Foz do Iguacu, Brazil, 18–24 August 2012. [Google Scholar]
- Quitzow, R.; Röhrkasten, S.; Jacobs, D.; Bayer, B.; Jamea, E.M.; Waweru, Y.; Matschoss, P. Die Zukunft der Energieversorgung in Afrika—Potenzialabschätzung und Entwicklungsmöglichkeiten der erneuerbaren Energien. Inst. Adv. Sustain. Stud. 2016, 82. [Google Scholar]
- Dahunsi, S.O.; Fagbiele, O.O.; Yusuf, E.O. Bioenergy technologies adoption in Africa: A review of past and current status. J. Clean. Prod. 2020, 264, 121683. [Google Scholar] [CrossRef]
- Bogdanski, A. Food and Agriculture Organization of the United Nations Evidence-Based Assessment of the Sustainability and Replicability of Integrated Food-Energy Systems: A Guidance Document; FAO: Rome, Italy, 2014; ISBN 978-92-5-108219-5. [Google Scholar]
- Barnes, D.F.; Floor, W.M. RURAL ENERGY IN DEVELOPING COUNTRIES: A Challenge for Economic Development. Annu. Rev. Energy Environ. 1996, 21, 497–530. [Google Scholar] [CrossRef]
- Burrett, R.; Clini, C.; Dixon, R.; Eckhart, M.; El-Ashry, M.; Gupta, D.; Haddouche, A.; Hales, D.; Hamilton, K.; House, C.; et al. Renewable Energy Policy Network for the 21st Century; REN21 Global Status Report; REN: Paris, France, 2021. [Google Scholar]
- Kenfack, J.; Lewetchou, K.J.; Bossou, O.V.; Tchaptchet, E. How can we promote renewable energy and energy efficiency in Central Africa? A Cameroon case study. Renew. Sustain. Energy Rev. 2017, 75, 1217–1224. [Google Scholar] [CrossRef]
- IEA WEO-2016 Special Report: Energy and Air Pollution. Available online: https://webstore.iea.org/weo-2016-special-report-energy-and-air-pollution (accessed on 28 February 2021).
- Jeuland, M.; Fetter, T.R.; Li, Y.; Pattanayak, S.K.; Usmani, F.; Bluffstone, R.A.; Chávez, C.; Girardeau, H.; Hassen, S.; Jagger, P.; et al. Is energy the golden thread? A systematic review of the impacts of modern and traditional energy use in low- and middle-income countries. Renew. Sustain. Energy Rev. 2021, 135, 110406. [Google Scholar] [CrossRef]
- The World Bank Group Mini Grids: Bringing Low-Cost, Timely Electricity to the Rural Poor. Available online: https://www.worldbank.org/en/news/feature/2016/07/07/mini-grids-bringing-low-cost-timely-electricity-to-the-rural-poor (accessed on 29 June 2020).
- Odeku, K.; Meyer, E.L. Socioeconomic Implications of Energy Poverty in South African Poor Rural Households. Available online: /paper/Socioeconomic-Implications-of-Energy-Poverty-in-Odeku-Meyer/a56aa6cbe14221a8c6c8d487bb06a38cdb15e90e (accessed on 28 February 2021).
- Deutsche Welle. The 77 Percent—Rural-Urban. Migration in Africa | DW | 30.07.2019; Deutsche Welle: Bon, Germany, 2019. [Google Scholar]
- Le Roux, L.; Choumert-Nkolo, J. Internal Migration and Energy Poverty in South Africa | SA-TIED. Available online: https://sa-tied.wider.unu.edu/article/internal-migration-and-energy-poverty-south-africa (accessed on 28 February 2021).
- Ministry of Energy and Mineral Development. Rural Electrification Strategy and Plan. Covering The Period 2013–2022; Ministry of Energy and Mineral Development: Kampala, Uganda, 2012. [Google Scholar]
- Lewis, N. Solar Tech Could Help Distribute Covid Vaccines in Africa. Available online: https://www.cnn.com/2021/01/14/africa/africa-covid-vaccine-cold-chain-spc-intl/index.html (accessed on 28 February 2021).
