Environmentally Conscious Technologies Using Fungi in a Climate-Changing World
Abstract
:1. The Biodiversity of Fungi and Its Importance
2. Fungi Potential for a Sustainable Future
3. The Role of Fungal Biotechnology in Circular Bioeconomy
4. Conclusions and Future Research Needs
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dighton, J. Fungi in Ecosystem Processes, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.S.; Brahamanage, R.S.; Brooks, S.; et al. The Amazing Potential of Fungi: 50 Ways We Can Exploit Fungi Industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar] [CrossRef]
- Malyan, S.K.; Kumar, A.; Baram, S.; Kumar, J.; Singh, S.; Kumar, S.S.; Yadav, A.N. Role of Fungi in Climate Change Abatement through Carbon Sequestration. In Recent Advancement in White Biotechnology through Fungi: Volume 3: Perspective for Sustainable Environments; Yadav, A.N., Singh, S., Mishra, S., Gupta, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 283–295. ISBN 978-3-030-25506-0. [Google Scholar]
- Cannon, P.; Aguirre-Hudson, B.; Aime, M.; Ainsworth, A.; Bidartondo, M.; Gaya, E.; Hawksworth, D.; Kirk, P.; Leitch, I.; Lücking, R.; et al. State of the World’s Fungi 2018; Willis, K.J., Ed.; Royal Botanic Gardens, Kew: Richmond, UK, 2018; pp. 4–11. Available online: https://www.kew.org/science/state-of-the-worlds-plants-and-fungi (accessed on 17 December 2022).
- Jörgensen, K.; Granath, G.; Strengbom, J.; Lindahl, B.D. Links between Boreal Forest Management, Soil Fungal Communities and below-Ground Carbon Sequestration. Funct. Ecol. 2022, 36, 392–405. [Google Scholar] [CrossRef]
- Treseder, K.K.; Holden, S.R. Fungal Carbon Sequestration. Science 2013, 340, 1528–1529. [Google Scholar] [CrossRef]
- Chu, R.; Li, S.; Zhu, L.; Yin, Z.; Hu, D.; Liu, C.; Mo, F. A Review on Co-Cultivation of Microalgae with Filamentous Fungi: Efficient Harvesting, Wastewater Treatment and Biofuel Production. Renew. Sustain. Energy Rev. 2021, 139, 110689. [Google Scholar] [CrossRef]
- Dai, X.; Sharma, M.; Chen, J. (Eds.) Fungi in Sustainable Food Production, 1st ed.; Springer: Cham, Switzerland, 2021; ISBN 978-3-030-64405-5. [Google Scholar]
- Oberti, I.; Paciello, A. Bioplastic as a Substitute for Plastic in Construction Industry. Encyclopedia 2022, 2, 1408–1420. [Google Scholar] [CrossRef]
- Saye, L.M.G.; Navaratna, T.A.; Chong, J.P.J.; O’malley, M.A.; Theodorou, M.K.; Reilly, M. The Anaerobic Fungi: Challenges and Opportunities for Industrial Lignocellulosic Biofuel Production. Microorganisms 2021, 9, 694. [Google Scholar] [CrossRef]
- Hibbard, K.; Crutzen, P.; Lambin, E.; Liverman, D.; Mantua, N.; McNeill, J.; Messerli, B.; Steffen, W. Decadal-Scale Interactions of Humans and the Environment. In Sustainability or Collapse? An Integrated History and Future of People on Earth; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Elhacham, E.; Ben-Uri, L.; Grozovski, J.; Bar-On, Y.M.; Milo, R. Global Human-Made Mass Exceeds All Living Biomass. Nature 2020, 588, 442–444. [Google Scholar] [CrossRef]
- Pascual, L.S.; Segarra-Medina, C.; Gómez-Cadenas, A.; López-Climent, M.F.; Vives-Peris, V.; Zandalinas, S.I. Climate Change-Associated Multifactorial Stress Combination: A Present Challenge for Our Ecosystems. J. Plant Physiol. 2022, 276, 153764. [Google Scholar] [CrossRef]
- Antonelli, A.; Smith, R.J.; Simmonds, M.S.J. Unlocking the Properties of Plants and Fungi for Sustainable Development. Nat. Plants 2019, 5, 1100–1102. [Google Scholar] [CrossRef]
