Enhancing Corn Yield Prediction in Iowa: A Concatenate-Based 2D-CNN-BILSTM Model with Integration of Sentinel-1/2 and SoilGRIDs Data †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Methodology
2.3.1. Feature Selection
2.3.2. Corn Yields Prediction Using the Concatenate-Based 2D-CNN-BiLSTM Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fathi, M.; Shah-Hosseini, R.; Moghimi, A. Comparison of Some Deep Neural Networks for Corn and Soybean Mapping in Iowa State using Landsat imagery. Earth Obs. Geomat. Eng. 2022, 6, 57–66. [Google Scholar] [CrossRef]
- Fathi, M.; Shah-Hosseini, R. Automatic Corn and Soybean Mapping Based on Deep Learning Methods (case Study: Hamilton, Hardin, Boone, Story, Dallas, Polk, and Jusper Counties in Lowa State). ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 10, 187–193. [Google Scholar] [CrossRef]
- Ali, A.M.; Abouelghar, M.; Belal, A.; Saleh, N.; Yones, M.; Selim, A.I.; Amin, M.E.; Elwesemy, A.; Kucher, D.E.; Maginan, S. Crop yield prediction using multi sensors remote sensing. Egypt. J. Remote Sens. Space Sci. 2022, 25, 711–716. [Google Scholar]
- Amani, M.; Kakooei, M.; Moghimi, A.; Ghorbanian, A.; Ranjgar, B.; Mahdavi, S.; Davidson, A.; Fisette, T.; Rollin, P.; Brisco, B. Application of google earth engine cloud computing platform, sentinel imagery, and neural networks for crop mapping in Canada. Remote Sens. 2020, 12, 3561. [Google Scholar] [CrossRef]
- Moghimi, A.; Mohammadzadeh, A.; Khazai, S. Integrating thresholding with level set method for unsupervised change detection in multitemporal SAR images. Can. J. Remote Sens. 2017, 43, 412–431. [Google Scholar] [CrossRef]
- Dharani, M.; Thamilselvan, R.; Natesan, P.; Kalaivaani, P.; Santhoshkumar, S. Review on crop prediction using deep learning techniques. In Proceedings of the Journal of Physics: Conference Series, International E-Conference on Data Analytics, Intelligent Systems and Information Security & ICDIIS 2020, Pollachi, India, 11–12 December 2020; p. 012026. [Google Scholar]
- Moghimi, A.; Celik, T.; Mohammadzadeh, A. Tensor-based keypoint detection and switching regression model for relative radiometric normalization of bitemporal multispectral images. Int. J. Remote Sens. 2022, 43, 3927–3956. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Z.; Kang, Y.; Özdoğan, M. Corn yield prediction and uncertainty analysis based on remotely sensed variables using a Bayesian neural network approach. Remote Sens. Environ. 2021, 259, 112408. [Google Scholar] [CrossRef]
- Desloires, J.; Ienco, D.; Botrel, A. Out-of-year corn yield prediction at field-scale using Sentinel-2 satellite imagery and machine learning methods. Comput. Electron. Agric. 2023, 209, 107807. [Google Scholar] [CrossRef]
- Khaki, S.; Pham, H.; Han, Y.; Kuhl, A.; Kent, W.; Wang, L. Deepcorn: A semi-supervised deep learning method for high-throughput image-based corn kernel counting and yield estimation. Knowl.-Based Syst. 2021, 218, 106874. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Archontoulis, S.V. Forecasting corn yield with machine learning ensembles. Front. Plant Sci. 2020, 11, 1120. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Khaki, S.; Archontoulis, S.V. Corn yield prediction with ensemble CNN-DNN. Front. Plant Sci. 2021, 12, 709008. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Lai, Z.; Di, L.; Sun, Z.; Tao, J.; Shen, Y. Multilevel deep learning network for county-level corn yield estimation in the us corn belt. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5048–5060. [Google Scholar] [CrossRef]
- Dhaliwal, D.S.; Williams, M.M. Sweet corn yield prediction using machine learning models and field-level data. Precis. Agric. 2023, 25, 51–64. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Huber, I.; Archontoulis, S.V. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Sci. Rep. 2021, 11, 1606. [Google Scholar] [CrossRef]
- Rao, C.; Liu, Y. Three-dimensional convolutional neural network (3D-CNN) for heterogeneous material homogenization. Comput. Mater. Sci. 2020, 184, 109850. [Google Scholar] [CrossRef]
- Mohite, J.; Sawant, S.; Pandit, A.; Agrawal, R.; Pappula, S. Soybean Crop Yield Prediction by Integration of Remote Sensing and Weather Observations. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 197–202. [Google Scholar] [CrossRef]
- Schwalbert, R.A.; Amado, T.; Corassa, G.; Pott, L.P.; Prasad, P.V.; Ciampitti, I.A. Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agric. For. Meteorol. 2020, 284, 107886. [Google Scholar] [CrossRef]
