Comparison between Classic Methods and Deep Learning Approach in Detecting Changes of Waterbodies from Sentinel-1 Images †
Abstract
:1. Introduction
2. Methodology
2.1. Ratio Index
2.2. MRF
2.3. Inception CNN
3. Experimental Result
3.1. Study Area and Dataset
3.2. Result Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goumehei, E.; Tolpekin, V.; Stein, A.; Yan, W. Surface Water Body Detection in Polarimetric SAR Data Using Contextual Complex Wishart Classification. Water Resour. Res. 2019, 55, 7047–7059. [Google Scholar] [CrossRef]
- Wang, L.; Yan, J.; Mu, L.; Huang, L. Knowledge discovery from remote sensing images: A review. WIREs Data Min. Knowl. Discov. 2020, 10, e1371. [Google Scholar] [CrossRef]
- Tatarnikova, T.; Chernetsova, E. Neural Network Classifier of Oil Pollution on the Water Surface when Processing Radar Images. In CEUR Workshop Proceedings; GraphiCon Scientific Society: Saint Petersburg, Russia, 2020. [Google Scholar] [CrossRef]
- Liang, J.; Liu, D. A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery. ISPRS J. Photogramm. Remote Sens. 2020, 159, 53–62. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, F.; Liang, D.; Tian, B.; Yang, A. Use of Sentinel-1 GRD SAR Images to Delineate Flood Extent in Pakistan. Sustainability 2020, 12, 5784. [Google Scholar] [CrossRef]
- Hiremath, S.; Tolpekin, V.A.; van der Heijden, G.; Stein, A. Segmentation of Rumex obtusifolius using Gaussian Markov random fields. Mach. Vis. Appl. 2013, 24, 845–854. [Google Scholar] [CrossRef]
- Wang, J.; Huang, B.; Wang, F. Extraction and Classification of Flood-Affected Areas Based on MRF and Deep Learning. Water 2023, 15, 1288. [Google Scholar] [CrossRef]
- Song, W.; Quan, H.; Chen, Y.; Zhang, P. SAR Image Feature Selection and Change Detection Based on Sparse Coefficient Correlation. In Proceedings of the 2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 11–13 December 2022; pp. 326–329. [Google Scholar] [CrossRef]
- Aghdami-Nia, M.; Shah-Hosseini, R.; Rostami, A.; Homayouni, S. Automatic coastline extraction through enhanced sea-land segmentation by modifying Standard U-Net. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102785. [Google Scholar] [CrossRef]
- Lin, C.H.; Andonie, R.; Florea, A.C. Optimized Fully Convolutional Neural Network Encoder for Water Detection in SAR Images. In Proceedings of the 2022 26th International Conference Information Visualisation (IV), Vienna, Austria, 19–22 July 2022; pp. 343–350. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, W.; Wang, Y.; Hao, M.; Miao, Z. Spatial-Attraction-Based Markov Random Field Approach for Classification of High Spatial Resolution Multispectral Imagery. IEEE Geosci. Remote Sens. Lett. 2014, 11, 489–493. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [PubMed]
Method | OA (%) | KC (%) | ME (%) |
---|---|---|---|
RI | 83.27 | 29.05 | 75.03 |
MRF | 95.07 | 84.85 | 12.53 |
Inception CNN | 97.35 | 90.28 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahermanesh, S.; Beirami, B.A.; Mokhtarzade, M. Comparison between Classic Methods and Deep Learning Approach in Detecting Changes of Waterbodies from Sentinel-1 Images. Environ. Sci. Proc. 2024, 29, 26. https://doi.org/10.3390/ECRS2023-16186
Tahermanesh S, Beirami BA, Mokhtarzade M. Comparison between Classic Methods and Deep Learning Approach in Detecting Changes of Waterbodies from Sentinel-1 Images. Environmental Sciences Proceedings. 2024; 29(1):26. https://doi.org/10.3390/ECRS2023-16186
Chicago/Turabian StyleTahermanesh, Sahand, Behnam Asghari Beirami, and Mehdi Mokhtarzade. 2024. "Comparison between Classic Methods and Deep Learning Approach in Detecting Changes of Waterbodies from Sentinel-1 Images" Environmental Sciences Proceedings 29, no. 1: 26. https://doi.org/10.3390/ECRS2023-16186
APA StyleTahermanesh, S., Beirami, B. A., & Mokhtarzade, M. (2024). Comparison between Classic Methods and Deep Learning Approach in Detecting Changes of Waterbodies from Sentinel-1 Images. Environmental Sciences Proceedings, 29(1), 26. https://doi.org/10.3390/ECRS2023-16186