A Comparison of Different Metrics for Analyzing the Troposphere/Stratosphere Transitions Using High-Resolution Ozonesondes †
Abstract
:1. Introduction
2. Methods and Data Used
2.1. Data Used
- The raw native resolution files that for the 2016 sondes are reported roughly every second
- Interpolated “100 m average” versions that have been interpolated by NOAA ESRL from the raw data into smoother but lower resolution sondes.
2.2. Methods
- Molar density. The molar density, D, at each point is calculated from the corresponding pressure and temperature measurements, following the approach described by Connolly et al. (2021) [13]. That is, D = P/RT, where R = the ideal gas constant. To calculate the tropopause using molar density, we use two derived metrics: the rate of change of D with altitude, dD/dh; the rate of change of D with pressure, dD/dP. We also study the deviation of the observed D values from a linear fit in the upper troposphere region. This region is defined as 35,000–50,000 Pa for Greenland and Antarctica; 30,000–50,000 Pa for Colorado, Alabama; 25,000–45,000 Pa for California; 15,000–35,000 Pa for Hawai’i; 15,000–40,000 Pa for American Samoa and Fiji. We define the molar density-based tropopause as the pressure above the boundary layer at which:
- D significantly deviates from linearity—see Figure 3a for an example.
- dD/dh and dD/dP begin to oscillate wildly.
- Temperature. To calculate the tropopause from the temperature data, we calculate the rate of change of temperature with altitude, dT/dh; and with pressure, dT/dP. We define the temperature-based tropopause as the pressure above the boundary layer at which:
- dT/dh crosses from being negative to being positive.
- dT/dh and dT/dP begin to oscillate wildly—see Figure 3b for an example of this phenomenon for dT/dh.
- Water. To calculate the tropopause from the water vapor content data, we calculate the rate of change with altitude, d(H2O)/dh and with pressure, d(H2O)/dP. We define the water-based tropopause as the pressure above the boundary layer at which:
- [H2O] is less than 50 ppmv.
- d(H2O)/dh drops to zero.
- d(H2O)/dh and d(H2O)/dP stops oscillating wildly—see Figure 3c for an example for d(H2O)/dh.
- Ozone. To calculate the tropopause from the ozone content data, we calculate the rate of change with altitude, d(O3)/dh and with pressure, d(O3)/dP. We define the ozone-based tropopause as the pressure above the boundary layer at which:
- [O3] is greater than 0.1 ppmv.
- d(O3)/dh increases substantially and d(O3)/dP decreases substantially.
- d(O3)/dh and d(O3)/dP both begin to oscillate—see Figure 3d for an example for d(O3)/dh.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoinka, K.P. The Tropopause: Discovery, Definition and Demarcation. Meteorol. Z. 1997, 6, 281–303. [Google Scholar] [CrossRef]
- WMO. Meteorology—A Three-Dimensional Science. WMO Bull. 1957, 6, 134–138. [Google Scholar]
- Reed, R.J. A study of a characteristic tpye of upper-level frontogenesis. J. Meteor. 1955, 12, 226–237. [Google Scholar] [CrossRef]
- Hoskins, B.J.; McIntyre, M.E.; Robertson, A.W. On the Use and Significance of Isentropic Potential Vorticity Maps. Q. J. R. Meteorol. Soc. 1985, 111, 877–946. [Google Scholar] [CrossRef]
