Projecting the Potential Evapotranspiration of Egypt Using a High-Resolution Regional Climate Model (RegCM4) †
Abstract
:1. Introduction
- Examine the spatial pattern of the simulated PET in a historical period (1986–2005) as well as the PET anomaly in the time segments 2021–2040, 2041–2060, 2061–2080, and 2081–2100 under the two future scenarios: RCP45 and RCP85.
- Bias correct the simulated PET with respect to the CRU product in the period (1981–2005) for twelve locations (indicated in Table 1).
- Correct the projected PET of the two future scenarios using the LRM approach for the twelve locations.
2. Materials and Methods
2.1. Study Area
2.2. Model Description and Experiment Design
2.3. Validation Data
3. Results
3.1. Spatial Pattern of 2m Mean Air Temperature and PET under RCP85 Future Scenario
3.2. Correcting the PET in the Historical Period and Future Scenarios
- The mean PET of the corrected RegCM output (in the historical period) is calculated.
- The LRM is used to correct the projected PET of the two scenarios: RCP45 and RCP85.
- The relative PET changes are calculated following [16]:
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) IPCC 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- Allen, G.R.; Pereira, S.L.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Report 56; Food and Agricultural Organization of the United Nations (FAO): Rome, Italy, 1998; 300p. [Google Scholar]
- Kjelgaard, J.F.; Stokes, C.O. Evaluating surface resistance for estimating corn and potato evapotranspiration with the Penman monteith model. Trans. ASABE 2001, 44, 797–805. [Google Scholar] [CrossRef]
- Brutsaert, W.; Parlange, M.B. Hydrologic cycle explains the evaporation paradox. Nature 1998, 396, 30. [Google Scholar] [CrossRef]
- Hargreaves, G.L.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Hargreaves, G.L.; Allen, R.G. History and evaluation of Hargreaves evapotranspiration equation. J. Irrigat. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Almorox, J.; Quej, V.H.; Martí, P. Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Koppen climate classes. J. Hydrol. 2015, 528, 514–522. [Google Scholar] [CrossRef]
- Traore, S.; Wang, Y.M.; Kerh, T. Artificial neural network for modeling reference evapotranspiration complex process in Sudano–Sahelian zone. Agric. Water Manag. 2010, 97, 707–714. [Google Scholar] [CrossRef]
- Traore, S.; Guven, A. New algebraic formulations of evapotranspiration extracted from gene expression programming in the tropical seasonally dry regions of West Africa. Irrig. Sci. 2013, 31, 1–10. [Google Scholar] [CrossRef]
- Srivastava, A.; Sahoo, B.; Raghuwanshi, N.S.; Chatterjee, C. Modelling the dynamics of evapotranspiration using Variable Infiltration Capacity model and regionally calibrated Hargreaves approach. Irrig. Sci. 2018, 36, 289–300. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.B.; Bi, X.; Elguindi, N.; Diro, G.T.; Nair, V.; Giuliani, G.; et al. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef]
- Stevens, B.; Giorgetta, M.; Esch, M.; Mauritsen, T.; Crueger, T.; Rast, S.; Salzmann, M.; Schmidt, H.; Bader, J.; Block, K.; et al. Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst. 2013, 5, 146–172. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Weiland, F.C.S.; Tisseuil, C.; Dürr, H.H.; Vrac, M.; van Beek, L.P.H. Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study. Hydrol. Earth Syst. Sci. 2012, 16, 983–1000. [Google Scholar] [CrossRef]
- Shiri, J.; Nazemi, A.H.; Sadraddini, A.A.; Landeras, G.; Kisi, O.; Fard, A.F.; Marti, P. Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Comput. Electron. Agric. 2014, 108, 230–241. [Google Scholar] [CrossRef]
- Nistor, M.M.; Mîndrescu, M.; Petrea, D.; Nicula, A.S.; Rai, P.K.; Benzaghta, M.A.; Dezsi, S.; Hognogi, G.; Porumb-Ghiurco, C.G. Climate change impact on crop evapotranspiration in Turkey during the 21st Century. Meteorol. Appl. 2018, 26, 442–453. [Google Scholar] [CrossRef]
- Terink, W.; Immerzeel, W.W.; Droogers, P. Climate change projections of precipitation and reference evapotranspiration for the Middle East and Northern Africa until 2050. Int. J. Clim. 2013, 33, 3055–3072. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Li, S.; Lü, S.; Gaoa, Y.; Ao, Y. The change of climate and terrestrial carbon cycle over Tibetan Plateau in CMIP5 models. Int. J. Climatol. 2015, 35, 4359–4369. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Singer, M.; Asfaw, D.; Rosolem, R.; Cuthbert, M.O.; Miralles, D.G.; MacLeod, D.; Michaelides, K. Hourly Potential Evapotranspiration (hPET) at 0.1degs Grid Resolution for the Global Land Surface from 1981-Present; University of Bristol: Bristol, UK, 2020. [Google Scholar] [CrossRef]
Station | Lat | Lon | Linear Regression Model (LRM) to Correct the RegCM4 Output |
---|---|---|---|
Port-Said | 31.28 | 32.23 | PETcorr = 0.9641 × PETraw |
Alexandria | 31.20 | 29.95 | PETcorr = 1.057 × PETraw + 0.48 |
Arish | 31.08 | 33.83 | PETcorr = 1.049 × PETraw + 0.294 |
Marsa-Maturh | 31.20 | 27.20 | PETcorr = 0.617 × PETraw + 1.362 |
Ismailia | 30.60 | 32.26 | PETcorr = 0.779 × PETraw + 0.635 |
Giza | 30.05 | 31.22 | PETcorr = 0.847 × PETraw + 0.748 |
Asyout | 27.05 | 31.02 | PETcorr = 1.12 × PETraw |
Luxor | 25.66 | 32.70 | PETcorr = 0.968 × PETraw + 0.696 |
Asswan | 23.96 | 32.78 | PETcorr = 1.097 × PETraw + 1.103 |
Siwa | 29.26 | 25.48 | PETcorr = 0.861 × PETraw + 0.864 |
Dakhla | 25.48 | 29.00 | PETcorr = 1.049 × PETraw + 0.159 |
Kharga | 25.45 | 30.53 | PETcorr = 1.16 × PETraw + 0.502 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, S.A.; Salah, Z.; Khald, W.; Zakey, A.S. Projecting the Potential Evapotranspiration of Egypt Using a High-Resolution Regional Climate Model (RegCM4). Environ. Sci. Proc. 2022, 19, 43. https://doi.org/10.3390/ecas2022-12841
Anwar SA, Salah Z, Khald W, Zakey AS. Projecting the Potential Evapotranspiration of Egypt Using a High-Resolution Regional Climate Model (RegCM4). Environmental Sciences Proceedings. 2022; 19(1):43. https://doi.org/10.3390/ecas2022-12841
Chicago/Turabian StyleAnwar, Samy Ashraf, Zeinab Salah, Wael Khald, and Ashraf Saber Zakey. 2022. "Projecting the Potential Evapotranspiration of Egypt Using a High-Resolution Regional Climate Model (RegCM4)" Environmental Sciences Proceedings 19, no. 1: 43. https://doi.org/10.3390/ecas2022-12841
APA StyleAnwar, S. A., Salah, Z., Khald, W., & Zakey, A. S. (2022). Projecting the Potential Evapotranspiration of Egypt Using a High-Resolution Regional Climate Model (RegCM4). Environmental Sciences Proceedings, 19(1), 43. https://doi.org/10.3390/ecas2022-12841