Prediction and Classification of Flood Susceptibility Based on Historic Record in a Large, Diverse, and Data Sparse Country †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Single Model vs. Multi-Model
2.2. Single Model vs. Ensemble over Large Distance
2.3. ML Models Tested
2.4. Validation
2.5. Data and Study Area
3. Results
3.1. Single and Multi-Region Model
3.2. Single Model vs. Ensemble over Large Distance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canada, P.S. Floods. Available online: https://www.publicsafety.gc.ca/cnt/mrgnc-mngmnt/ntrl-hzrds/fld-en.aspx (accessed on 7 November 2022).
- Government of Canada, N.R.C. GEOSCAN Search Results: Fastlink. Available online: https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R=308128 (accessed on 4 May 2022).
- Collins, E.L.; Sanchez, G.M.; Terando, A.; Stillwell, C.C.; Mitasova, H.; Sebastian, A.; Meentemeyer, R.K. Predicting Flood Damage Probability across the Conterminous United States. Environ. Res. Lett. 2022, 17, 034006. [Google Scholar] [CrossRef]
- Dodangeh, E.; Choubin, B.; Eigdir, A.N.; Panahi, M.; Shamshirband, S.; Mosavi, A. Integrated Machine Learning Methods with Resampling Algorithms for Flood Susceptibility Prediction-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0048969719359789 (accessed on 13 May 2022).
- Shafizadeh-Moghadam, H.; Valavi, R.; Shahabi, H.; Chapi, K.; Shirzadi, A. Novel Forecasting Approaches Using Combination of Machine Learning and Statistical Models for Flood Susceptibility Mapping. J. Environ. Manag. 2018, 217, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.; Pang, B.; Xu, Z.; Tu, T. Mapping Flood Susceptibility in Mountainous Areas on a National Scale in China-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0048969717327419 (accessed on 13 May 2022).
- Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do We Need Hundreds of Classifiers to Solve Real World Classification Problems? J. Mach. Learn. Res. 2014, 15, 3133–3181. [Google Scholar]
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Li, Y.; Xue, W.; Shahabi, H.; Li, S.; Hong, H.; Wang, X.; Bian, H.; Zhang, S.; Pradhan, B.; et al. Modeling Flood Susceptibility Using Data-Driven Approaches of Naïve Bayes Tree, Alternating Decision Tree, and Random Forest Methods. Sci. Total Environ. 2020, 701, 134979. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, J.-C.; Jung, H.-S.; Lee, M.J.; Lee, S. Spatial Prediction of Flood Susceptibility Using Random-Forest and Boosted-Tree Models in Seoul Metropolitan City, Korea. Null 2017, 8, 1185–1203. [Google Scholar] [CrossRef] [Green Version]
- Vafakhah, M.; Mohammad Hasani Loor, S.; Pourghasemi, H.; Katebikord, A. Comparing Performance of Random Forest and Adaptive Neuro-Fuzzy Inference System Data Mining Models for Flood Susceptibility Mapping. Arab. J. Geosci. 2020, 13, 417. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R.; El-Haddad, B.A. Advanced Machine Learning Algorithms for Flood Susceptibility Modeling-Comparison of Their Performance; Safaga-Ras Gharib Area: Red Sea, Egypt, 2022. [Google Scholar]
- Ardabili, S.; Mosavi, A.; Várkonyi-Kóczy, A.R. Advances in Machine Learning Modeling Reviewing Hybrid and Ensemble Methods. In Proceedings of the Engineering for Sustainable Future; Várkonyi-Kóczy, A.R., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 215–227. [Google Scholar]
- Kazienko, P.; Lughofer, E.; Trawiński, B. Hybrid and Ensemble Methods in Machine Learning J. UCS Special Issue. J. Univers. Comput. Sci. 2013, 19, 457–461. [Google Scholar]
- Sikora, R.; Al-Laymoun, O. A Modified Stacking Ensemble Machine Learning Algorithm Using Genetic Algorithms. Available online: https://www.igi-global.com/chapter/a-modified-stacking-ensemble-machine-learning-algorithm-using-genetic-algorithms/www.igi-global.com/chapter/a-modified-stacking-ensemble-machine-learning-algorithm-using-genetic-algorithms/122748 (accessed on 21 April 2022).