- Podmore, R.; Larsen, R.; Louie, H.; Waldron, B. Affordable Energy Solutions for Developing Communities. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–29 July 2011; pp. 1–8. [Google Scholar]
- Bonan, J.; Pareglio, S.; Tavoni, M. Access to modern energy: A review of barriers, drivers and impacts. Environ. Dev. Econ. 2017, 22, 491–516. [Google Scholar] [CrossRef]
- Das, I.; Klug, T.; Krishnapriya, P.; Plutshack, V.; Saparapa, R.; Scott, S.; Pattanayak, S.K. A Virtuous Cycle? Reviewing the Evidence on Women’s Empowerment and Energy Access, Frameworks, Metrics and Methods; James, E., Ed.; Rogers Energy Access Project: Durham, NC, USA, 2020. [Google Scholar]
- United Nations. Secretariat of the Convention on Biological Diversity Global Biodiversity Outlook 3; UNEP/Earthprint: New York, NY, USA, 2010; ISBN 978-92-9225-220-5. [Google Scholar]
- WWF. Living Planet Report—2018: Aiming Higher; Grooten, M., Almond, R.E.A., Eds.; WWF: Gland, Switzerland, 2018; ISBN 978-2-940529-90-2. [Google Scholar]
- Darkoh, M. Regional perspectives on agriculture and biodiversity in the drylands of Africa. J. Arid Environ. 2003, 54, 261–279. [Google Scholar] [CrossRef]
- Notenbaert, A.M.; Davies, J.; De Leeuw, J.; Said, M.; Herrero, M.; Manzano, P.; Waithaka, M.; Aboud, A.; Omondi, S. Policies in support of pastoralism and biodiversity in the heterogeneous drylands of East Africa. Pastoralism 2012, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Perrings, C.; Edgar, E. The Economics of Biodiversity Conservation in Sub-Saharan Africa: Mending the Ark; Edward Elgar: Cheltenham, UK, 2000. [Google Scholar]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Yale University Press: New Heaven, CT, USA, 1997; pp. 454–464. ISBN 978-0-300-18847-9. [Google Scholar]
- Dudley, N.; Alexander, S. Agriculture and biodiversity: A review. Biodiversity 2017, 18, 45–49. [Google Scholar] [CrossRef]
- Cowie, A.L.; Penman, T.D.; Gorissen, L.; Winslow, M.D.; Lehmann, J.; Tyrrell, T.D.; Twomlow, S.; Wilkes, A.; Lal, R.; Jones, J.W.; et al. Towards sustainable land management in the drylands: Scientific connections in monitoring and assessing dryland degradation, climate change and biodiversity. Land Degrad. Dev. 2011, 22, 248–260. [Google Scholar] [CrossRef]
- Hodgson, G.; Hatton, T.; Salama, R. Modelling rising groundwater and the impacts of salinization on terrestrial remnant vegetation in the Blackwood River Basin. Ecol. Manag. Restor. 2004, 5, 52–60. [Google Scholar] [CrossRef]
- Millennium Ecosystem. Assessment Ecosystems and Human Well-Being; Synthesis: Washington, DC, USA, 2005. [Google Scholar]
- Serdeczny, O.; Adams, S.; Baarsch, F.; Coumou, D.; Robinson, A.; Hare, W.; Schaeffer, M.; Perrette, M.; Reinhardt, J. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Chang. 2017, 17, 1585–1600. [Google Scholar] [CrossRef]
- OECD; FAO. OECD-FAO Agricultural Outlook 2016–2025. Available online: https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2016_agr_outlook-2016-en (accessed on 19 March 2021).
- Dell, M.L.; Jones, B.F.; Olken, B.A. Temperature Shocks and Economic Growth: Evidence from the Last Half Century. Am. Econ. J. Macroecon. 2012, 4, 66–95. [Google Scholar] [CrossRef] [Green Version]
- UNICEF. World Health Organization WHO | Progress on Household Drinking Water, Sanitation and Hygiene 2000–2017. Available online: http://www.who.int/water_sanitation_health/publications/jmp-report-2019/en/ (accessed on 21 February 2021).
- United Nations Department of Economic and Social Affairs. Population Division The World Population Prospects: 2015 Revision; UN: New York, NY, USA, 2015. [Google Scholar]
- United Nations Environment Programme Global Environment Outlook 4. Available online: http://www.unep.org/resources/global-environment-outlook-4 (accessed on 28 February 2021).
- WWF Water Scarcity | Threats | WWF. Available online: https://www.worldwildlife.org/threats/water-scarcity (accessed on 27 February 2021).
