A Comparative Analysis of the Anatomical Variability in Pinus brutia Ten. Essential Oils †
Abstract
:1. Introduction
2. Essential Oils
3. Bibliographic Data
4. Pinus brutia EO Chemical Variability
4.1. Between Plant Parts and Related Bioproducts
4.2. Among Samples of the Same Plant Part
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bagci, E.; Hayta, S.; Dogan, G. Chemical composition of essential oils from bark and leaves of Pinus brutia Ten. from Turkey. Asian J. Chem. 2011, 23, 2782–2784. [Google Scholar]
- Loizzo, M.R.; Saab, A.M.; Tundis, R.; Menichini, F.; Bonesi, M.; Statti, G.A.; Menichini, F. Chemical composition and antimicrobial activity of essential oils from Pinus brutia (calabrian pine) growing in Lebanon. Chem. Nat. Compd. 2008, 44, 784–786. [Google Scholar] [CrossRef]
- Öz, M.; Deniz, İ.; Okan, O.T.; Fidan, M.S. Chemical Composition of Oleoresin and Larvae Gallery Resin of Pinus Brutia Attacked by Dioryctria Sylvestrella Ratz. Drv. Ind. 2015, 66, 179–188. [Google Scholar] [CrossRef]
- Ulukanli, Z.; Karabörklü, S.; Bozok, F.; Ates, B.; Erdogan, S.; Cenet, M.; Karaaslan, M.G. Chemical composition, antimicrobial, insecticidal, phytotoxic and antioxidant activities of Mediterranean Pinus brutia and Pinus pinea resin essential oils. Chin. J. Nat. Med. 2014, 12, 901–910. [Google Scholar] [CrossRef]
- Karaogul, E.; Hakki Alma, M. Solvent-free microwave and hydro-distillation extraction of essential oils from the Sawdust of Pines: Correlation with heat-map. BioResources 2019, 14, 8229–8240. [Google Scholar] [CrossRef]
- Faria, J.M.S. Essential Oils as Anti-Nematode Agents and Their Influence on In Vitro Nematode/Plant Co-Cultures. Ph.D. Thesis, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal, 2015. [Google Scholar]
- Faria, J.M.S.; Rodrigues, A.M. Metabolomic Variability in the Volatile Composition of Essential Oils from Pinus pinea and P. pinaster. Biol. Life Sci. Forum 2021, 2, 14. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Mendes, M.D.; Lima, A.S.; Barbosa, P.M.; Ascensão, L.; Barroso, J.G.; Pedro, L.G.; Mota, M.M.; Figueiredo, A.C. Pinus halepensis, Pinus pinaster, Pinus pinea and Pinus sylvestris essential oils chemotypes and monoterpene hydrocarbon enantiomers, before and after inoculation with the pinewood nematode Bursaphelenchus xylophilus. Chem. Biodivers. 2017, 14, e1600153. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Arrabal, C.; García-Vallejo, M.C.; Cadahia, E.; Cortijo, M.; de Simón, B.F. Characterization of two chemotypes of Pinus pinaster by their terpene and acid patterns in needles. Plant Syst. Evol. 2012, 298, 511–522. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Pedro, L.G.; Barroso, J.G.; Trindade, H.; Sanches, J.; Oliveira, C.; Correia, M. Pinus pinaster Aiton e Pinus pinea L. Agrotec 2014, 12, 14–18. [Google Scholar]
- Rodrigues, A.M.; Miguel, C.; Chaves, I.; António, C. Mass spectrometry—Based forest tree metabolomics. Mass Spectrom. Rev. 2019, 40, 126–157. [Google Scholar] [CrossRef] [PubMed]
- Roussis, V.; Petrakis, P.V.; Ortiz, A.; Mazomenos, B.E. Volatile constituents of needles of five Pinus species grown in Greece. Phytochemistry 1995, 39, 357–361. [Google Scholar] [CrossRef]
- Hmamouchi, M.; Hamamouchi, J.; Zouhdi, M.; Bessiere, J.M. Chemical and antimicrobial properties of essential oils of five Moroccan pinaceae. J. Essent. Oil Res. 2001, 13, 298–302. [Google Scholar] [CrossRef]
- Lahlou, M. Composition and molluscicidal properties of essential oils of five Moroccan pinaceae. Pharm. Biol. 2003, 41, 207–210. [Google Scholar] [CrossRef]
- Ustun, O.; Senol, F.S.; Kurkcuoglu, M.; Orhan, I.E.; Kartal, M.; Baser, K.H.C. Investigation on chemical composition, anticholinesterase and antioxidant activities of extracts and essential oils of Turkish Pinus species and pycnogenol. Ind. Crops Prod. 2012, 38, 115–123. [Google Scholar] [CrossRef]