- Meyer, V.; Basenko, E.Y.; Benz, J.P.; Braus, G.H.; Caddick, M.X.; Csukai, M.; de Vries, R.P.; Endy, D.; Frisvad, J.C.; Gunde-Cimerman, N.; et al. Growing a Circular Economy with Fungal Biotechnology: A White Paper. Fungal Biol. Biotechnol. 2020, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Blackwell, M. The Fungi: 1, 2, 3... 5.1 Million Species? Am. J. Bot. 2011, 98, 426–438. [Google Scholar] [CrossRef]
- Hawksworth, D.L.; Lücking, R. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. In The Fungal Kingdom; ASM Press: Washington, DC, USA, 2017; pp. 79–95. [Google Scholar] [CrossRef]
- Antonelli, A.; Fry, C.; Smith, R.J.; Simmonds, M.S.J.; Kersey, P.J.; Pritchard, H.W.; Abbo, M.S.; Acedo, C.; Adams, J.; Ainsworth, A.M.; et al. State of the World’s Plants and Fungi 2020; Royal Botanic Gardens, Kew: Richmond, UK, 2020. [Google Scholar]
- Rands, M.R.W.; Adams, W.M.; Bennun, L.; Butchart, S.H.M.; Clements, A.; Coomes, D.; Entwistle, A.; Hodge, I.; Kapos, V.; Scharlemann, J.P.W.; et al. Biodiversity Conservation: Challenges Beyond 2010. Science 2010, 329, 1298–1303. [Google Scholar] [CrossRef]
- Arneth, A.; Shin, Y.-J.; Leadley, P.; Rondinini, C.; Bukvareva, E.; Kolb, M.; Midgley, G.F.; Oberdorff, T.; Palomo, I.; Saito, O. Post-2020 Biodiversity Targets Need to Embrace Climate Change. Proc. Natl. Acad. Sci. USA 2020, 117, 30882–30891. [Google Scholar] [CrossRef]
- Ryan, M.J.; McCluskey, K.; Verkleij, G.; Robert, V.; Smith, D. Fungal Biological Resources to Support International Development: Challenges and Opportunities. World J. Microbiol. Biotechnol. 2019, 35, 139. [Google Scholar] [CrossRef]
- United Nations UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. Resolution Adopted by the General Assembly on 25 September 2015; United Nations: New York, NY, USA, 2015; Volume 16301, pp. 1–35. [Google Scholar]
- Simmonds, M.S.J.; Fang, R.; Wyatt, L.; Bell, E.; Allkin, B.; Forest, F.; Wynberg, R.; da Silva, M.; Zhang, B.G.; Shi Liu, J.; et al. Biodiversity and Patents: Overview of Plants and Fungi Covered by Patents. Plants People Planet 2020, 2, 546–556. [Google Scholar] [CrossRef]
- Purchase, D. (Ed.) Fungal Applications in Sustainable Environmental Biotechnology, 1st ed.; Springer: Cham, Switzerland, 2016; ISBN 9783319428505. [Google Scholar]
- Neczaj, E.; Grosser, A. Circular Economy in Wastewater Treatment Plant—Challenges and Barriers. Proceedings 2018, 2, 614. [Google Scholar] [CrossRef]
- Baron, N.C.; Rigobelo, E.C. Endophytic Fungi: A Tool for Plant Growth Promotion and Sustainable Agriculture. Mycology 2022, 13, 39–55. [Google Scholar] [CrossRef]
- Yadav, A.N.; Singh, S.; Mishra, S.; Gupta, A. (Eds.) Recent Advancement in White Biotechnology through Fungi: Volume 2: Perspective for Value-Added Products and Environments; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-14846-1. [Google Scholar]
- Pathak, V.M.; Navneet. Review on the Current Status of Polymer Degradation: A Microbial Approach. Bioresour. Bioprocess. 2017, 4, 15. [Google Scholar] [CrossRef]
- Sarkhel, R.; Sengupta, S.; Das, P.; Bhowal, A. Comparative Biodegradation Study of Polymer from Plastic Bottle Waste Using Novel Isolated Bacteria and Fungi from Marine Source. J. Polym. Res. 2020, 27, 16. [Google Scholar] [CrossRef]
- Srikanth, M.; Sandeep, T.S.R.S.; Sucharitha, K.; Godi, S. Biodegradation of Plastic Polymers by Fungi: A Brief Review. Bioresour. Bioprocess. 2022, 9, 42. [Google Scholar] [CrossRef]
