Mapping and Prioritizing Potential Illegal Dump Sites Using Geographic Information System Network Analysis and Multiple Remote Sensing Indices
Abstract
:1. Introduction
1.1. Literature Review
1.2. Objectives and Novelty
2. Materials and Methods
2.1. Region of Interest
2.2. Data Collection and Analysis
2.2.1. Active Landfills and Road Network (Vector Files)
2.2.2. MODIS Products (Satellite Imagery)
2.2.3. OMI Products (Satellite Imagery)
2.2.4. NASA Black Marble Nighttime (Satellite Imagery)
2.2.5. Integration of Normalized Variables
2.3. Map Extraction and Implications
2.3.1. Map of Potential Illegal Dump Sites (PIDS)
2.3.2. Classification of PIDS Using GIS Network Analysis
2.3.3. Zonal Statistics and the Relative Contribution of the Selected Variables
3. Results and Discussion
3.1. Mapping of PIDS
3.2. Variables’ Zonal Statistics in PIDS
3.3. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jakiel, M.; Bernatek-Jakiel, A.; Gajda, A.; Filiks, M.; Pufelska, M. Spatial and temporal distribution of illegal dumping sites in the nature protected area: The Ojców National Park, Poland. J. Environ. Plan. Manag. 2019, 62, 286–305. [Google Scholar] [CrossRef]
- Quesada-Ruiz, L.C.; Rodriguez-Galiano, V.; Jordá-Borrell, R. Characterization and mapping of illegal landfill potential occurrence in the Canary Islands. Waste Manag. 2019, 85, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Karimi, N.; Ng, K.T.W.; Richter, A. Development and application of an analytical framework for mapping probable illegal dumping sites using nighttime light imagery and various remote sensing indices. Waste Manag. 2022, 143, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, K.; Batool, S.A.; Chaudhry, M.N. Studying bio-thermal effects at and around MSW dumps using Satellite Remote Sensing and GIS. Waste Manag. 2016, 55, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Fan, Y.V.; Zhou, J.; Zheng, M.; Liu, X.; Klemeš, J.J. Data-driven analytical framework for waste-dumping behaviour analysis to facilitate policy regulations. Waste Manag. 2020, 103, 285–295. [Google Scholar] [CrossRef]
- Ibrahim, M.F.; Hod, R.; Toha, H.R.; Mohammed Nawi, A.; Idris, I.B.; Mohd Yusoff, H.; Sahani, M. The impacts of illegal toxic waste dumping on children’s health: A review and case study from Pasir Gudang, Malaysia. Int. J. Environ. Res. Public Health 2021, 18, 2221. [Google Scholar] [CrossRef]
- Limoli, A.; Garzia, E.; De Pretto, A.; De Muri, C. Illegal landfill in Italy (EU)—A multidisciplinary approach. Environ. Forensics 2019, 20, 26–38. [Google Scholar] [CrossRef]
- Seror, N.; Portnov, B.A. Identifying areas under potential risk of illegal construction and demolition waste dumping using GIS tools. Waste Manag. 2018, 75, 22–29. [Google Scholar] [CrossRef]
- Otwong, A.; Jongmeewasin, S.; Phenrat, T. Legal obstacles for the circular economy in Thailand: Illegal dumping of recyclable hazardous industrial waste. J. Clean. Prod. 2021, 302, 126969. [Google Scholar] [CrossRef]
- Ichinose, D.; Yamamoto, M. On the relationship between the provision of waste management service and illegal dumping. Resour. Energy Econ. 2011, 33, 79–93. [Google Scholar] [CrossRef]
- Sasao, T. Econometric analysis of cleanup of illegal dumping sites in Japan: Removal or remedial actions? Environ. Econ. Policy Stud. 2016, 18, 485–497. [Google Scholar] [CrossRef]