- Holton, J.R.; Haynes, P.H.; McIntyre, M.E.; Douglass, A.R.; Rood, R.B.; Pfister, L. Stratosphere-Troposphere Exchange. Rev. Geophys. 1995, 33, 403–439. [Google Scholar] [CrossRef]
- Highwood, E.J.; Hoskins, B.J. The Tropical Tropopause. Q. J. R. Meteorol. Soc. 1998, 124, 1579–1604. [Google Scholar] [CrossRef]
- Zhou, X.L.; Geller, M.A.; Zhang, M.H. Tropical Cold Point Tropopause Characteristics Derived from ECMWF Reanalyses and Soundings. J. Climate 2001, 14, 1823–1838. [Google Scholar] [CrossRef]
- Gettelman, A.; Hoor, P.; Pan, L.L.; Randel, W.J.; Hegglin, M.I.; Birner, T. The Extratropical Upper Troposphere and Lower Stratosphere. Rev. Geophys. 2011, 49, RG3003. [Google Scholar] [CrossRef]
- Bethan, S.; Vaughan, G.; Reid, S.J. A Comparison of Ozone and Thermal Tropopause Heights and the Impact of Tropopause Definition on Quantifying the Ozone Content of the Troposphere. Q. J. R. Meteorol. Soc. 1996, 122, 929–944. [Google Scholar] [CrossRef]
- Folkins, I.; Loewenstein, M.; Podolske, J.; Oltmans, S.J.; Proffitt, M. A Barrier to Vertical Mixing at 14 Km in the Tropics: Evidence from Ozonesondes and Aircraft Measurements. J. Geophys. Res. Atmos. 1999, 104, 22095–22102. [Google Scholar] [CrossRef]
- Fischer, H.; Wienhold, F.G.; Hoor, P.; Bujok, O.; Schiller, C.; Siegmund, P.; Ambaum, M.; Scheeren, H.A.; Lelieveld, J. Tracer Correlations in the Northern High Latitude Lowermost Stratosphere: Influence of Cross-Tropopause Mass Exchange. Geophys. Res. Lett. 2000, 27, 97–100. [Google Scholar] [CrossRef]
- Sterling, C.W.; Johnson, B.J.; Oltmans, S.J.; Smit, H.G.J.; Jordan, A.F.; Cullis, P.D.; Hall, E.G.; Thompson, A.M.; Witte, J.C. Homogenizing and Estimating the Uncertainty in NOAA’s Long-Term Vertical Ozone Profile Records Measured with the Electrochemical Concentration Cell Ozonesonde. Atmos. Meas. Tech. 2018, 11, 3661–3687. [Google Scholar] [CrossRef]
- Connolly, M.; Connolly, R.; Soon, W.; Velasco Herrera, V.M.; Cionco, R.G.; Quaranta, N.E. Analyzing Atmospheric Circulation Patterns Using Mass Fluxes Calculated from Weather Balloon Measurements: North Atlantic Region as a Case Study. Atmosphere 2021, 12, 1439. [Google Scholar] [CrossRef]
- Connolly, M.; Connolly, R. The Physics of the Earth’s Atmosphere I. Phase Change Associated with Tropopause. Open Peer Rev. J. 2014, 19. Available online: http://oprj.net/articles/atmospheric-science/19 (accessed on 26 August 2022).
- Connolly, M.; Connolly, R. The Physics of the Earth’s Atmosphere II. Multimerization of Atmospheric Gases above the Troposphere. Open Peer Rev. J. 2014, 22. Available online: http://oprj.net/articles/atmospheric-science/22 (accessed on 26 August 2022).
- Connolly, M.; Connolly, R. The Physics of the Earth’s Atmosphere III. Pervective Power. Open Peer Rev. J. 2014, 25. Available online: http://oprj.net/articles/atmospheric-science/25 (accessed on 26 August 2022).
# | Station | Location | Co-Ordinates | Sondes (2016) |
---|---|---|---|---|
1 | Greenland | Summit Station, Greenland | 72.581° N, 34.458° W | 48 |
2 | California | Trinidad Head, CA, USA | 41.059° N, 124.147° W | 51 |
3 | Colorado | Boulder, CO, USA | 39.949° N, 105.197° W | 49 |
4 | Alabama | University of Alabama at Huntsville, Huntsville, AL, USA | 34.725° N, 86.646° W | 52 |
5 | Hawai’i | Hilo, HI, USA | 19.717° N, 155.049° W | 50 |