- Chai, Y.; Bai, M.; Chen, A.; Peng, L.; Shao, J.; Luo, S.; Deng, Y.; Yan, B.; Peng, C. Valorization of Waste Biomass through Fungal Technology: Advances, Challenges, and Prospects. Ind. Crops Prod. 2022, 188, 115608. [Google Scholar] [CrossRef]
- Molelekoa, T.B.J.; Regnier, T.; da Silva, L.S.; Augustyn, W. Production of Pigments by Filamentous Fungi Cultured on Agro-Industrial By-Products Using Submerged and Solid-State Fermentation Methods. Fermentation 2021, 7, 295. [Google Scholar] [CrossRef]
- Show, P.L.; Oladele, K.O.; Siew, Q.Y.; Aziz Zakry, F.A.; Lan, J.C.W.; Ling, T.C. Overview of Citric Acid Production from Aspergillus niger. Front. Life Sci. 2015, 8, 271–283. [Google Scholar] [CrossRef]
- Wikandari, R.; Hasniah, N.; Taherzadeh, M.J. The Role of Filamentous Fungi in Advancing the Development of a Sustainable Circular Bioeconomy. Bioresour. Technol. 2022, 345, 126531. [Google Scholar] [CrossRef] [PubMed]
- Eggen, T. Application of Fungal Substrate from Commercial Mushroom Production—Pleuorotus ostreatus—For Bioremediation of Creosote Contaminated Soil. Int. Biodeterior. Biodegrad. 1999, 44, 117–126. [Google Scholar] [CrossRef]
- Huang, D.L.; Zeng, G.M.; Jiang, X.Y.; Feng, C.L.; Yu, H.Y.; Huang, G.H.; Liu, H.L. Bioremediation of Pb-Contaminated Soil by Incubating with Phanerochaete chrysosporium and Straw. J. Hazard. Mater. 2006, 134, 268–276. [Google Scholar] [CrossRef]
- Purnomo, A.S.; Mori, T.; Kamei, I.; Nishii, T.; Kondo, R. Application of Mushroom Waste Medium from Pleurotus ostreatus for Bioremediation of DDT-Contaminated Soil. Int. Biodeterior. Biodegrad. 2010, 64, 397–402. [Google Scholar] [CrossRef]
- Rigas, F.; Papadopoulou, K.; Philippoussis, A.; Papadopoulou, M.; Chatzipavlidis, J. Bioremediation of Lindane Contaminated Soil by Pleurotus ostreatus in Non Sterile Conditions Using Multilevel Factorial Design. Water. Air. Soil Pollut. 2009, 197, 121–129. [Google Scholar] [CrossRef]
- Asci, F.; Aydin, B.; Akkus, G.U.; Unal, A.; Erdogmus, S.F.; Korcan, S.E.; Jahan, I. Fatty Acid Methyl Ester Analysis of Aspergillus fumigatus Isolated from Fruit Pulps for Biodiesel Production Using GC-MS Spectrometry. Bioengineered 2020, 11, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Erfandoust, R.; Habibipour, R.; Soltani, J. Antifungal Activity of Endophytic Fungi from Cupressaceae against Human Pathogenic Aspergillus fumigatus and Aspergillus niger. J. Mycol. Med. 2020, 30, 100987. [Google Scholar] [CrossRef]
- Ezeonu, C.S.; Otitoju, O.; Onwurah, I.N.E.; Ejikeme, C.M.; Ugbogu, O.C.; Anike, E.N.; Eng, M. Enhanced Availability of Biofuel and Biomass Components in Aspergillus niger and Aspergillus fumigatus Treated Rice Husk. Eur. Sci. J. 2014, 10, 1857–7881. [Google Scholar]
- Huang, C.; Chen, X.; Xiong, L.; Chen, X.; Ma, L.; Chen, Y. Single Cell Oil Production from Low-Cost Substrates: The Possibility and Potential of Its Industrialization. Biotechnol. Adv. 2013, 31, 129–139. [Google Scholar] [CrossRef]
- Ma, Y.; Gao, Z.; Wang, Q.; Liu, Y. Biodiesels from Microbial Oils: Opportunity and Challenges. Bioresour. Technol. 2018, 263, 631–641. [Google Scholar] [CrossRef]
- Sodré, V.; Vilela, N.; Tramontina, R.; Squina, F.M. Microorganisms as Bioabatement Agents in Biomass to Bioproducts Applications. Biomass Bioenergy 2021, 151, 106161. [Google Scholar] [CrossRef]
- Aminabhavi, T.M.; Balundgi, R.H.; Cassidy, P.E. A Reviewed on Biodegradable Plastics. Polym. Plast. Technol. Eng. 1990, 29, 235–262. [Google Scholar] [CrossRef]
