Quantification of Coastal Erosion Rates Using Landsat 5, 7, and 8 and Sentinel-2 Satellite Images from 1986–2022—Case Study: Cartagena Bay, Valparaíso, Chile †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Automatic Extraction of Shorelines and Model
2.3. Climate Waves
2.4. Erosion Rates
3. Results and Discussion
3.1. Automatic Extraction of Shorelines
3.2. Climate Waves
3.3. Erosion Rates
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Powell, E.J.; Tyrrell, M.C.; Milliken, A.; Tirpak, J.M.; Staudinger, M.D. A review of coastal management approaches to support the integration of ecological and human community planning for climate change. J. Coast. Conserv. 2018, 23, 1–18. [Google Scholar] [CrossRef]
- McLachlan, A.; Brown, A.C. Interstitial Ecology. In The Ecology of Sandy Shores; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar] [CrossRef]
- Kozyrakis, G.; Delis, A.; Alexandrakis, G.; Kampanis, N. Numerical modeling of sediment transport applied to coastal morphodynamics. Appl. Numer. Math. 2016, 104, 30–46. [Google Scholar] [CrossRef]
- Feagin, R.A.; Sherman, D.J.; Grant, W.E. Coastal erosion, global sea-level rise, and the loss of sand dune plant habitats. Front. Ecol. Environ. 2005, 3, 359–364. [Google Scholar] [CrossRef]
- Ruiz, S.; Madariaga, R. Historical and recent large megathrust earthquakes in Chile. Tectonophysics 2018, 733, 37–56. [Google Scholar] [CrossRef]
- Caba, R.C.; Beyá Marshall, J.; Mena, P.M. Cuantificación de los Daños Históricos a Infraestructura Costera Por Marejadas en Las Costas de Chile. In XXII Congreso Chileno de Ingeniería Hidráulica; Universidad de Valparaíso: Valparaíso, Chile, 2015; p. 14. Available online: https://oleaje.uv.cl/descargables/Publicacionescongresos/2015-CuantificacióndelosdañoshistóricospormarejadasenlascostasdeChile-Camposetal.pdf (accessed on 15 September 2023).
- Santoso, A.; Mcphaden, M.J.; Cai, W. The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Niño. Rev. Geophys. 2017, 55, 1079–1129. [Google Scholar] [CrossRef]
- Wu, W.; Leonard, M. Impact of ENSO on dependence between extreme rainfall and storm surge. Environ. Res. Lett. 2019, 14, 124043. [Google Scholar] [CrossRef]
- Martínez, C.; López, P.; Rojas, C.; Qüense, J.; Hidalgo, R.; Arenas, F. A sustainability index for anthropized and urbanized coasts: The case of Concón Bay, central Chile. Appl. Geogr. 2020, 116, 102166. [Google Scholar] [CrossRef]
- Le Cozannet, G.; Bulteau, T.; Castelle, B.; Ranasinghe, R.; Wöppelmann, G.; Rohmer, J.; Bernon, N.; Idier, D.; Louisor, J.; Salas-Y-Mélia, D. Quantifying uncertainties of sandy shoreline change projections as sea level rises. Sci. Rep. 2019, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Ministerio del Medio Ambiente. Plan de Acción Nacional de Cambio Climático 2017–2022; MMA: Santiago, Chile, 2017. [Google Scholar]
- Martínez, C.; Briceño-de-Urbaneja, I. 3.3. La erosión costera en Chile: Problemas actuales y desafíos futuros. In Hacia Una Ley de Costas en Chile: Bases Para Una Gestión Integrada de Áreas Costeras; CIGIDEN: Valparaíso, Chile, 2022; Available online: https://www.cigiden.cl/geolibro-hacia-una-ley-de-costas-en-chile-bases-para-una-gestion-integradade-areas-costeras/ (accessed on 25 September 2023).
