Quantification of Pinus pinea L. Pinecone Productivity Using Machine Learning of UAV and Field Images †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spectoscopy Study of Pinecones
2.2. UAV Flights and Tree Delineation
2.3. Pinecone Quantification
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loewe-Muñoz, V.; Balzarini, M.; Álvarez-Contreras, A.; Delard-Rodríguez, C.; Navarro-Cerrillo, R.M. Fruit productivity of stone pine (Pinus pinea L.) along a climatic gradient in Chile. Agric. For. Meteorol. 2016, 223, 203–216. [Google Scholar] [CrossRef]
- Aguirre, A.; del Río, M.; Condés, S. Productivity estimations for monospecific and mixed pine forests along the Iberian Peninsula aridity gradient. Forests 2019, 10, 430. [Google Scholar] [CrossRef]
- Loewe-Muñoz, V.; Balzarini, M.; Delard, C.; del Río, R.; Álvarez, A. Inter-annual variability of Pinus pinea L. cone productivity in a non-native habitat. New For. 2020, 51, 1055–1068. [Google Scholar] [CrossRef]
- Belmonte, A.; Sankey, T.; Biederman, J.A.; Bradford, J.; Goetz, S.J.; Kolb, T.; Woolley, T. UAV-Derived estimates of forest structure to inform ponderosa pine forest restoration. Remote Sens. Ecol. Conserv. 2020, 6, 181–197. [Google Scholar] [CrossRef]
- Surový, P.; Almeida Ribeiro, N.; Panagiotidis, D. Estimation of positions and heights from UAV-sensed imagery in tree plantations in agrosilvopastoral systems. Int. J. Remote Sens. 2018, 39, 4786–4800. [Google Scholar] [CrossRef]
- Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Seung, H.S. Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics 2017, 33, 2424–2426. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, B.G.; Marconi, S.; Aubry-Kientz, M.; Vincent, G.; Senyondo, H.; White, E.P. DeepForest: A Python package for RGB deep learning tree crown delineation. Methods Ecol. Evol. 2020, 11, 1743–1751. [Google Scholar] [CrossRef]
- Gu, J.; Grybas, H.; Congalton, R.G. A comparison of forest tree crown delineation from unmanned aerial imagery using canopy height models vs. spectral lightness. Forests 2020, 11, 605. [Google Scholar] [CrossRef]
- Malik, Z.; Ziauddin, S.; Shahid, A.R.; Safi, A. Detection and counting of on-tree citrus fruit for crop yield estimation. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 519–523. [Google Scholar] [CrossRef]
- Qureshi, W.S.; Payne, A.; Walsh, K.B.; Linker, R.; Cohen, O.; Dailey, M.N. Machine vision for counting fruit on mango tree canopies. Precis. Agric. 2017, 18, 224–244. [Google Scholar] [CrossRef]
- Sethy, P.K.; Panda, S.; Behera, S.K.; Rath, A.K. On tree detection, counting & post-harvest grading of fruits based on image processing and machine learning approach-a review. Int. J. Eng. Technol. 2017, 9, 649–663. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kefauver, S.C.; Buchaillot, M.L.; Segarra, J.; Fernandez Gallego, J.A.; Araus, J.L.; Llosa, X.; Beltrán, M.; Piqué, M. Quantification of Pinus pinea L. Pinecone Productivity Using Machine Learning of UAV and Field Images. Environ. Sci. Proc. 2022, 13, 24. https://doi.org/10.3390/IECF2021-10789
Kefauver SC, Buchaillot ML, Segarra J, Fernandez Gallego JA, Araus JL, Llosa X, Beltrán M, Piqué M. Quantification of Pinus pinea L. Pinecone Productivity Using Machine Learning of UAV and Field Images. Environmental Sciences Proceedings. 2022; 13(1):24. https://doi.org/10.3390/IECF2021-10789
Chicago/Turabian StyleKefauver, Shawn C., Ma. Luisa Buchaillot, Joel Segarra, Jose Armando Fernandez Gallego, Jose Luis Araus, Xavier Llosa, Mario Beltrán, and Míriam Piqué. 2022. "Quantification of Pinus pinea L. Pinecone Productivity Using Machine Learning of UAV and Field Images" Environmental Sciences Proceedings 13, no. 1: 24. https://doi.org/10.3390/IECF2021-10789
APA StyleKefauver, S. C., Buchaillot, M. L., Segarra, J., Fernandez Gallego, J. A., Araus, J. L., Llosa, X., Beltrán, M., & Piqué, M. (2022). Quantification of Pinus pinea L. Pinecone Productivity Using Machine Learning of UAV and Field Images. Environmental Sciences Proceedings, 13(1), 24. https://doi.org/10.3390/IECF2021-10789