- Ioannou, E.; Koutsaviti, A.; Tzakou, O.; Roussis, V. The genus Pinus: A comparative study on the needle essential oil composition of 46 pine species. Phytochem. Rev. 2014, 13, 741–768. [Google Scholar] [CrossRef]
- Yener, H.O.; Saygideger, S.D.; Sarikurkcu, C.; Yumrutas, O. Evaluation of antioxidant activities of essential oils and methanol extracts of Pinus species. J. Essent. Oil-Bear. Plants 2014, 17, 295–302. [Google Scholar] [CrossRef]
- Ghosn, M.W.; Saliba, N.A.; Talhouk, S.Y. Chemical Composition of the Needle-Twig Oils of Pinus brutia Ten. J. Essent. Oil Res. 2006, 18, 445–447. [Google Scholar] [CrossRef]
- Koutsaviti, K.; Giatropoulos, A.; Pitarokili, D.; Papachristos, D.; Michaelakis, A.; Tzakou, O. Greek Pinus essential oils: Larvicidal activity and repellency against Aedes albopictus (Diptera: Culicidae). Parasitol. Res. 2015, 114, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Roussis, V.; Papadogianni, K.; Vagias, C.; Harvala, C.; Petrakis, P.V.; Ortiz, A. Volatile Constituents of Three Pinus Species Grown in Greece. J. Essent. Oil Res. 2001, 13, 118–121. [Google Scholar] [CrossRef]
- Yasar, S.; Beram, A.; Guler, G. Effect of extraction technique on composition of volatile constituents of oleoresin from Pinus brutia Ten. Drv. Ind. 2018, 69, 239–245. [Google Scholar] [CrossRef]
- Tumen, I.; Hafizoglu, H.; Kilic, A.; Dönmez, I.E.; Sivrikaya, H.; Reunanen, M. Yields and constituents of Essential Oil from cones of Pinaceae spp. Natively grown in Turkey. Molecules 2010, 15, 5797–5806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compounds (%) | Needles 1 | Twigs 2 | Resin 3 | Cones 4 | Flowers | Bark | Sawdust | Seeds |
---|---|---|---|---|---|---|---|---|
α-pinene | 14.4–20.3 | 14.5–20.6 | 19.7–49.1 | 30.9–40.7 | 24.2 | 14.9 | 77.3 | 25.0 |
camphene | 1.1 | 2.2–5.0 | 1.3 | 1.6 | ||||
β-pinene | 29.5–47.7 | 17.5–31.7 | 9.7–19.1 | 28.3–39.6 | 35.2 | 5.7 | 12.2 | 38.2 |
β-myrcene | 1.6–2.9 | 2.1–11.0 | 2.2–15.3 | 1.1–2.3 | 11.9 | 1.8 | 2.4 | |
δ-3-carene | 1.9–3.8 | 1.4–25.1 | 3.7 | 7.8–13.4 | 11.2 | 9.6 | 1.4 | |
limonene | 1.0–4.0 | 1.5–13.4 | 2.2–6.2 | 1.0–3.7 | 5.6 | 2.9 | 1.4 | 1.1 |
sylvestrene | 1.6 | 7.4 | ||||||
γ-terpinene | 10.2 | 2 | 1.7 | |||||
terpinolene | 1.0–1.3 | 1.8–3.5 | 6.2 | 1.0 | ||||
α-terpineol | 1.1–4.4 | 1.0–2.7 | 3.0 | 1.0–2.9 | 6.7 | |||
α-terpinyl acetate | 2.5 | 5.3 | ||||||
β-caryophyllene | 4.6–12.0 | 6.8–14.5 | 2.8–7.8 | 2.7–5.0 | 1.9 | 11.2 | 15.2 | |
germacrene D | 7.5–17.9 | 1.4–6.1 | 4.3 | |||||
caryophyllene oxide | 1.5 | 1.6 | 6.9 | |||||
longifolene | 1.1–1.2 | 9.9 | ||||||
neryl acetate | 5.9 | |||||||
δ-2-carene | 6.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faria, J.M.S.; Rodrigues, A.M.; Fundurulic, A. A Comparative Analysis of the Anatomical Variability in Pinus brutia Ten. Essential Oils. Environ. Sci. Proc. 2022, 13, 3. https://doi.org/10.3390/IECF2021-10781
Faria JMS, Rodrigues AM, Fundurulic A. A Comparative Analysis of the Anatomical Variability in Pinus brutia Ten. Essential Oils. Environmental Sciences Proceedings. 2022; 13(1):3. https://doi.org/10.3390/IECF2021-10781
Chicago/Turabian StyleFaria, Jorge M. S., Ana Margarida Rodrigues, and Ana Fundurulic. 2022. "A Comparative Analysis of the Anatomical Variability in Pinus brutia Ten. Essential Oils" Environmental Sciences Proceedings 13, no. 1: 3. https://doi.org/10.3390/IECF2021-10781
APA StyleFaria, J. M. S., Rodrigues, A. M., & Fundurulic, A. (2022). A Comparative Analysis of the Anatomical Variability in Pinus brutia Ten. Essential Oils. Environmental Sciences Proceedings, 13(1), 3. https://doi.org/10.3390/IECF2021-10781