- Di Fiore, V.; Cavuoto, G.; Punzo, M.; Tarallo, D.; Casazza, M.; Guarriello, S.M.; Lega, M. Integrated hierarchical geo-environmental survey strategy applied to the detection and investigation of an illegal landfill: A case study in the Campania Region (Southern Italy). Forensic Sci. Int. 2017, 279, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Karimi, N.; Richter, A.; Ng, K.T.W. Siting and ranking municipal landfill sites in regional scale using nighttime satellite imagery. J. Environ. Manag. 2020, 256, 109942. [Google Scholar] [CrossRef] [PubMed]
- Richter, A.; Ng, K.T.W.; Karimi, N.; Chang, W. Developing a novel proximity analysis approach for assessment of waste management cost efficiency in low population density regions. Sustain. Cities Soc. 2021, 65, 102583. [Google Scholar] [CrossRef]
- Ghosh, A.; Richter, A.; Ng, K.T.W. Applications of Geographic Information Systems to site waste facilities in Saskatchewan—Phase 1. In Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021, Lecture Notes in Civil Engineering, Ottawa, ON, Canada, 14–17 June 2011; Volume 249, pp. 173–182. [Google Scholar] [CrossRef]
- Abu Qdais, H.; Shatnawi, N. Assessing and predicting landfill surface temperature using remote sensing and an artificial neural network. Int. J. Remote Sens. 2019, 40, 9556–9571. [Google Scholar] [CrossRef]
- Karimi, N.; Ng, K.T.W.; Richter, A. Prediction of fugitive landfill gas hotspots using a random forest algorithm and Sentinel-2 data. Sustain. Cities Soc. 2021, 73, 103097. [Google Scholar] [CrossRef]
- Mahmood, K.; Batool, S.A.; Chaudhary, M.N.; Ul-Haq, Z. Ranking criteria for assessment of municipal solid waste dumping sites. Arch. Environ. Prot. 2017, 43, 95–105. [Google Scholar] [CrossRef]
- Glanville, K.; Chang, H.C. Mapping illegal domestic waste disposal potential to support waste management efforts in Queensland, Australia. Int. J. Geogr. Inf. Sci. 2015, 29, 1042–1058. [Google Scholar] [CrossRef]
- Matsumoto, S.; Takeuchi, K. The effect of community characteristics on the frequency of illegal dumping. Environ. Econ. Policy Stud. 2011, 13, 177–193. [Google Scholar] [CrossRef]
- Viazanko, A. Predictive Model of Illegal Dumpsites in Westmoreland and York Counties, Pennsylvania. Master’s Thesis, Indiana University of Pennsylvania, Indiana, PA, USA, 2017. Available online: https://login.libproxy.uregina.ca:8443/login?url=https://www.proquest.com/dissertations-theses/predictive-model-illegal-dumpsites-westmoreland/docview/2007197377/se-2?accountid=13480 (accessed on 30 October 2022).
- Chabok, M.; Asakereh, A.; Bahrami, H.; Jaafarzadeh, N.O. Selection of MSW landfill site by fuzzy-AHP approach combined with GIS: Case study in Ahvaz, Iran. Environ. Monit. Assess. 2020, 192, 433. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, D.; Duan, Y. Measuring Zero-Waste City Performance of a Coal Resource-Based Area in China with MCDM Approach. Math. Probl. Eng. 2022, 2022, 8479760. [Google Scholar] [CrossRef]
- Karimi, N.; Ng, K.T.W.; Richter, A. Development of a regional solid waste management framework and its application to a prairie province in central Canada. Sustain. Cities Soc. 2022, 82, 103904. [Google Scholar] [CrossRef]
- Karimi, N.; Ng, K.T.W.; Richter, A. Integrating Geographic Information System network analysis and nighttime light satellite imagery to optimize landfill regionalization on a regional level. Environ. Sci. Pollut. Res. 2022, 29, 81492–81504. [Google Scholar] [CrossRef] [PubMed]
- Mangizvo, R.V. Illegal dumping of solid waste in the alleys in the central business district of Gweru, Zimbabwe. J. Sustain. Dev. Afr. 2010, 12, 110–123. Available online: https://jsd-africa.com/Jsda/V12No2_Spring2010_B/PDF/Illegal%20Dumping%20of%20Sold%20Wastes.pdf (accessed on 30 October 2022).