- Oberholster, P.; Ashton, P. An Overview of the Current Status of Water Quality and Eutrophication in South African Rivers and Reservoirs; Parliamentary Grant Deliverable CSIR/NRE/WR/IR/2008/0075/C; Council for Scientific and Industrial Research (CSIR): Pretoria, South Africa, 2008. [Google Scholar]
- Hoogeveen, J.; Faurès, J.-M.; van de Giessen, N. Increased biofuel production in the coming decade: To what extent will it affect global freshwater resources? Irrig. Drain. 2009, 58, S148–S160. [Google Scholar] [CrossRef]
- Berndes, G. Bioenergy and water—the implications of large-scale bioenergy production for water use and supply. Glob. Environ. Chang. 2002, 12, 253–271. [Google Scholar] [CrossRef]
- Varis, O. Water Demands for Bioenergy Production. Int. J. Water Resour. Dev. 2007, 23, 519–535. [Google Scholar] [CrossRef]
- Gerbens-Leenes, W.; Hoekstra, A.Y.; van der Meer, T.H. The water footprint of bioenergy. Proc. Natl. Acad. Sci. USA 2009, 106, 10219–10223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambali, A.; Chirwa, P.; Chamdimba, O.; van Zyl, W. A Review of Sustainable Development of Bioenergy in Africa: An Outlook for the Future Bioenergy Industry. Sci. Res. Essays 2011, 6, 1697–1708. [Google Scholar]
- Postel, S.L.; Daily, G.C.; Ehrlich, P.R. Human Appropriation of Renewable Fresh Water. Science 1996, 271, 785–788. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP); Oeko-Institut. IEA Bioenergy Task 43 The Bioenergy and Water Nexus; UNRP: New York, NY, USA, 2011. [Google Scholar]
- Trollip, K. Water and Biofuel-Extensive Research Hopes to Answer: Should We ‘Grow’ Our Future Fuels? Water Wheel 2016, 15, 24–27. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.W. Green, Blue and Grey Bioenergy Water Footprints, a Comparison of Feedstocks for Bioenergy Supply in 2040. Environ. Process. 2018, 5, 167–180. [Google Scholar] [CrossRef] [Green Version]
- Speidel, D.H.; Ruedisili, L.C.; Agnew, A.F. Perspectives on Water: Uses and Abuses; Oxford University Press: New York, NY, USA, 1988; ISBN 978-0-19-504247-4. [Google Scholar]
- Gush, M.B. Assessing Hydrological Impacts of Tree-Based Bioenergy Feedstock. In Developing Countries: A Framework for Policy Evaluation; University of Newcastle: Callaghan, Australia, 2010; ISBN 978-9937-8219-1-9. [Google Scholar]
- Kunz, R.; Davis, N.; Thornton-Dibb, S.; Steyn, J.; du Troit, E.; Jewitt, G. Assessment of Biofuel Feedstock Production in South Africa: Atlas of Water Use and Yield of Biofuel Crops in Suitable Growing Areas (Volume 3); Water Research Comission: Praetoria, South Africa, 2015. [Google Scholar]
- IEA; Walton, M. Energy Has a Role to Play in Achieving Universal Access to Clean Water and Sanitation–Analysis. Available online: https://www.iea.org/commentaries/energy-has-a-role-to-play-in-achieving-universal-access-to-clean-water-and-sanitation (accessed on 20 February 2021).
- Matthews, S. Water and Society—10-Year Anniversary to Right to Water Offers Chance for Reflection; The Water Wheel-Water Research Commission: Praetoria, South Africa, 2020. [Google Scholar]
- Anim, D.O.; Ofori-Asenso, R. Water scarcity and COVID-19 in sub-Saharan Africa. J. Infect. 2020, 81, e108–e109. [Google Scholar] [CrossRef]
- Rangarajan, J.; Sivakumar, C.; Bhoopalan, S. Covid-19 Hand Wash Timer. Int. J. Innov Res. Technol. 2020, 6, 103–105. [Google Scholar]
- United Nations. United Nations General Assembly Resolution A/RES/64/292; United Nations: New York, NY, USA, 2010. [Google Scholar]
- The Water Project The Water Crisis: Poverty and Water Scarcity in Africa. Available online: https://thewaterproject.org/why-water/poverty (accessed on 20 February 2021).
- United Nations Development Program Goal 14: Life below Water. Available online: https://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-14-life-below-water.html (accessed on 8 July 2020).
- Jarvie, H.P.; Neal, C.; Withers, P.J.A. Sewage-effluent phosphorus: A greater risk to river eutrophication than agricultural phosphorus? Sci. Total Environ. 2006, 360, 246–253. [Google Scholar] [CrossRef]
- Nkwonta, O.I.; Ochieng, G.M. Water Pollution in Soshanguve Environs of South Africa. World Acad. Sci. Eng. Technol. 2009, 56, 499–503. [Google Scholar] [CrossRef]
- Linton, D.M.; Warner, G.F. Biological indicators in the Caribbean coastal zone and their role in integrated coastal management. Ocean Coast. Manag. 2003, 46, 261–276. [Google Scholar] [CrossRef]
- NOAA What Is the Biggest Source of Pollution in the Ocean? Available online: https://oceanservice.noaa.gov/facts/pollution.html (accessed on 28 February 2021).