- Agriculture and Agri-Food Canada. Terrestrial Ecoregions of Canada-Open Government Portal. Available online: https://open.canada.ca/data/en/dataset/ade80d26-61f5-439e-8966-73b352811fe6 (accessed on 9 May 2022).
- Natural Resources Canada. Physiographic Regions-Open Government Portal. Available online: https://open.canada.ca/data/en/dataset/028dd58d-320c-53fb-b5bc-8188fd5d5edf (accessed on 9 May 2022).
Category | Algorithm | Acronym | Type |
---|---|---|---|
Decision Trees (DT) | C5.0 | C5.0 | C |
Random Forest (RF) | Random Forest | RF | C, R |
Parallel Random Forest | parRF | C, R | |
Regularized Random Forest | RRF | C, R | |
Random Forest | ranger | C, R | |
Boosting (B) | eXtreme Gradient Boosting | xgbDART | C, R |
eXtreme Gradient Boosting | xgbTree | C, R | |
Support Vector Machines (SVM) | Support Vector Machines with Radial Basis Function Kernel | svmRadial | C, R |
Support Vector Machines with Polynomial Kernel | svmPoly | C, R | |
Support Vector Machines with Radial Basis Function Kernel | svmRadialCost | C, R | |
Neural Networks (NN) | Model Averaged Neural Network | avNNet | C, R |
Neural Networks with Feature Extraction | pcaNNet | C, R | |
Neural Network | nnet | C, R | |
Multi-Layer Perceptron | mlp | C, R | |
Multivariate Adaptive Regression Splines | Multivariate Adaptive Regression Spline (MARS) | earth | C, R |
Ensemble | Ensemble of Random Forest, Support Vector Machine, Boosting, and Neural Networks | parRF, nnet, svmPoly, xgbTree, pcaNNet | C, R |
Regional Models (parRF) Local Variables/National Variables | Single Model | ||||||
---|---|---|---|---|---|---|---|
BC | AB | MB | ON | NB | Average | National Model | |
Accuracy | 0.96/0.96 | 0.94/0.94 | 0.82/0.82 | 0.89/0.92 | 0.99/0.99 | 0.91/0.93 | 0.92 |
Kappa | 0.93/0.93 | 0.88/0.88 | 0.64/0.64 | 0.77/0.84 | 0.97/0.98 | 0.84/0.85 | 0.83 |
Sensitivity | 0.95/0.93 | 0.91/0.91 | 0.79/0.79 | 0.91/0.92 | 0.98/0.98 | 0.91/0.91 | 0.91 |
Specificity | 0.98/0.99 | 0.97/0.97 | 0.85/0.85 | 0.85/0.92 | 0.99/1.0 | 0.93/0.95 | 0.9 |
Precision | 0.98/0.98 | 0.98/0.97 | 0.81/0.81 | 0.89/0.92 | 0.99/1.0 | 0.91/0.90 | 0.9 |
F1 | 0.95/0.93 | 0.91/0.91 | 0.79/0.79 | 0.91/0.92 | 0.98/0.98 | 0.91/0.91 | 0.91 |
AUC-ROC | 0.97/0.97 | 0.96/0.96 | 0.86/0.86 | 0.92/0.93 | 0.99/0.99 | 0.94/0.94 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGrath, H.; Gohl, P.N. Prediction and Classification of Flood Susceptibility Based on Historic Record in a Large, Diverse, and Data Sparse Country. Environ. Sci. Proc. 2023, 25, 18. https://doi.org/10.3390/ECWS-7-14235
McGrath H, Gohl PN. Prediction and Classification of Flood Susceptibility Based on Historic Record in a Large, Diverse, and Data Sparse Country. Environmental Sciences Proceedings. 2023; 25(1):18. https://doi.org/10.3390/ECWS-7-14235
Chicago/Turabian StyleMcGrath, Heather, and Piper Nora Gohl. 2023. "Prediction and Classification of Flood Susceptibility Based on Historic Record in a Large, Diverse, and Data Sparse Country" Environmental Sciences Proceedings 25, no. 1: 18. https://doi.org/10.3390/ECWS-7-14235
APA StyleMcGrath, H., & Gohl, P. N. (2023). Prediction and Classification of Flood Susceptibility Based on Historic Record in a Large, Diverse, and Data Sparse Country. Environmental Sciences Proceedings, 25(1), 18. https://doi.org/10.3390/ECWS-7-14235