- Vu, H.L.; Bolingbroke, D.; Ng, K.T.W.; Fallah, B. Assessment of waste characteristics and their impact on GIS vehicle collection route optimization using ANN waste forecasts. Waste Manag. 2019, 88, 118–130. [Google Scholar] [CrossRef]
- Vu, H.L.; Ng, K.T.W.; Fallah, B.; Richter, A.; Kabir, G. Interactions of residential waste composition and collection truck compartment design on GIS route optimization. Waste Manag. 2020, 102, 613–623. [Google Scholar] [CrossRef]
- Bolingbroke, D.; Ng, K.T.W.; Vu, H.L.; Richter, A. Quantification of solid waste management system efficiency using input-output indices. J. Mater. Cycles Waste Manag. 2021, 23, 1015–1025. [Google Scholar] [CrossRef]
- Pan, C.; Bolingbroke, D.; Ng, K.T.W.; Richter, A.; Vu, H.L. The Use of Waste Diversion Indices on the Analysis of Canadian Waste Management Models. J. Mater. Cycles Waste Manag. 2019, 21, 478–487. [Google Scholar] [CrossRef]
- Wang, Y.; Ng, K.T.W.; Asha, A. Non-hazardous Waste Generation Characteristics and Recycling Practices in Saskatchewan and Manitoba, Canada. J. Mater. Cycles Waste Manag. 2016, 18, 715–724. [Google Scholar] [CrossRef]
- Keske, C.M.; Mills, M.; Godfrey, T.; Tanguay, L.; Dicker, J. Waste management in remote rural communities across the Canadian North: Challenges and opportunities. Detritus 2018, 2, 63. [Google Scholar] [CrossRef]
- Patrick, R.J. Adapting to climate change through source water protection: Case studies from Alberta and Saskatchewan, Canada. Int. Indig. Policy J. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Government of Saskatchewan. Locations of the Collection, Treatment, and Disposal of Solid Wastes Generated by the Saskatchewan Populations, Saskatchewan Solid Waste Management. 2022. Available online: https://geohub.saskatchewan.ca/datasets/saskatchewan::saskatchewan-solid-waste-management/explore?location=53.874885%2C-106.217299%2C6.31 (accessed on 1 September 2022).
- Statistics Canada. Road Network Geographic Files and Documentation. 2022. Available online: https://www150.statcan.gc.ca/n1/en/catalogue/92-500-X (accessed on 2 September 2022).
- NASA GIOVANNI. The Bridge between Data and Science. 2022. Available online: https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 25 September 2022).
- Yan, W.Y.; Mahendrarajah, P.; Shaker, A.; Faisal, K.; Luong, R.; Al-Ahmad, M. Analysis of multi-temporal landsat satellite images for monitoring land surface temperature of municipal solid waste disposal sites. Environ. Monit. Assess. 2014, 186, 8161–8173. [Google Scholar] [CrossRef] [PubMed]
- NASA. MODIS Vegetation Index Products (NDVI and EVI). 2022. Available online: https://modis.gsfc.nasa.gov/data/dataprod/mod13.php (accessed on 6 September 2022).
- Notarnicola, C.; Angiulli, M.; Giasi, C.I. Southern Italy illegal dumps detection based on spectral analysis of remotely sensed data and land-cover maps. In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology III; SPIE: Bellingham, WA, USA, 2004; Volume 5239, pp. 483–493. [Google Scholar] [CrossRef]
- Mahmood, K.; Ul-Haq, Z.; Faizi, F.; Batol, S.A. A comparison of satellite-based indices for hazard assessment of MSW open dumps using spatial analysis. Waste Manag. Res. 2019, 37, 219–236. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, K.; Ul-Haq, Z.; Faizi, F.; Tariq, S.; Naeem, M.A.; Rana, A.D. Monitoring open dumping of municipal waste in Gujranwala, Pakistan using a combination of satellite based bio-thermal indicators and GIS analysis. Ecol. Indic. 2019, 107, 105613. [Google Scholar] [CrossRef]
- Karimi, N.; Ng KT, W.; Richter, A.; Williams, J.; Ibrahim, H. Thermal heterogeneity in the proximity of municipal solid waste landfills on forest and agricultural lands. J. Environ. Manag. 2021, 287, 112320. [Google Scholar] [CrossRef]
- NASA. Ozone Monitoring Instrument (OMI) Aboard NASA’s Aura Satellite Measures Ozone from Earth’s Surface to Top of Atmosphere. 2022. Available online: https://www.earthdata.nasa.gov/learn/find-data/near-real-time/omi (accessed on 9 September 2022).
- NASA. Atmospheric Composition, Water & Energy Cycles and Climate Variability, OMI/Aura Formaldehyde (HCHO) Total Coloumn Daily L3 Wighted Mean Global 0.1-degree Grid V003. 2022. Available online: https://disc.gsfc.nasa.gov/datasets/OMHCHOd_003/summary (accessed on 6 September 2022).