- International Development Research Centre. Water Management in Africa and the Middle East: Challenges and Opportunities; IDRC: Ottawa, ON, Canada, 1996; ISBN 978-0-88936-804-0. [Google Scholar]
- United Nations Environment Programme Agriculture, Nutrients and the Health of Fish. Available online: http://www.unenvironment.org/news-and-stories/story/agriculture-nutrients-and-health-fish (accessed on 8 July 2020).
- Water Wheel Research Comission. The Water Wheel WRC Revives Fight Against Eutrophication; September/October 2008 Volume 7 No. 5; Water Wheel Research Comission: Praetoria, South Africa, 2008. [Google Scholar]
- Verschuren, D.; Johnson, T.C.; Kling, H.J.; Edgington, D.N.; Leavitt, P.R.; Brown, E.T.; Talbot, M.R.; Hecky, R.E. History and timing of human impact on Lake Victoria, East Africa. Philos. Trans. R. Soc. Lond. B 2002, 269, 289–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nhapi, I. Inventory of water management practices in Harare, Zimbabwe. Water Environ. J. 2008, 22, 54–63. [Google Scholar] [CrossRef]
- Ndebele, M.R.; Magadza, C.H.D. The occurrence of microcystin-LR in Lake Chivero, Zimbabwe. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2006, 11, 57–62. [Google Scholar] [CrossRef]
- Nyenje, P.M.; Foppen, J.W.; Uhlenbrook, S.; Kulabako, R.; Muwanga, A. Eutrophication and nutrient release in urban areas of sub-Saharan Africa — A review. Sci. Total Environ. 2010, 408, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.Y.; Tran, N.; Pethiyagoda, S.; Crissman, C.C.; Sulser, T.B.; Phillipsa, M.J. Prospects and challenges of fish for food security in Africa. Glob. Food Secur. 2019, 20, 17–25. [Google Scholar] [CrossRef]
- Ezzati, M.; Lopez, A.D.; Rodgers, A.; Van der Hoorn, S.; Murray, C.J.L.; Comparative Risk Assessment Collaborating Group. Selected major risk factors and global and regional burden of disease. Lancet 2002, 360, 1347–1360. [Google Scholar] [CrossRef]
- Benson, T. Improving Nutrition as a Development Priority: Addressing Undernutrition in National Policy Processes in Sub-Saharan Africa; Social Science Research Network: Rochester, NY, USA, 2008. [Google Scholar]
- Whittingham, E.; Campbell, J.; Townsley, P. Poverty and Reefs; Intergovernmental Oceanographic Commission of UNESCO: Paris, France, 2003. [Google Scholar]
- Walmsley, R.D. Perspectives on Eutrophication of Surface Waters: Policy/Research Needs in South Africa: A Review and Discussion Document; Water Research Commission: Pretoria, South Africa, 2000. [Google Scholar]
- Howarth, R.W.; Sharpley, A.; Walker, D. Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals. Estuaries 2002, 25, 656–676. [Google Scholar] [CrossRef]
- Winkler, B.; Lemke, S.; Ritter, J.; Lewandowski, I. Integrated assessment of renewable energy potential: Approach and application in rural South Africa. Environ. Innov. Soc. Transit. 2017, 24, 17–31. [Google Scholar] [CrossRef]
- Eder, J.M.; Mutsaerts, C.F.; Sriwannawit, P. Mini-grids and renewable energy in rural Africa: How diffusion theory explains adoption of electricity in Uganda. Energy Res. Soc. Sci. 2015, 5, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Amigun, B.; Musango, J.K.; Brent, A.C. Community perspectives on the introduction of biodiesel production in the Eastern Cape Province of South Africa. Energy 2011, 36, 2502–2508. [Google Scholar] [CrossRef]
- Butterfoss, F.D. Coalitions and Partnerships in Community Health; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Smathers, C.; Lobb, J. Community Assessment. Available online: https://ohioline.osu.edu/factsheet/CDFS-7 (accessed on 31 August 2020).
- The World Bank Literacy Rate, Adult Total (% of People Ages 15 and above)—Sub-Saharan Africa | Data. Available online: https://data.worldbank.org/indicator/SE.ADT.LITR.ZS?locations=ZG (accessed on 16 March 2021).
