Artificial Neural Networks and Regression Modeling for Water Resources Management in the Upper Indus Basin †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Model Description
2.2.1. LSTM Model
2.2.2. SARIMA Model
2.2.3. Model Evaluation Criteria
2.2.4. Model Structure
3. Results and Discussions
Training, Testing, and Forecast Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahid, F. Climate Change: Impacts on Pakistan and Proposed Solutions. Pak. Soc. Sci. Rev. 2021, 5, 223–235. [Google Scholar] [CrossRef]
- Gude, V.; Corns, S.; Long, S. Flood Prediction and Uncertainty Estimation Using Deep Learning. Water 2020, 12, 884. [Google Scholar] [CrossRef]
- Atashi, V.; Gorji, H.T.; Shahabi, S.M.; Kardan, R.; Lim, Y.H. Water Level Forecasting Using Deep Learning Time-Series Analysis: A Case Study of Red River of the North. Water 2022, 14, 1971. [Google Scholar] [CrossRef]
- Jawad, M.; Nadeem, M.S.A.; Shim, S.-O.; Khan, I.R.; Shaheen, A.; Habib, N.; Hussain, L.; Aziz, W. Machine Learning Based Cost Effective Electricity Load Forecasting Model Using Correlated Meteorological Parameters. IEEE Access 2020, 8, 146847–146864. [Google Scholar] [CrossRef]
- Le, X.H.; Ho, H.V.; Lee, G.; Jung, S. Application of Long Short-Term Memory (LSTM) Neural Network for Flood Forecasting. Water 2019, 11, 1387. [Google Scholar] [CrossRef]
- Van Der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical Computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef]
- McKinney, W. Data structures for statistical computing in python. Proc. 9th Python Sci. Conf. 2010, 1, 56–61. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
RMSE | LSTM | SARIMA |
---|---|---|
Training | 22.79 | 27.82 |
Testing | 35.05 | 54.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imran, M.; Majeed, M.D.; Zaman, M.; Shahid, M.A.; Zhang, D.; Zahra, S.M.; Sabir, R.M.; Safdar, M.; Maqbool, Z. Artificial Neural Networks and Regression Modeling for Water Resources Management in the Upper Indus Basin. Environ. Sci. Proc. 2023, 25, 53. https://doi.org/10.3390/ECWS-7-14199
Imran M, Majeed MD, Zaman M, Shahid MA, Zhang D, Zahra SM, Sabir RM, Safdar M, Maqbool Z. Artificial Neural Networks and Regression Modeling for Water Resources Management in the Upper Indus Basin. Environmental Sciences Proceedings. 2023; 25(1):53. https://doi.org/10.3390/ECWS-7-14199
Chicago/Turabian StyleImran, Muhammad, Muhammad Danish Majeed, Muhammad Zaman, Muhammad Adnan Shahid, Danrong Zhang, Syeda Mishal Zahra, Rehan Mehmood Sabir, Muhammad Safdar, and Zahid Maqbool. 2023. "Artificial Neural Networks and Regression Modeling for Water Resources Management in the Upper Indus Basin" Environmental Sciences Proceedings 25, no. 1: 53. https://doi.org/10.3390/ECWS-7-14199
APA StyleImran, M., Majeed, M. D., Zaman, M., Shahid, M. A., Zhang, D., Zahra, S. M., Sabir, R. M., Safdar, M., & Maqbool, Z. (2023). Artificial Neural Networks and Regression Modeling for Water Resources Management in the Upper Indus Basin. Environmental Sciences Proceedings, 25(1), 53. https://doi.org/10.3390/ECWS-7-14199