- You, J.; Li, X.; Low, M.; Lobell, D.; Ermon, S. Deep gaussian process for crop yield prediction based on remote sensing data. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Sun, J.; Di, L.; Sun, Z.; Shen, Y.; Lai, Z. County-level soybean yield prediction using deep CNN-LSTM model. Sensors 2019, 19, 4363. [Google Scholar] [CrossRef]
- Siami-Namini, S.; Tavakoli, N.; Namin, A.S. The performance of LSTM and BiLSTM in forecasting time series. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 3285–3292. [Google Scholar]
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1,-2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S. Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K.-i. Crop classification from Sentinel-2-derived vegetation indices using ensemble learning. J. Appl. Remote Sens. 2018, 12, 026019. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Wang, C.; Wu, Y.; Hu, Q.; Hu, J.; Chen, Y.; Lin, S.; Xie, Q. Comparison of Vegetation Phenology Derived from Solar-Induced Chlorophyll Fluorescence and Enhanced Vegetation Index, and Their Relationship with Climatic Limitations. Remote Sens. 2022, 14, 3018. [Google Scholar] [CrossRef]
- Richardson, A.J.; Everitt, J.H. Using spectral vegetation indices to estimate rangeland productivity. Geocarto Int. 1992, 7, 63–69. [Google Scholar] [CrossRef]
- Christian, J.I.; Basara, J.B.; Lowman, L.E.; Xiao, X.; Mesheske, D.; Zhou, Y. Flash drought identification from satellite-based land surface water index. Remote Sens. Appl. Soc. Environ. 2022, 26, 100770. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Eng, L.S.; Ismail, R.; Hashim, W.; Baharum, A. The use of VARI, GLI, and VIgreen formulas in detecting vegetation in aerial images. Int. J. Technol. 2019, 10, 1385–1394. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Arii, M.; van Zyl, J.J.; Kim, Y. A general characterization for polarimetric scattering from vegetation canopies. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3349–3357. [Google Scholar] [CrossRef]
- Holtgrave, A.-K.; Röder, N.; Ackermann, A.; Erasmi, S.; Kleinschmit, B. Comparing Sentinel-1 and-2 data and indices for agricultural land use monitoring. Remote Sens. 2020, 12, 2919. [Google Scholar] [CrossRef]
- Yu, C.; Han, R.; Song, M.; Liu, C.; Chang, C.-I. A simplified 2D-3D CNN architecture for hyperspectral image classification based on spatial–spectral fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2485–2501. [Google Scholar] [CrossRef]
Type | Year | Number of Samples | Min (Ton Ha−1) | Max (Ton Ha−1) | Mean (Ton Ha−1) | Std (Ton Ha−1) |
---|---|---|---|---|---|---|
Train | 2018 | 93 | 9.38 | 14.18 | 12.13 | 1.25 |
Train | 2019 | 88 | 9.50 | 14.73 | 12.19 | 1.06 |
Train | 2020 | 95 | 5.54 | 12.99 | 10.92 | 1.17 |
Test | 2021 | 84 | 9.57 | 14.49 | 12.57 | 1.05 |
Model | Sentinel 1 and 2 | Sentinel 1 and 2 and Soil Grids | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE | RRMSE | MAE | MAPE | D | RMSE | RRMSE | MAE | MAPE | D | |
Proposed Model | 0.714 | 5.68 | 0.561 | 4.55 | 82.08 | 0.698 | 5.55 | 0.556 | 4.47 | 84.67 |
Concatenate-Based 2D-CNN | 0.849 | 6.75 | 0.686 | 5.60 | 67.58 | 0.799 | 6.35 | 0.620 | 5.02 | 72.71 |
2D-CNN | 0.848 | 6.74 | 0.694 | 5.64 | 64.80 | 0.834 | 6.63 | 0.677 | 5.51 | 69.90 |
RF | 1.089 | 8.66 | 0.935 | 7.95 | 69.04 | 1.073 | 8.54 | 0.918 | 7.78 | 69.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fathi, M.; Shah-Hosseini, R.; Moghimi, A. Enhancing Corn Yield Prediction in Iowa: A Concatenate-Based 2D-CNN-BILSTM Model with Integration of Sentinel-1/2 and SoilGRIDs Data. Environ. Sci. Proc. 2024, 29, 2. https://doi.org/10.3390/ECRS2023-15852
Fathi M, Shah-Hosseini R, Moghimi A. Enhancing Corn Yield Prediction in Iowa: A Concatenate-Based 2D-CNN-BILSTM Model with Integration of Sentinel-1/2 and SoilGRIDs Data. Environmental Sciences Proceedings. 2024; 29(1):2. https://doi.org/10.3390/ECRS2023-15852
Chicago/Turabian StyleFathi, Mahdiyeh, Reza Shah-Hosseini, and Armin Moghimi. 2024. "Enhancing Corn Yield Prediction in Iowa: A Concatenate-Based 2D-CNN-BILSTM Model with Integration of Sentinel-1/2 and SoilGRIDs Data" Environmental Sciences Proceedings 29, no. 1: 2. https://doi.org/10.3390/ECRS2023-15852
APA StyleFathi, M., Shah-Hosseini, R., & Moghimi, A. (2024). Enhancing Corn Yield Prediction in Iowa: A Concatenate-Based 2D-CNN-BILSTM Model with Integration of Sentinel-1/2 and SoilGRIDs Data. Environmental Sciences Proceedings, 29(1), 2. https://doi.org/10.3390/ECRS2023-15852