- FAO. The Gender Gap in Land Rights; Food and Agriculture Organization of the United Nations (FAO): Geneva, Switzerland, 2018. [Google Scholar]
- Toulmin, C. Securing Land and Property Rights in Africa: Improving the Investment Climate Global Competitiveness Report; World Economic Forum: Cologny, Switzerland, 2006. [Google Scholar]
- FAO. Practical Action Consulting Small-Scale Bioenergy Initiatives: Brief Description and Preliminary Lessons on Livelihood Impacts from Case Studies in Asia, Latin America and Africa. In Small Scale Bioenergy Initiatives. Brief Description and Preliminary Lessons on Livelihood Impacts from Case Studies in Asia, Latin America and Africa; FAO: Rome, Italy, 2009. [Google Scholar]
- Kajau, G.; Madyira, D.M. Analysis of the Zimbabwe biodigester status. Procedia Manuf. 2019, 35, 561–566. [Google Scholar] [CrossRef]
- FAO. Small Scale Bioenergy Initiatives; FAO: Rome, Italy, 2009. [Google Scholar]
- Winkler, B.; Lewandowski, I.; Voss, A.; Lemke, S. Transition towards Renewable Energy Production? Potential in Smallholder Agricultural Systems in West Bengal, India. Sustainability 2018, 10, 801. [Google Scholar] [CrossRef] [Green Version]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Freeman, K.K. The Power of Dung: Biodigesters Creating Opportunities for Farmers in Africa. Available online: https://blogs.worldbank.org/voices/power-dung-biodigesters-creating-opportunities-farmers-africa (accessed on 26 February 2021).
- Escobar, R.F.; Benlloch, M.; Herrera, E.; García-Novelo, J.M. Effect of traditional and slow-release N fertilizers on growth of olive nursery plants and N losses by leaching. Sci. Hortic. 2004, 101, 39–49. [Google Scholar] [CrossRef]
- Abbaspour, S. Water Quality in Developing Countries, South Asia, South Africa, Water Quality Management and Activities That Cause Water Pollution. Available online: /paper/Water-Quality-in-Developing-Countries%2C-South-Asia%2C-Abbaspour/3006bf34c941b0c898b5d66a60128d0cd80fd80e (accessed on 26 February 2021).
- Rupf, G.V.; Bahri, P.A.; de Boer, K.; McHenry, M.P. Broadening the potential of biogas in Sub-Saharan Africa: An assessment of feasible technologies and feedstocks. Renew. Sustain. Energy Rev. 2016, 61, 556–571. [Google Scholar] [CrossRef]
- Bensah, E. Biogas Technology Dissemination in Ghana: History, Current Status, Future Prospects, and Policy Significance. Int. J. Energy Environ. 2010, 1, 277–294. [Google Scholar]
- Forbis-Stokes, A.A.; O’Meara, P.F.; Mugo, W.; Simiyu, G.M.; Deshusses, M.A. On-Site Fecal Sludge Treatment with the Anaerobic Digestion Pasteurization Latrine. Environ. Eng. Sci. 2016, 33, 898–906. [Google Scholar] [CrossRef]
- Balancing Act ENERGY SPECIAL - GENERATING ELECTRICITY FOR ICT IN REMOTE LOCATIONS | Balancing Act - Africa. Available online: https://www.balancingact-africa.com/news/telecoms-en/8466/energy-special-generating-electricity-for-ict-in-remote-locations (accessed on 26 February 2021).
- Clemens, H.; Bailis, R.; Nyambane, A.; Ndung’U, V. Africa Biogas Partnership Program: A review of clean cooking implementation through market development in East Africa. Energy Sustain. Dev. 2018, 46, 23–31. [Google Scholar] [CrossRef]
- Stafford, W.H.L.; Lotter, G.A.; Von Maltitz, G.P.; Brent, A.C. Biofuels technology development in Southern Africa. Dev. South. Afr. 2019, 36, 155–174. [Google Scholar] [CrossRef] [Green Version]
- Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 2019, 39, 35. [Google Scholar] [CrossRef]
- Marrou, H.; Dufour, L.; Wery, J. How does a shelter of solar panels influence water flows in a soil–crop system? Eur. J. Agron. 2013, 50, 38–51. [Google Scholar] [CrossRef]
- Ravi, S.; Macknick, J.; Lobell, D.; Field, C.; Ganesan, K.; Jain, R.; Elchinger, M.; Stoltenberg, B. Colocation opportunities for large solar infrastructures and agriculture in drylands. Appl. Energy 2016, 165, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Elamri, Y.; Cheviron, B.; Lopez, J.-M.; Dejean, C.; Belaud, G. Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces. Agric. Water Manag. 2018, 208, 440–453. [Google Scholar] [CrossRef]
- Randle-Boggis, R.J.; Lara, E.; Onyango, J.; Temu, E.J.; Hartley, S.E. Agrivoltaics in East Africa: Opportunities and challenges. AIP Conf. Proc. 2021, 2361, 090001. [Google Scholar] [CrossRef]
- Randle-Boggis, R. Farming Meets Solar Power in Africa—Part 3 (Webinar 3/24). Available online: https://www.isep.or.jp/en/1039/ (accessed on 4 October 2021).