- Baby, S.; Nathawat, M.S.; Al-Sarawi, M.A. Major Impacts from Anthropogenic Activities on Landscape Carrying Capacity of Kuwaiti Coast. Pol. J. Environ. Stud. 2014, 23, 7–17. [Google Scholar]
- Bartkowiak, A.; Breza-Boruta, B.; Lemanowicz, J. Assessment of the content of heavy metals and potential pathogenic microorganisms in soil under illegal dumping sites. Environ. Earth Sci. 2016, 75, 1401. [Google Scholar] [CrossRef] [Green Version]
- Rafique, A.; Irfan, M.; Mumtaz, M.; Qadir, A. Spatial distribution of microplastics in soil with context to human activities: A case study from the urban center. Environ. Monit. Assess. 2020, 192, 671. [Google Scholar] [CrossRef] [PubMed]
- NASA. Atmospheric Composition, Water & Energy Cycles and Climate Variability, Formaldehyde Definition and Applications. 2022. Available online: https://disc.gsfc.nasa.gov/information/glossary?keywords=formaldehyde&title=Formaldehyde (accessed on 6 September 2022).
- Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B.; et al. NASA’s Black Marble nighttime lights product suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- NASA. NASA’s Black Marble. 2022. Available online: https://blackmarble.gsfc.nasa.gov/ (accessed on 6 September 2022).
- ESRI. Raster to Polygon, Conversion Toolbox, Geoprocessing Tools. 2022. Available online: https://pro.arcgis.com/en/pro-app/2.8/tool-reference/conversion/raster-to-polygon.htm (accessed on 6 September 2022).
- ESRI. How to Convert Polygon Features to Point Features with an ArcGIS Desktop Basic or Standard License. 2022. Available online: https://support.esri.com/en/technical-article/000018657 (accessed on 6 September 2022).
- ESRI. How Fuzzy Membership Works, Overlay Toolset Concepts, Spatial Analyst Toolbox. 2022. Available online: https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-fuzzy-membership-works.htm (accessed on 7 September 2022).
- Deswal, M.; Laura, J.S. GIS based modeling using Analytic Hierarchy Process (AHP) for optimization of landfill site selection of Rohtak city, Haryana (India). J. Appl. Nat. Sci. 2018, 10, 633–642. [Google Scholar] [CrossRef]
- Isalou, A.A.; Zamani, V.; Shahmoradi, B.; Alizadeh, H. Landfill site selection using integrated fuzzy logic and analytic network process (F-ANP). Environ. Earth Sci. 2013, 68, 1745–1755. [Google Scholar] [CrossRef]
- Moeinaddini, M.; Khorasani, N.; Danehkar, A.; Darvishsefat, A.A.; Zienalyan, M. Siting MSW landfill using weighted linear combination and analytical hierarchy process (AHP) methodology in GIS environment (case study: Karaj). Waste Manag. 2010, 30, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Rezaeisabzevar, Y.; Bazargan, A.; Zohourian, B. Landfill site selection using multi criteria decision making: Influential factors for comparing locations. J. Environ. Sci. 2020, 93, 170–184. [Google Scholar] [CrossRef] [PubMed]
- Matos, J.; Oštir, K.; Kranjc, J. Attractiveness of roads for illegal dumping with regard to regional differences in Slovenia. Acta Geogr. Slov. 2012, 52, 431–451. [Google Scholar] [CrossRef] [Green Version]
- Nazari, R.; Alfergani, H.; Haas, F.; Karimi, M.E.; Fahad, M.G.R.; Sabrin, S.; Everett, J.; Bouaynaya, N.; Peters, R.W. Application of satellite remote sensing in monitoring elevated internal temperatures of landfills. Appl. Sci. 2020, 10, 6801. [Google Scholar] [CrossRef]
- Zyrichidou, I.; Balis, D.; Koukouli, M.E.; Drosoglou, T.; Bais, A.; Gratsea, M.; Gerasopoulos, E.; Liora, N.; Poupkou, A.; Giannaros, C. Adverse results of the economic crisis: A study on the emergence of enhanced formaldehyde (HCHO) levels seen from satellites over Greek urban sites. Atmos. Res. 2019, 224, 42–51. [Google Scholar] [CrossRef]
- Manzo, C.; Mei, A.; Zampetti, E.; Bassani, C.; Paciucci, L.; Manetti, P. Top-down approach from satellite to terrestrial rover application for environmental monitoring of landfills. Sci. Total Environ. 2017, 584–585, 1333–1348. [Google Scholar] [CrossRef]
- Richter, A.; Ng, K.T.W.; Karimi, N. A data driven technique applying GIS, and remote sensing to rank locations for waste disposal site expansion. Resour. Conserv. Recycl. 2019, 149, 352–362. [Google Scholar] [CrossRef]
- Balezentis, T.; Chen, X.; Galnaityte, A.; Namiotko, V. Optimizing crop mix with respect to economic and environmental constraints: An integrated MCDM approach. Sci. Total Environ. 2020, 705, 135896. [Google Scholar] [CrossRef]
- ESRI. Majority Filter”, Spatial Analysis Toolbox. 2022. Available online: https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/majority-filter.htm (accessed on 26 September 2022).
