Split-Window Algorithm for Land Surface Temperature Retrieval from Joint Polar-Orbiting Satellite System JPSS-2/NOAA-21 †
Abstract
:1. Introduction
2. Methodology
2.1. Split-Window Algorithm for LST Retrieval
2.2. VIIRS Sensor Characteristics
2.3. MODTRAN 4.0 Simulations
2.4. Numerical Coefficients and Sensitivity Analysis
3. Results and Discussion
3.1. Sensitivity Analysis
3.2. LST Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olioso, A.; Chauki, H.; Couraul, D.; Wigneron, J.P. Estimation of evapotran spiration and photosynthesis by assimilation of remote sensing data into SVAT models. Remote Sens. Environ. 1999, 68, 341–356. [Google Scholar] [CrossRef]
- Serafini, V.V. Estimation of the evapotranspiration using surface and satellite data. Int. J. Remote Sens. 1987, 8, 1547–1562. [Google Scholar] [CrossRef]
- Bussieres, N.; Louie, P.Y.T.; Hogg, W. Progress Report on the Implementation of an Algorithm to Estimate Regional Evapotranspiration Using Satellite Data. In Proceeding of the workshop on applications of remote sensing in hydrology, Saskaton, Saskatchewan, 13–14 February 1990. [Google Scholar]
- Zhang, L.; Lemeur, R.; Gouthorbe, J.P. A one-layer resistance model for estimating regional evapotranspiration using remote sensing data. Agric. For. Meteorol. 1995, 77, 241–261. [Google Scholar] [CrossRef]
- Schmugge, T.J. Remote sensing of surface soil moisture. J. Appl. Meteorol. 1978, 17, 1549–1557. [Google Scholar] [CrossRef]
- Price, J.C. The potential of Remotely Sensed Thermal Infrared data to Infer Surface Soil Moisture and Evaporation. Water Resour. 1990, 16, 787–795. [Google Scholar] [CrossRef]
- Uitdewilligen, D.C.A.; Kustas, W.P.; van Oevelen, P.J. Estimating surface soil moisture with the scanning low frequency microwave radiometer (SLFMR) during the Southern Great Plains 1997 (SGP97) hydrology experiment. Phys. Chem. Earth Parts A/B/C 2003, 28, 41–51. [Google Scholar] [CrossRef]
- Santanello, J.; Peters-Lidard, C.D.; Garcia, M.E.; Mocko, D.M.; Tischler, M.A.; Moran, M.S.; Thoma, D.P. Using remotely-sensed estimates of soil moisture to infer soil texture and hydraulic properties across a semi-arid watershed. Remote Sens. Environ. 2007, 110, 79–97. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Kogan, F.N. Operational space technology for global vegetation assessment. Bull. Am. Meteorol. Soc. 2001, 82, 1949–1964. [Google Scholar] [CrossRef]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Townshend, J.R.G.; Justice, C.O.; Skole, D.; Malingreau, J.-P.; Cihlar, J.; Teillet, P.; Sadowski, F.; Ruttenberg, S. The 1 km resolution global data set: Needs of the International Geosphere Biosphere Programme. Int. J. Remote Sens. 1994, 15, 3417–3441. [Google Scholar] [CrossRef]
- United Nations, The Sustainable Development Goals Report 2019, New York. Available online: https://unstats.un.org/sdgs/report/2019/The-Sustainable-Development-Goals-Report-2019.pdf (accessed on 13 September 2023).
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspec tives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Li, Z.-L.; Becker, F. Feasibility of land surface temperature and emissivity determination from AVHRR data. Remote Sens. Environ. 1993, 43, 67–85. [Google Scholar] [CrossRef]
- Vidal, A. Atmospheric and emissivity correction of land surface temperature measured from satellite using ground measurements or satellite data. Int. J. Remote Sens. 1991, 12, 2449–2460. [Google Scholar] [CrossRef]
- Yu, Y.; Tarpley, D.; Privette, J.L.; Raja, M.K.R.V.; Vinnikov, K.; Xu, H. Developing algorithm for operational GOES-R land surface temperature product. IEEE Trans. Geosci. Remote Sens. 2009, 47, 936–951. [Google Scholar]
- Caselles, V.; Coll, C.; Valor, E. Land surface temperature determination in the whole Hapex Sahell area from AVHRR data. Int. J. Remote Sens. 1997, 18, 1009–1027. [Google Scholar] [CrossRef]
- Trigo, I.; Freitas, S.; Bioucas-Dias, J.; Barroso, C.; Monteiro, I.; Viterbo, P. Algorithm Theoretical Basis Document for Land Surface Temperature (LST) Products: LSA-001(MLST), LSA-050 (MLST-R). 2017. Available online: https://landsaf.ipma.pt/en/products/land-surface-temperature/lst/ (accessed on 20 September 2023).