- Lewandowski, I.; Clifton-Brown, J.; Trindade, L.M.; Van Der Linden, G.C.; Schwarz, K.-U.; Müller-Sämann, K.; Anisimov, A.; Chen, C.-L.; Dolstra, O.; Donnison, I.S.; et al. Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC. Front. Plant Sci. 2016, 7, 1620. [Google Scholar] [CrossRef] [Green Version]
- Dauber, J.; Miyake, S. To integrate or to segregate food crop and energy crop cultivation at the landscape scale? Perspectives on biodiversity conservation in agriculture in Europe. Energy Sustain. Soc. 2016, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Fritsche, U.R.; Sims, R.E.H.; Monti, A. Direct and indirect land-use competition issues for energy crops and their sustainable production - an overview. Biofuels Bioprod. Biorefining 2010, 4, 692–704. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Montalba, R. Technological Approaches to Sustainable Agriculture at a Crossroads: An Agroecological Perspective. Sustainability 2017, 9, 349. [Google Scholar] [CrossRef] [Green Version]
- Ghaley, B.B.; Porter, J.R. Emergy synthesis of a combined food and energy production system compared to a conventional wheat (Triticum aestivum) production system. Ecol. Indic. 2013, 24, 534–542. [Google Scholar] [CrossRef]
- Andrade, D.; Pasini, F.; Scarano, F.R. Syntropy and innovation in agriculture. Curr. Opin. Environ. Sustain. 2020, 45, 20–24. [Google Scholar] [CrossRef]
- Altieri, M.A. Agroecology: The science of natural resource management for poor farmers in marginal environments. Agric. Ecosyst. Environ. 2002, 93, 1–24. [Google Scholar] [CrossRef]
- International Renewable Energy Agency Sustainable Harvest: Bioenergy Potential from Agroforestry and Nitrogen-Fixing Wood Crops in Africa. Available online: /publications/2019/Jan/Sustainable-harvest--Bioenergy-potential-from-agroforestry-and-nitrogen-fixing-wood-crops-in-Africa (accessed on 23 August 2020).
- Borelli, S.; Hillbrand, A.; Conigliaro, M.; Olivier, A. Agroforestry for Landscape Restoration-Exploring the Potential of Agroforestry to Enhance the Sustainability and Resilience of Degraded Landscapes; FAO: Rome, Italy, 2017. [Google Scholar]
- Maishanu, S.M.; Sambo, A.S.; Garba, M.M. Chapter 3-Sustainable Bioenergy Development in Africa: Issues, Challenges, and the Way Forward. In Sustainable Bioenergy; Rai, M., Ingle, A.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 49–87. ISBN 978-0-12-817654-2. [Google Scholar]
- Plaza-Bonilla, D.; Nolot, J.-M.; Raffaillac, D.; Justes, E. Cover crops mitigate nitrate leaching in cropping systems including grain legumes: Field evidence and model simulations. Agric. Ecosyst. Environ. 2015, 212, 1–12. [Google Scholar] [CrossRef]
- Baulcombe, D.; Crute, I.; Davies, B.; Dunwell, J.; Gale, M.; Jones, J.; Pretty, J.; Sutherland, W.; Toulmin, C. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture; The Royal Society: London, UK, 2009; ISBN 978-0-85403-784-1. [Google Scholar]
- Kuyah, S.; Sileshi, G.W.; Nkurunziza, L.; Chirinda, N.; Ndayisaba, P.C.; Dimobe, K.; Öborn, I. Innovative agronomic practices for sustainable intensification in sub-Saharan Africa. A review. Agron. Sustain. Dev. 2021, 41, 16. [Google Scholar] [CrossRef]
- Dixon, J.; Garrity, D. Perennial Crops and Trees Targeting the Opportunities within a Farming Systems Context, Principal Adviser Research; Australian Centre for International Agricultural Research: Canberra, Australia, 2008. [Google Scholar]
- Mazur, A.; Kowalczyk-Juśko, A. The Assessment of the Usefulness of Miscanthus x giganteus to Water and Soil Protection against Erosive Degradation. Resources 2021, 10, 66. [Google Scholar] [CrossRef]
- Studt, J.E.; McDaniel, M.D.; Tejera, M.D.; VanLoocke, A.; Howe, A.; Heaton, E.A. Soil net nitrogen mineralization and leaching under Miscanthus × giganteus and Zea mays. GCB Bioenergy 2021, 13, 1545–1560. [Google Scholar] [CrossRef]
- Sa, M.; Zhang, B.; Zhu, S. Miscanthus: Beyond its use as an energy crop. BioResources 2021, 16. [Google Scholar] [CrossRef]
