Assessment of Cyanobacterial Chlorophyll A as an Indicator of Water Quality in Two Wetlands Using Multi-Temporal Sentinel-2 Images †
Abstract
:1. Introduction
2. Study Area
3. Materials and Methodology
Data
4. Results
4.1. Retrieval Method of Chlorophyll A Concentration
4.2. Dissolved Oxygen (DO)
4.3. Analysis for Water Quality of Wadhwana and Timbi Wetland
4.4. Predictive Models for Water Quality of Wadhwana and Timbi Wetland
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Viso-Vázquez, M.; Acuña-Alonso, C.; Rodríguez, J.L.; Álvarez, X. Remote Detection of Cyanobacterial Blooms and Chlorophyll-a Analysis in a Eutrophic Reservoir Using Sentinel 2. Sustainability 2021, 13, 8570. [Google Scholar] [CrossRef]
- Zhao, C.S.; Shao, N.F.; Yang, S.T.; Ren, H.; Ge, Y.R.; Feng, P.; Dong, B.E.; Zhao, Y. Predicting cyanobacteria bloom occurrence in lakes and reservoirs before blooms occur. Sci. Total Environ. 2019, 670, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Dalu, T.; Wasserman, R.J. Cyanobacteria dynamics in a small tropical reservoir: Understanding spatio-temporal variability and influence of environmental variables. Sci. Total Environ. 2018, 643, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Kauppila, P.; Meeuwig, J.J.; Pitkänen, H. Predicting oxygen in small estuaries of the Baltic Sea: A comparative approach Estuar. Coast Shelf Sci. 2003, 57, 1115–1126. [Google Scholar] [CrossRef]
- Sand-Jensen, K.; Møller, C.L.; Borum, J. High resistance of oligotrophic isoetid plants to oxic and anoxic dark exposure. Freshw. Biol. 2015, 60, 1044–1051. [Google Scholar] [CrossRef]
- Sòria-Perpinyà, X.; Vicente, E.; Urrego, P.; Pereira-Sandoval, M.; Ruíz-Verdú, A.; Delegido, J.; Soria, J.M.; Moreno, J. Remote sensing of cyanobacterial blooms in a hypertrophic lagoon (Albufera of València, Eastern Iberian Peninsula) using multitemporal Sentinel-2 images. Sci. Total Environ. 2020, 698, 134305. [Google Scholar] [CrossRef] [PubMed]
- Kravitz, J.; Matthews, M.; Bernard, S.; Griffith, D. Application of Sentinel 3 OLCI for chl-a retrieval over small inland water targets: Successes and challenges. Remote Sens. Environ. 2020, 237, 111562. [Google Scholar] [CrossRef]
- Kutser, T.; Paavel, B.; Verpoorter, C.; Ligi, M.; Soomets, T.; Toming, K.; Casal, G. Remote Sensing of Black Lakes and Using 810 nm Reflectance Peak for Retrieving Water Quality Parameters of Optically Complex Waters. Remote Sens. 2016, 8, 497. [Google Scholar] [CrossRef]
- Maltese, A.; Capodici, F.; Ciraolo, G.; Corbari, C.; Granata, A.; La Loggia, G. Planktothrix Rubescens in Freshwater Reservoirs: The Sentinel-2 Potentiality for Mapping Phycocyanin Concentration. In Proceedings of the First Sentinel-2 Preparatory Symposium, Frascati, Italy, 23–27 April 2012; Volume 707, p. 37. [Google Scholar]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Kiran, G.S.; Joshi, U.B.; Padate, G.; Joshi, A.G. Preliminary investigation of the water quality of Wadhwana reservoir, Gujarat, India: A case study. Bull. Environ. Sci. Res. 2012, 1, 9–13. [Google Scholar]
- APHA. Standard Methods for Examination of Water and Waste Water, 20th ed.; APHA, AWAA, WPCF: Washington, DC, USA, 1998. [Google Scholar]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Skoković, D.; Mattar, C.; Cristóbal, J. Land Surface Temperature Retrieval Methods from Landsat-8 Thermal Infrared Sensor Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Ismail, K.; Boudhar, A.; Abdelkrim, A.; Mohammed, H.; Mouatassime, S.; Kamal, A.O.; Driss, E.; Idrissi, E.A.; Nouaim, W. Evaluating the potential of Sentinel-2 satellite images for water quality characterization of artificial reservoirs: The Bin El Ouidane Reservoir case study (Morocco). Meteorol. Hydrol. Water Manag. 2019, 7, 31–39. [Google Scholar] [CrossRef]
Regression Model | Empirical Equation | R2 | R |
---|---|---|---|
Chl-a and DO | DO = 15.0403 − 0.1271 Chla | 0.52 | −0.72 |
Temperature and DO | DO = 31.364 − 0.6834 Temp | 0.72 | −0.85 |
MLR with Chl-a, DO and Temperature | DO = 28.902228 − 0.0332848 Chl-a − 0.56885 Temp | 0.73 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mudaliar, A.; Pandya, U. Assessment of Cyanobacterial Chlorophyll A as an Indicator of Water Quality in Two Wetlands Using Multi-Temporal Sentinel-2 Images. Environ. Sci. Proc. 2023, 25, 68. https://doi.org/10.3390/ECWS-7-14252
Mudaliar A, Pandya U. Assessment of Cyanobacterial Chlorophyll A as an Indicator of Water Quality in Two Wetlands Using Multi-Temporal Sentinel-2 Images. Environmental Sciences Proceedings. 2023; 25(1):68. https://doi.org/10.3390/ECWS-7-14252
Chicago/Turabian StyleMudaliar, Ashwini, and Usha Pandya. 2023. "Assessment of Cyanobacterial Chlorophyll A as an Indicator of Water Quality in Two Wetlands Using Multi-Temporal Sentinel-2 Images" Environmental Sciences Proceedings 25, no. 1: 68. https://doi.org/10.3390/ECWS-7-14252
APA StyleMudaliar, A., & Pandya, U. (2023). Assessment of Cyanobacterial Chlorophyll A as an Indicator of Water Quality in Two Wetlands Using Multi-Temporal Sentinel-2 Images. Environmental Sciences Proceedings, 25(1), 68. https://doi.org/10.3390/ECWS-7-14252