- Satti, S.M.; Shah, A.A. Polyester-Based Biodegradable Plastics: An Approach towards Sustainable Development. Lett. Appl. Microbiol. 2020, 70, 413–430. [Google Scholar] [CrossRef]
- ONU. The Sustainable Development Goals Report 2022. United Nations Publication Issued by the Department of Economic and Social Affairs; ONU: San Francisco, CA, USA, 2022; Volume 64. [Google Scholar]
- Pearce, T.R.; Antonelli, A.; Brearley, F.Q.; Couch, C.; Campostrini Forzza, R.; Gonçalves, S.C.; Magassouba, S.; Morim, M.P.; Mueller, G.M.; Nic Lughadha, E.; et al. International Collaboration between Collections-Based Institutes for Halting Biodiversity Loss and Unlocking the Useful Properties of Plants and Fungi. Plants People Planet 2020, 2, 515–534. [Google Scholar] [CrossRef]
- Zaidi, A.; Ahmad, E.; Khan, M.S.; Saif, S.; Rizvi, A. Role of Plant Growth Promoting Rhizobacteria in Sustainable Production of Vegetables: Current Perspective. Sci. Hortic. 2015, 193, 231–239. [Google Scholar] [CrossRef]
- Senthil Kumar, C.M.; Jacob, T.K.; Devasahayam, S.; Thomas, S.; Geethu, C. Multifarious Plant Growth Promotion by an Entomopathogenic Fungus Lecanicillium psalliotae. Microbiol. Res. 2018, 207, 153–160. [Google Scholar] [CrossRef]
- Verma, P.; Yadav, A.N.; Khannam, K.S.; Panjiar, N.; Kumar, S.; Saxena, A.K.; Suman, A. Assessment of Genetic Diversity and Plant Growth Promoting Attributes of Psychrotolerant Bacteria Allied with Wheat (Triticum aestivum) from the Northern Hills Zone of India. Ann. Microbiol. 2015, 65, 1885–1899. [Google Scholar] [CrossRef]
- Wahid, O.A.A.; Mehana, T.A. Impact of Phosphate-Solubilizing Fungi on the Yield and Phosphorus-Uptake by Wheat and Faba Bean Plants. Microbiol. Res. 2000, 155, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Milagres, A.M.F.; Machuca, A.; Napoleão, D. Detection of Siderophore Production from Several Fungi and Bacteria by a Modification of Chrome Azurol S (CAS) Agar Plate Assay. J. Microbiol. Methods 1999, 37, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Khatun, J.; Intekhab, A.; Dhak, D. Effect of Uncontrolled Fertilization and Heavy Metal Toxicity Associated with Arsenic(As), Lead(Pb) and Cadmium (Cd), and Possible Remediation. Toxicology 2022, 477, 153274. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.; Rahman, S.U.; Kayani, S.I.; Khan, A.A.; Gul, H.; Hui, N. Plasmodiophora brassicae—The Causal Agent of Clubroot and Its Biological Control/Suppression with Fungi—A Review. S. Afr. J. Bot. 2022, 147, 325–331. [Google Scholar] [CrossRef]
- Jakovljević, V.D.; Vrvić, M.M. Capacity of Aspergillus Niger to Degrade Anionic Surfactants and Coproduce the Detergent Compatible Enzymes. Appl. Biochem. Microbiol. 2016, 52, 183–189. [Google Scholar] [CrossRef]
- Jin, B.; van Leeuwen, H.J.; Patel, B.; Yu, Q. Utilisation of Starch Processing Wastewater for Production of Microbial Biomass Protein and Fungal α-Amylase by Aspergillus oryzae. Bioresour. Technol. 1998, 66, 201–206. [Google Scholar] [CrossRef]
- Kües, U. Fungal Enzymes for Environmental Management. Curr. Opin. Biotechnol. 2015, 33, 268–278. [Google Scholar] [CrossRef]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Kermanshahi-pour, A.; Verma, M.; Surampalli, R.Y. Removal of Pharmaceutical Compounds in Water and Wastewater Using Fungal Oxidoreductase Enzymes. Environ. Pollut. 2018, 234, 190–213. [Google Scholar] [CrossRef]