- Jongschaap, R.E.E.; Blesgraaf, R.A.R.; Bogaard, T.; van Loo, E.N.; Van Savenije, H.H.G. The water footprint of bioenergy from Jatropha curcas L. Proc. Natl. Acad. Sci. USA 2009, 106, E92. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Chen, C.J.; Yang, J.; Weston, D.J.; Chen, J.-G.; Muchero, W.; Ye, N.; Tschaplinski, T.; Wullschleger, S.; Cheng, Z.-M.; et al. Functional Genomics of Drought Tolerance in Bioenergy Crops. Crit. Rev. Plant Sci. 2014, 33, 205–224. [Google Scholar] [CrossRef]
- Horibe, T. Cactus as Crop Plant — Physiological Features, Uses and Cultivation. Environ. Control Biol. 2021, 59, 1–12. [Google Scholar] [CrossRef]
- Yan, X.; Tan, D.K.Y.; Inderwildi, O.R.; Smith, J.A.C.; King, D.A. Life cycle energy and greenhouse gas analysis for agave-derived bioethanol. Energy Environ. Sci. 2011, 4, 3110–3121. [Google Scholar] [CrossRef]
- Neupane, D.; Mayer, J.A.; Niechayev, N.A.; Bishop, C.D.; Cushman, J.C. Five-year field trial of the biomass productivity and water input response of cactus pear ( Opuntia spp.) as a bioenergy feedstock for arid lands. GCB Bioenergy 2021, 13, 719–741. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. Drought-tolerant Cassava for Africa, Asia, and Latin America: Breeding Projects Work to Stabilize Productivity without Increasing Pressures on Limited Natural Resources. BioScience 1993, 43, 441–451. [Google Scholar] [CrossRef]
- Nguyen, T.L.T.; Gheewala, S.H.; Bonnet, S. Life cycle cost analysis of fuel ethanol produced from cassava in Thailand. Int. J. Life Cycle Assess. 2008, 13, 564–573. [Google Scholar] [CrossRef]
- Openshaw, K. A review of Jatropha curcas: An oil plant of unfulfilled promise. Biomass Bioenergy 2000, 19, 1–15. [Google Scholar] [CrossRef]
- Van Eijck, J. Transition towards Jatropha Biofuels in Tanzania? An Analysis with Strategic Niche Management; African Studies Centre: Leiden, The Netherlands, 2007. [Google Scholar]
- Schubert, R.; Schellnhuber, H.J.; Buchmann, N.; Epiney, A.; Grießhammer, R.; Kulessa, M.; Messner, D.; Rahmstorf, S.; Schmid, J. Future Bioenergy and Sustainable Land Use; Routledge: London, UK, 2009; ISBN 978-1-136-54558-0. [Google Scholar]
- Runkle, B.R.K. Review: Biological engineering for nature-based climate solutions. J. Biol. Eng. 2022, 16, 7. [Google Scholar] [CrossRef]
- Zahorec, A.; Reid, M.L.; Tiemann, L.K.; Landis, D.A. Perennial grass bioenergy cropping systems: Impacts on soil fauna and implications for soil carbon accrual. GCB Bioenergy 2022, 14, 4–23. [Google Scholar] [CrossRef]
- Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies 2019, 12, 3123. [Google Scholar] [CrossRef] [Green Version]
- Ntonta, S.; Mathew, I.; Zengeni, R.; Muchaonyerwa, P.; Chaplot, V. Crop residues differ in their decomposition dynamics: Review of available data from world literature. Geoderma 2022, 419, 115855. [Google Scholar] [CrossRef]
- Kösters, R.; Du Preez, C.C.; Amelung, W. Lignin dynamics in secondary pasture soils of the South African Highveld. Geoderma 2018, 319, 113–121. [Google Scholar] [CrossRef]
- Herrmann, C.; Idler, C.; Heiermann, M. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics. Bioresour. Technol. 2016, 206, 23–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lask, J.; Guajardo, A.M.; Weik, J.; Von Cossel, M.; Lewandowski, I.; Wagner, M. Comparative environmental and economic life cycle assessment of biogas production from perennial wild plant mixtures and maize (Zea mays L.) in southwest Germany. GCB Bioenergy 2020, 12, 571–585. [Google Scholar] [CrossRef]
- Azar, C.; Johansson, D.J.A.; Mattsson, N. Meeting global temperature targets—the role of bioenergy with carbon capture and storage. Environ. Res. Lett. 2013, 8, 034004. [Google Scholar] [CrossRef]
- Burns, W.; Nicholson, S. Bioenergy and carbon capture with storage (BECCS): The prospects and challenges of an emerging climate policy response. J. Environ. Stud. Sci. 2017, 7, 527–534. [Google Scholar] [CrossRef]
- Williamson, P. Emissions reduction: Scrutinize CO2 removal methods. Nature 2016, 530, 153–155. [Google Scholar] [CrossRef] [Green Version]
- Koornneef, J.; van Breevoort, P.; Hamelinck, C.; Hendriks, C.; Hoogwijk, M.; Koop, K.; Koper, M.; Dixon, T.; Camps, A. Global potential for biomass and carbon dioxide capture, transport and storage up to 2050. Int. J. Greenh. Gas Control 2012, 11, 117–132. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef] [Green Version]