- ESRI. “Boundary Clean”, Spatial Analysis Toolbox. 2022. Available online: https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/boundary-clean.htm (accessed on 26 September 2022).
- ESRI. “Smoothing a Feature (Smooth)”, Editing Existing Features. 2022. Available online: https://desktop.arcgis.com/en/arcmap/10.3/manage-data/editing-existing-features/smoothing-a-feature-smooth-.htm (accessed on 26 September 2022).
- ESRI. “Feature to Polygon”, Data Management Toolbox. 2022. Available online: https://desktop.arcgis.com/en/arcmap/latest/tools/data-management-toolbox/feature-to-polygon.htm (accessed on 26 September 2022).
- SGI. Saskatchewan Driver’s Handbook, Speed. 2022. Available online: https://www.sgi.sk.ca/handbook/-/knowledge_base/drivers/speed#:~:text=On%20most%20provincial%20highways%2C%20and,community%20boundaries%2C%20unless%20otherwise%20posted (accessed on 8 September 2022).
- ESRI. Closest Facility Analysis, Network Analysis Layers. 2022. Available online: https://desktop.arcgis.com/en/arcmap/latest/extensions/network-analyst/closest-facility.htm (accessed on 8 September 2022).
- ESRI. Service Area Analysis, Network Analysis Layers. 2022. Available online: https://desktop.arcgis.com/en/arcmap/latest/extensions/network-analyst/service-area.htm (accessed on 8 September 2022).
- Sizo, A.; Noble, B.; Bell, S. Futures analysis of urban land use and wetland change in Saskatoon, Canada: An application in strategic environmental assessment. Sustainability 2015, 7, 811–830. [Google Scholar] [CrossRef]
- Habibi, S.; Asadi, N. Causes, results and methods of controlling urban sprawl. Procedia Eng. 2011, 21, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Ng, K.T.W. Temporal and spatial distributions of waste facilities and solid waste management strategies in rural and urban Saskatchewan, Canada. Sustainability 2021, 13, 6887. [Google Scholar] [CrossRef]
- Richter, A.; Ng, K.T.W.; Karimi, N.; Li, R.Y.M. An iterative tessellation-based analytical approach to the design and planning of waste management regions. Comput. Environ. Urban Syst. 2021, 88, 101652. [Google Scholar] [CrossRef]
- Village of Kenaston, Residential Services Including the Both the Services’ Rates and Kenaston Dump. Available online: https://kenaston.ca/administration/residential-services/ (accessed on 7 October 2022).
- Enbridge Pipelines Inc. Waste Management Plan Provided by Dillon Consulting Group. 2020. Available online: https://registry.mvlwb.ca/Documents/S20P-003/S20P-003%20-%20Waste%20Management%20Plan%20Version%201.1%20-%20Sep%2010_20.pdf (accessed on 7 October 2022).
- Google Earth. 2022. Available online: https://earth.google.com/web/@54.49883141,-105.68389986,490.32373873a,2767214.94471392d,35y,0h,0t,0r/data=ChAaDgoIL20vMDZucnQYAiAB (accessed on 4 October 2022).