- Wan, Z. MODIS Land-Surface Temperature Algorithm Basis Document (LST ATBD): Version 3.3. 1999. Available online: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf (accessed on 20 September 2023).
- Available online: https://www.nesdis.noaa.gov/news/jpss-2-has-new-name-noaa-21 (accessed on 22 September 2023).
- Sobrino, J.A.; Raissouni, N. Toward remote sensing methods for land cover dynamic monitoring. Application to Morocco. Int. J. Remote Sens. 2000, 20, 353–366. [Google Scholar] [CrossRef]
- Scott, N.A.; Chedin, A. A fast line by line method for atmospheric absorption computations: The authomatized atmospheric absorption atlas. J. Meteorol. 1981, 20, 802–812. [Google Scholar] [CrossRef]
- Hook, S.J. The ASTER Spectral Library. 1999. Available online: http://speclib.jpl.nasa.gov (accessed on 20 September 2023).
- Caselles, V.; Valor, E.; Coll, C.; Rubio, E. Thermal Band Selection for the PRISM Instrument. 1. Analysis of Emissivity-Temperature Separation Algorithms. J. Geophys. Res. 1997, 102, 11145–11164. [Google Scholar] [CrossRef]
- Vey, S.; Dietrich, R.; Rülke, A.; Fritsche, M.; Steigenberger, P.; Rothacher, M. Validation of Precipitable Water Vapor within the NCEP/DOE Reanalysis Using Global GPS Observations from One Decade. J. Clim. 2010, 23, 1675–1695. [Google Scholar] [CrossRef]
- Prata, A.J. Land surface temperatures derived from the advanced very high resolution radiometer and the along-track scanning radiometer 2: Experimental results and validation of AVHRR algorithms. J. Geophys. Res. 1994, 99, 13025–13058. [Google Scholar] [CrossRef]
JPSS-VIIRS Band | Wavelength (µm) | Bandwidth (µm) | Spatial Resolution (m) |
---|---|---|---|
M15 | 10.763 | 10.26–11.26 | 750 |
M16 | 12.013 | 11.54–12.49 | 750 |
Satellite | λieff | λjeff | C0 | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|---|---|---|
JPSS-2/NOAA-21 | 10.763 | 12.013 | −0.16 | 1.330 | 0.230 | 58.1 | −0.57 | −112 | 8.84 |
Satellite | λeff (µm) | λeff (µm) | R | δalg (K) | δNE∆T (K) | δε (1%) | δε (0.5%) | δW (K) | δTotal(Ts) (1%) | δTotal(Ts) (0.5%) |
---|---|---|---|---|---|---|---|---|---|---|
JPSS-2/NOAA-21 | 10.654 | 11.934 | 0.93 | 1.07 | 0.22 | 1.26 | 0.63 | 0.02 | 1.67 | 1.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhziel, F.Z.; Lahraoua, M.; Raissouni, N. Split-Window Algorithm for Land Surface Temperature Retrieval from Joint Polar-Orbiting Satellite System JPSS-2/NOAA-21. Environ. Sci. Proc. 2024, 29, 23. https://doi.org/10.3390/ECRS2023-16293
Rhziel FZ, Lahraoua M, Raissouni N. Split-Window Algorithm for Land Surface Temperature Retrieval from Joint Polar-Orbiting Satellite System JPSS-2/NOAA-21. Environmental Sciences Proceedings. 2024; 29(1):23. https://doi.org/10.3390/ECRS2023-16293
Chicago/Turabian StyleRhziel, Fatima Zahrae, Mohammed Lahraoua, and Naoufal Raissouni. 2024. "Split-Window Algorithm for Land Surface Temperature Retrieval from Joint Polar-Orbiting Satellite System JPSS-2/NOAA-21" Environmental Sciences Proceedings 29, no. 1: 23. https://doi.org/10.3390/ECRS2023-16293
APA StyleRhziel, F. Z., Lahraoua, M., & Raissouni, N. (2024). Split-Window Algorithm for Land Surface Temperature Retrieval from Joint Polar-Orbiting Satellite System JPSS-2/NOAA-21. Environmental Sciences Proceedings, 29(1), 23. https://doi.org/10.3390/ECRS2023-16293