Assessing the Impact of Climate Change on Seasonal Variation in Agricultural Land Use Using Sentinel-2 and Machine Learning †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Overview
2.2. Site Description
2.3. Data Collection
2.3.1. Sentinel-2 and MODIS Data
2.3.2. Climate Data
2.3.3. Ground Truth Data
2.3.4. Spectral Indices (SI)
2.3.5. Drought Index (VCI)
2.4. Classifiers
2.4.1. Random Forest (RF)
2.4.2. Gradient Tree Boost (GTB)
2.5. Performance Evaluation Metrics
3. Results and Discussion
3.1. Classification Accuracy
3.2. Analysis of LULC, Climate and VCI Changes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Epule, T.E.; Chehbouni, A.; Chfadi, T.; Ongoma, V.; Er-Raki, S.; Khabba, S.; Etongo, D.; Martínez-Cruz, A.L.; Molua, E.L.; Achli, S.; et al. A Systematic National Stocktake of Crop Models in Morocco. Ecol. Model. 2022, 470, 110036. [Google Scholar] [CrossRef]
- Abdelmajid, S.; Mukhtar, A.; Baig, M.B.; Reed, M.R. Climate Change, Agricultural Policy and Food Security in Morocco. In Emerging Challenges to Food Production and Security in Asia, Middle East, and Africa; Springer International Publishing: Cham, Switzerland, 2021; Book Section Chapter 7; pp. 171–196. [Google Scholar] [CrossRef]
- Ortega-Pozo, J.L.; Alcalá, F.J.; Poyatos, J.M.; Martín-Pascual, J. Wastewater Reuse for Irrigation Agriculture in Morocco: Influence of Regulation on Feasible Implementation. Land 2022, 11, 2312. [Google Scholar]
- Eddoughri, F.; Lkammarte, F.Z.; El Jarroudi, M.; Lahlali, R.; Karmaoui, A.; Yacoubi Khebiza, M.; Messouli, M. Analysis of the Vulnerability of Agriculture to Climate and Anthropogenic Impacts in the Beni Mellal-Khénifra Region, Morocco. Sustainability 2022, 14, 13166. [Google Scholar]
- Oumara, N.G.A.; El Youssfi, L. Salinization of Soils and Aquifers in Morocco and the Alternatives of Response. Environ. Sci. Proc. 2022, 16, 65. [Google Scholar]
- Seyam, M.M.H.; Haque, M.R.; Rahman, M.M. Identifying the land use land cover (LULC) changes using remote sensing and GIS approach: A case study at Bhaluka in Mymensingh, Bangladesh. Case Stud. Chem. Environ. Eng. 2023, 7, 100293. [Google Scholar] [CrossRef]
- Sohl, T.; Sleeter, B. Role of Remote Sensing for Land-Use and Land-Cover Change Modeling. In Remote Sensing of Land Use and Land Cover; CRC Press: Boca Raton, FL, USA, 2012; pp. 225–239. [Google Scholar] [CrossRef]
- Beroho, M.; Briak, H.; Cherif, E.K.; Boulahfa, I.; Ouallali, A.; Mrabet, R.; Kebede, F.; Bernardino, A.; Aboumaria, K. Future Scenarios of Land Use/Land Cover (LULC) Based on a CA-Markov Simulation Model: Case of a Mediterranean Watershed in Morocco. Remote Sens. 2023, 15, 1162. [Google Scholar] [CrossRef]
- Karmaoui, A.; Ben Salem, A.; El Jaafari, S.; Chaachouay, H.; Moumane, A.; Hajji, L. Exploring the land use and land cover change in the period 2005–2020 in the province of Errachidia, the pre-sahara of Morocco. Front. Earth Sci. 2022, 10, 962097. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Copernicus, C.C.S. Agrometeorological Indicators from 1979 up to 2019 Derived from Reanalysis. 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.6c68c9bb?tab=doc (accessed on 2 September 2023).
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Chidthaisong, A.; Kieu Diem, P.; Huo, L.Z. A Modified Bare Soil Index to Identify Bare Land Features during Agricultural Fallow-Period in Southeast Asia Using Landsat 8. Land 2021, 10, 231. [Google Scholar] [CrossRef]
- Liu, W.T.; Kogan, F.N. Monitoring regional drought using the Vegetation Condition Index. Int. J. Remote Sens. 1996, 17, 2761–2782. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone, C.; Olshen, R. Classification and Regression Trees; Taylor & Francis: Abingdon, UK, 1984. [Google Scholar]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Hamedianfar, A.; Gibril, M.B.A.; Hosseinpoor, M.; Pellikka, P.K. Synergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images. Geocarto Int. 2022, 37, 773–791. [Google Scholar] [CrossRef]
- Sahin, E.K. Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN Appl. Sci. 2020, 2, 1308. [Google Scholar] [CrossRef]
Algorithm | Class | Overall Accurary | Consumer’s Accurary | Producer’s Accurary | Kaffa Coeffiecient |
---|---|---|---|---|---|
RF | Built-Up Area | 0.92 | 0.95 | 0.89 | 0.89 |
Water | 0.9 | 0.82 | |||
Agriculture | 0.93 | 0.98 | |||
Bareland | 0.89 | 0.94 | |||
GTB | Built-Up Area | 0.93 | 0.96 | 0.89 | 0.91 |
Water | 0.96 | 0.93 | |||
Agriculture | 0.91 | 0.99 | |||
Bareland | 0.86 | 0.91 |
Class | 2018 (km2) | 2022 (km2) | Changes (km2) |
---|---|---|---|
Built-Up Area | 74.2 | 77.5 | +3.3 |
Water | 0.57 | 0.47 | −0.1 |
Agriculture | 141.5 | 82.8 | −58.7 |
Bareland | 95.1 | 150.7 | +55.6 |
Year | Min. Temp (°C) | Max. Temp (°C) | Rainfall (mm/yr) | Evapotranspiration (mm/yr) | Annual Mean VCI |
---|---|---|---|---|---|
2018 | 5.1 | 36.9 | 729 | 1343 | 39.72 |
2022 | 5.6 | 37.5 | 337 | 1516 | 19.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustapha, M.; Zineddine, M. Assessing the Impact of Climate Change on Seasonal Variation in Agricultural Land Use Using Sentinel-2 and Machine Learning. Environ. Sci. Proc. 2024, 29, 51. https://doi.org/10.3390/ECRS2023-16365
Mustapha M, Zineddine M. Assessing the Impact of Climate Change on Seasonal Variation in Agricultural Land Use Using Sentinel-2 and Machine Learning. Environmental Sciences Proceedings. 2024; 29(1):51. https://doi.org/10.3390/ECRS2023-16365
Chicago/Turabian StyleMustapha, Musa, and Mhamed Zineddine. 2024. "Assessing the Impact of Climate Change on Seasonal Variation in Agricultural Land Use Using Sentinel-2 and Machine Learning" Environmental Sciences Proceedings 29, no. 1: 51. https://doi.org/10.3390/ECRS2023-16365
APA StyleMustapha, M., & Zineddine, M. (2024). Assessing the Impact of Climate Change on Seasonal Variation in Agricultural Land Use Using Sentinel-2 and Machine Learning. Environmental Sciences Proceedings, 29(1), 51. https://doi.org/10.3390/ECRS2023-16365