- Yang, W.; Fan, B.; Desouza, K.C. Spatial-temporal effect of household solid waste on illegal dumping. J. Clean. Prod. 2019, 227, 313–324. [Google Scholar] [CrossRef]
- Rowland, E.D.; Omonefe, F. Environmental monitory and impact assessment of solid waste dumpsite using multispectral imagery in Yenagoa, Bayelsa state, Nigeria. Int. J. Environ. Sci. Technol. 2022, 19, 1007–1024. [Google Scholar] [CrossRef]
- Nagpure, A.S. Assessment of quantity and composition of illegal dumped municipal solid waste (MSW) in Delhi. Resour. Conserv. Recycl. 2019, 141, 54–60. [Google Scholar] [CrossRef]
- Du, L.; Xu, H.; Zuo, J. Status quo of illegal dumping research: Way forward. J. Environ. Manag. 2021, 290, 112601. [Google Scholar] [CrossRef]
- Chowdhury, A.; Vu, H.L.; Ng KT, W.; Richter, A.; Bruce, N. An investigation on Ontario’s non-hazardous municipal solid waste diversion using trend analysis. Can. J. Civ. Eng. 2017, 44, 861–870. [Google Scholar] [CrossRef]
- Richter, A.; Ng, K.T.W.; Karimi, N. The role of compactness distribution on the development of regionalized waste management systems. J. Clean. Prod. 2021, 296, 126594. [Google Scholar] [CrossRef]
Characteristics of Division 11 | |
---|---|
Total population | Over 326,000 |
Number of identified major populated points | 21 |
Number of active landfills | 4 |
Division’s area (km2) | 17,416.7 |
Length of highways (km) | 1783.7 |
Road density = length of highways/division area, (km/km2) | 0.10 |
Satellite | Terra | Aura | Suomi NPP |
---|---|---|---|
Sensor | MODIS | OMI | VIIRS |
Spatial resolution | 0.05° | 0.1° | 15 arc second, about 500 m |
Product name | MOD11C3_006 (LST) MOD13C2_006 (EVI) | OMHCHOd_003 | NASA Black Marble NTL |
Outcomes | LST (daily), EVI (monthly) | HCHO (daily) | 2016 |
Data time period | 1 June–31 August 2022 | 1 June–31 August 2022 | 2016 |
Variable | Fuzzification Type | Justifications | References |
---|---|---|---|
Landfills | Linear | Higher probability of PIDS when the Euclidean distance to the nearest landfill is higher | [20,58] |
LST | Linear | Higher probability of PIDS when the land surface temperature is elevated due to biodegradation of organic waste fraction | [3,40,41,59] |
HCHO | Linear | Higher probability of PIDS near locations with higher level of anthropogenic activities (HCHO concentration) | [8,21,60] |
Highway | Inverse linear | Higher probability of PIDS when the distance to an intensified road network (highway) is shorter | [1,8,19] |
EVI | Inverse linear | Higher probability of PIDS when the vegetation growth is poorer and EVI is lower | [4,42,61] |
Area ID | PIDS Area (km2) | Total Highway Length (km) | Percent of Total Study Area (%) | Linear Road Density (km/km2) | Number of Populated Points within AC | AC (km2) | Average Travelling Time (min) |
---|---|---|---|---|---|---|---|
1 | 234.8 | 59 | 1.3 | 0.251 | 9 | 2142.3 | 26.1 |
2 | 3575.0 | 350.2 | 20.5 | 0.098 | 3 | 2482.6 | No landfills |
3 | 269.7 | 36.3 | 1.5 | 0.135 | 0 | 1671.1 | No major populated point |
4 | 2415.5 | 299.7 | 13.9 | 0.124 | 6 | 3360.0 | 35.3 |
Total | 6495.1 | 745.2 | 37.3 | 0.115 | 18 | 9656.1 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karimi, N.; Ng, K.T.W. Mapping and Prioritizing Potential Illegal Dump Sites Using Geographic Information System Network Analysis and Multiple Remote Sensing Indices. Earth 2022, 3, 1123-1137. https://doi.org/10.3390/earth3040065
Karimi N, Ng KTW. Mapping and Prioritizing Potential Illegal Dump Sites Using Geographic Information System Network Analysis and Multiple Remote Sensing Indices. Earth. 2022; 3(4):1123-1137. https://doi.org/10.3390/earth3040065
Chicago/Turabian StyleKarimi, Nima, and Kelvin Tsun Wai Ng. 2022. "Mapping and Prioritizing Potential Illegal Dump Sites Using Geographic Information System Network Analysis and Multiple Remote Sensing Indices" Earth 3, no. 4: 1123-1137. https://doi.org/10.3390/earth3040065
APA StyleKarimi, N., & Ng, K. T. W. (2022). Mapping and Prioritizing Potential Illegal Dump Sites Using Geographic Information System Network Analysis and Multiple Remote Sensing Indices. Earth, 3(4), 1123-1137. https://doi.org/10.3390/earth3040065