- Pereira, C.S.; Kelbert, M.; Daronch, N.A.; Michels, C.; de Oliveira, D.; Soares, H.M. Potential of Enzymatic Process as an Innovative Technology to Remove Anticancer Drugs in Wastewater. Appl. Microbiol. Biotechnol. 2020, 104, 23–31. [Google Scholar] [CrossRef]
- Carus, M. Biobased Economy and Climate Change-Important Links, Pitfalls, and Opportunities. Ind. Biotechnol. 2017, 13, 41–51. [Google Scholar] [CrossRef]
- D’Amato, D.; Droste, N.; Allen, B.; Kettunen, M.; Lähtinen, K.; Korhonen, J.; Leskinen, P.; Matthies, B.D.; Toppinen, A. Green, Circular, Bio Economy: A Comparative Analysis of Sustainability Avenues. J. Clean. Prod. 2017, 168, 716–734. [Google Scholar] [CrossRef]
- Carus, M.; Dammer, L. The Circular Bioeconomy—Concepts, Opportunities, and Limitations. Ind. Biotechnol. 2018, 14, 83–91. [Google Scholar] [CrossRef]
- D’Amato, D.; Korhonen, J. Integrating the Green Economy, Circular Economy and Bioeconomy in a Strategic Sustainability Framework. Ecol. Econ. 2021, 188, 107143. [Google Scholar] [CrossRef]
- Leipold, S.; Petit-Boix, A. The Circular Economy and the Bio-Based Sector—Perspectives of European and German Stakeholders. J. Clean. Prod. 2018, 201, 1125–1137. [Google Scholar] [CrossRef]
SDG Number | Goal Title | Number of Targets | Number of Indicators | Application |
---|---|---|---|---|
2 | End hunger, achieve food security and improved nutrition and promote sustainable agriculture | 8 | 14 | Affordable food production. |
3 | Ensure healthy lives and promote wellbeing for all at all ages | 13 | 28 | Excellent quality and healthy food production. |
6 | Ensure availability and sustainable management of water and sanitation for all | 8 | 11 | Sanitation and water treatment processes. Reduction of water consumption. |
7 | Ensure access to affordable, reliable, sustainable, and modern energy for all | 5 | 6 | Renewable energies. |
9 | Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation | 8 | 12 | Technological developments. |
11 | Make cities and human settlements inclusive, safe, resilient, and sustainable | 10 | 15 | Good quality, affordable and sustainable housing. Waste management. |
12 | Ensure sustainable consumption and production patterns | 11 | 13 | Technologies to mitigate climate changing consequences. |
13 | Take urgent action to combat climate change and its impacts | 5 | 8 | Sustainable production, recycle and reuse of products |
15 | Protect, restore, and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss | 12 | 14 | Genetic resources. Sustainable management of forests. |
17 | Strengthen the means of implementation and revitalize the Global Partnership for Sustainable Development | 19 | 24 | Revitalize global economy and creation of new partnerships. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kržišnik, D.; Gonçalves, J. Environmentally Conscious Technologies Using Fungi in a Climate-Changing World. Earth 2023, 4, 69-77. https://doi.org/10.3390/earth4010005
Kržišnik D, Gonçalves J. Environmentally Conscious Technologies Using Fungi in a Climate-Changing World. Earth. 2023; 4(1):69-77. https://doi.org/10.3390/earth4010005
Chicago/Turabian StyleKržišnik, Davor, and José Gonçalves. 2023. "Environmentally Conscious Technologies Using Fungi in a Climate-Changing World" Earth 4, no. 1: 69-77. https://doi.org/10.3390/earth4010005
APA StyleKržišnik, D., & Gonçalves, J. (2023). Environmentally Conscious Technologies Using Fungi in a Climate-Changing World. Earth, 4(1), 69-77. https://doi.org/10.3390/earth4010005