6 | American Samoa | Pago Pago, American Samoa | 14.331° S, 170.714° W | 34 |
7 | Fiji | Suva, Fiji | 18.150° S, 178.446° E | 16 |
8 | Antarctica | Amundsen-Scott South Pole Station, Antarctica | 90.000° S, 169.000° E | 61 |
Approach Used | Greenland | California | Colorado | Alabama | Hawai’i | American Samoa | Fiji | Antarctica | Average |
---|---|---|---|---|---|---|---|---|---|
Correlations with temperature-based estimates | |||||||||
Water | 0.92 | 0.82 | 0.89 | 0.94 | 0.78 | 0.98 | 0.97 | 0.90 | 0.90 |
Ozone | 0.89 | 0.95 | 0.90 | 0.95 | 0.87 | 0.95 | 0.81 | 0.94 | 0.91 |
Molar density | 0.95 | 0.98 | 0.94 | 0.98 | 0.88 | 0.98 | 0.96 | 0.94 | 0.95 |
NOAA’s estimates | 0.58 | 0.57 | 0.69 | 0.56 | 0.34 | 0.45 | 0.30 | 0.63 | 0.51 |
Correlations with water-based estimates | |||||||||
Temperature | 0.92 | 0.82 | 0.89 | 0.94 | 0.78 | 0.98 | 0.97 | 0.90 | 0.90 |
Ozone | 0.86 | 0.85 | 0.91 | 0.94 | 0.85 | 0.95 | 0.88 | 0.90 | 0.89 |
Molar density | 0.88 | 0.80 | 0.91 | 0.95 | 0.85 | 0.97 | 0.95 | 0.89 | 0.90 |
NOAA’s estimates | 0.50 | 0.56 | 0.64 | 0.67 | 0.31 | 0.45 | 0.34 | 0.59 | 0.51 |
Correlations with ozone-based estimates | |||||||||
Temperature | 0.89 | 0.95 | 0.90 | 0.95 | 0.87 | 0.95 | 0.81 | 0.94 | 0.91 |
Water | 0.86 | 0.85 | 0.91 | 0.94 | 0.85 | 0.95 | 0.88 | 0.90 | 0.89 |
Molar density | 0.91 | 0.94 | 0.87 | 0.96 | 0.90 | 0.94 | 0.89 | 0.95 | 0.92 |
NOAA’s estimates | 0.54 | 0.56 | 0.70 | 0.57 | 0.31 | 0.40 | 0.56 | 0.59 | 0.53 |
Correlations with molar density-based estimates | |||||||||
Temperature | 0.95 | 0.98 | 0.94 | 0.98 | 0.88 | 0.98 | 0.96 | 0.94 | 0.95 |
Water | 0.88 | 0.80 | 0.91 | 0.95 | 0.85 | 0.97 | 0.95 | 0.89 | 0.90 |
Ozone | 0.91 | 0.94 | 0.87 | 0.96 | 0.90 | 0.94 | 0.89 | 0.95 | 0.92 |
NOAA’s estimates | 0.57 | 0.55 | 0.66 | 0.57 | 0.28 | 0.50 | 0.43 | 0.62 | 0.52 |
Correlations with NOAA’s estimates | |||||||||
Temperature | 0.58 | 0.57 | 0.69 | 0.56 | 0.34 | 0.45 | 0.30 | 0.63 | 0.51 |
Water | 0.50 | 0.56 | 0.64 | 0.67 | 0.31 | 0.45 | 0.34 | 0.59 | 0.51 |
Ozone | 0.54 | 0.56 | 0.70 | 0.57 | 0.31 | 0.40 | 0.56 | 0.59 | 0.53 |
Molar density | 0.57 | 0.55 | 0.66 | 0.57 | 0.28 | 0.50 | 0.43 | 0.62 | 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dingley, O.; Connolly, M.; Connolly, R.; Soon, W. A Comparison of Different Metrics for Analyzing the Troposphere/Stratosphere Transitions Using High-Resolution Ozonesondes. Environ. Sci. Proc. 2022, 19, 14. https://doi.org/10.3390/ecas2022-12807
Dingley O, Connolly M, Connolly R, Soon W. A Comparison of Different Metrics for Analyzing the Troposphere/Stratosphere Transitions Using High-Resolution Ozonesondes. Environmental Sciences Proceedings. 2022; 19(1):14. https://doi.org/10.3390/ecas2022-12807
Chicago/Turabian StyleDingley, Orla, Michael Connolly, Ronan Connolly, and Willie Soon. 2022. "A Comparison of Different Metrics for Analyzing the Troposphere/Stratosphere Transitions Using High-Resolution Ozonesondes" Environmental Sciences Proceedings 19, no. 1: 14. https://doi.org/10.3390/ecas2022-12807
APA StyleDingley, O., Connolly, M., Connolly, R., & Soon, W. (2022). A Comparison of Different Metrics for Analyzing the Troposphere/Stratosphere Transitions Using High-Resolution Ozonesondes. Environmental Sciences Proceedings, 19(1), 14. https://doi.org/10.3390/ecas2022-12807