- Collier, P.; Conway, G.; Venables, T. Climate change and Africa. Oxf. Rev. Econ. Policy 2008, 24, 337–353. [Google Scholar] [CrossRef]
- Hansson, A.; Fridahl, M.; Haikola, S.; Yanda, P.; Pauline, N.; Mabhuye, E. Preconditions for bioenergy with carbon capture and storage (BECCS) in sub-Saharan Africa: The case of Tanzania. Environ. Dev. Sustain. 2020, 22, 6851–6875. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Wu, S.; Jiang, C.; Feng, X. Managing supply and demand of ecosystem services in dryland catchments. Curr. Opin. Environ. Sustain. 2021, 48, 10–16. [Google Scholar] [CrossRef]
- Carton, W. “Fixing” Climate Change by Mortgaging the Future: Negative Emissions, Spatiotemporal Fixes, and the Political Economy of Delay. Antipode 2019, 51, 750–769. [Google Scholar] [CrossRef]
- Buck, H.J. Rapid scale-up of negative emissions technologies: Social barriers and social implications. Clim. Chang. 2016, 139, 155–167. [Google Scholar] [CrossRef]
Basic Keywords | Refining Keywords | |
---|---|---|
Socio-Economic | Environmental | |
Africa | Agriculture | Agriculture |
Bioenergy | Food security | Environment |
Marginal | Hunger | Climate change |
Drylands | Food vs. fuel | Biodiversity |
Gender equality | Water scarcity | |
Energy access | Sanitation | |
Energy poverty | Eutrophication | |
Women in agriculture | Marine pollution | |
Mini-grid system | Biodigester | |
Poverty | Perennial crops | |
Economic growth | CAM plants | |
Human development |
Direct Use Value | Indirect Use Value |
---|---|
Water supply | Crop pollination |
Water and air purification | Conservation of soil |
Increased productivity of soil | |
Mitigation of droughts | |
Mitigation of flooding events | |
Management of agricultural pests |
Crop Species | Suitability Factors and Ecological Requirements | Type of Energy Product | References |
---|---|---|---|
Cassava (Manihot esculenta Crantz) | Drought-tolerant, low-input requirements, capable of growing on marginal lands | Heat and electricity (via anaerobic digestion) from the peels and stems | [174,175] |
Jatropha (Jatropha curcas L.) | Drought-tolerant, suitable for water scarce regions | Liquid biofuel (via fermentation) from the seeds; Heat and electricity (via anaerobic digestion) from the press cake | [176,177,178,179] |
Agave (Agave tequilana F.A.C.Weber) | Minimal impact on food and water resources, able to tolerate high temperatures | Liquid biofuel (via fermentation) from the leaves | [180] |
Opuntia (Opuntia ficus-indica (L.) Mill.) | Drought-tolerant, suitable for water scarce conditions, counteract desertification processes | Liquid biofuel (via fermentation) or heat and electricity (via anaerobic digestion) from the leaves and stems | [181,182] |
Euphorbia (Euphorbia tirucalli L.) | Drought-tolerant, high yields in water scarce regions | Liquid biofuel (via fermentation) or heat and electricity (via anaerobic digestion) from the stems | [183] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varela Pérez, P.; Greiner, B.E.; von Cossel, M. Socio-Economic and Environmental Implications of Bioenergy Crop Cultivation on Marginal African Drylands and Key Principles for a Sustainable Development. Earth 2022, 3, 652-682. https://doi.org/10.3390/earth3020038
Varela Pérez P, Greiner BE, von Cossel M. Socio-Economic and Environmental Implications of Bioenergy Crop Cultivation on Marginal African Drylands and Key Principles for a Sustainable Development. Earth. 2022; 3(2):652-682. https://doi.org/10.3390/earth3020038
Chicago/Turabian StyleVarela Pérez, Paola, Beatrice E. Greiner, and Moritz von Cossel. 2022. "Socio-Economic and Environmental Implications of Bioenergy Crop Cultivation on Marginal African Drylands and Key Principles for a Sustainable Development" Earth 3, no. 2: 652-682. https://doi.org/10.3390/earth3020038
APA StyleVarela Pérez, P., Greiner, B. E., & von Cossel, M. (2022). Socio-Economic and Environmental Implications of Bioenergy Crop Cultivation on Marginal African Drylands and Key Principles for a Sustainable Development. Earth, 3(2), 652-682. https://doi.org/10.3390/earth3020038