- Briceño-de-Urbaneja, I.; Sánchez-García, E.; Pardo-Pascual, J.E.; Palomar-Vázquez, J.; Ugalde-Peralta, R.; Aguirre-Galaz, C.; Pérez-Martínez, W.; Vidal-Páez, P. Cambios Espaciotemporales Costeros Con Imágenes Landsat 8 Y Sentinel 2 (2015–2019) En Chile Central; Playa Reñaca, Bahía De Concón Y Bahía De Algarrobo. In III Congress in Geomatics Engineering—CIGEO 2021, 7–8 July Valencia, Spain; Editorial Universitat Politècnica de València: Valencia, Spain, 2021; pp. 302–310. [Google Scholar] [CrossRef]
- Martínez, S.; Salinas, C. Morfodinámica y evolución reciente de playa Tunquén, Chile central Introducción Material y métodos. Rev. De Biol. Mar. Y Oceanogr. 2009, 44, 203–215. [Google Scholar] [CrossRef]
- Harley, C.D.G.; Hughes, A.R.; Hultgren, K.M.; Miner, B.G.; Sorte, C.J.B.; Thornber, C.S.; Rodriguez, L.F.; Tomanek, L.; Williams, S.L. The impacts of climate change in coastal marine systems. Ecol. Lett. 2006, 9, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Cabezas-Rabadán, C.; Pardo-Pascual, J.E.; Palomar-Vázquez, J. Characterizing the Relationship between the Sediment Grain Size and the Shoreline Variability Defined from Sentinel-2 Derived Shorelines. Remote. Sens. 2021, 13, 2829. [Google Scholar] [CrossRef]
- Bishop-Taylor, R.; Nanson, R.; Sagar, S.; Lymburner, L. Mapping Australia's dynamic coastline at mean sea level using three decades of Landsat imagery. Remote. Sens. Environ. 2021, 267, 112734. [Google Scholar] [CrossRef]
- Harley, M.D.; Kinsela, M.A.; Sánchez-García, E.; Vos, K. Shoreline change mapping using crowd-sourced smartphone images. Coast. Eng. 2019, 150, 175–189. [Google Scholar] [CrossRef]
- Vos, K.; Splinter, K.D.; Harley, M.D.; Simmons, J.A.; Turner, I.L. CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environ. Model. Softw. 2019, 122, 104528. [Google Scholar] [CrossRef]
- Palomar-Vázquez, J.; Almonacid-Caballer, J.; Pardo-Pascual, J.E.; Sanchez-García, E. SHOREX: A new tool for automatic and massive extraction of shorelines from Landsat and Sentinel 2 imagery. In Proceedings of the 7th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab), Santander, Spain, 22–26 May 2018. [Google Scholar]
- Cabezas-Rabadán, C.; Pardo-Pascual, J.E.; Palomar-Vázquez, J.; Fernández-Sarría, A. Characterizing beach changes using high-frequency Sentinel-2 derived shorelines on the Valencian coast (Spanish Mediterranean). Sci. Total Environ. 2019, 691, 216–231. [Google Scholar] [CrossRef]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Miller, T.L. The Digital Shoreline Analysis System (DSAS) Version 3.0, an ArcGIS Extension for Calculating Historic Shoreline Cange; US Geological Survey: Reston, VA, USA, 2005.
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.1 User Guide; US Geological Survey: Reston, VA, USA, 2021. [CrossRef]
- Rangel-Buitrago, N.G.; Anfuso, G.; Williams, A.T. Coastal erosion along the Caribbean coast of Colombia: Magnitudes, causes and management. Ocean Coast. Manag. 2015, 114, 129–144. [Google Scholar] [CrossRef]
- Soto, M.-V.; Arriagada, J.; Castro-Correa, C.P.; Ibarra, I.; Giuliano, R. Condiciones geodinámicas derivadas del terremoto y tsunami de 2010 en la costa de Chile central. El caso de Pichilemu. Rev. De Geogr. Norte Gd. 2015, 60, 79–95. [Google Scholar] [CrossRef]
- Ministerio del Medio Ambiente. Volumen 2: Exposición, en “Determinación del Riesgo de los Impactos del Cambio Climático en las Costas de Chile”, Documento Preparado Por: Winckler, P.; Contreras-López, M.; Vicuña, S.; Larraguibel, C.; Mora, J.; Esparza, C.; Salcedo, J.; Gelcich, S.; Fariña, J. M.; Martínez, C.; Agredano, R.; Melo, O.; Bambach, N.; Morales, D., Marinkovic, C.; Pica, A., Santiago, Chile. 2019. Available online: https://cambioclimatico.mma.gob.cl/wp-content/uploads/2020/04/2019-10-22-Informe-V02-CCCostas-Exposicio%CC%81n-Rev1.pdf (accessed on 30 September 2023).
Rates of Change (m/yr.) | Categories |
---|---|
<−1.5 | High erosion |
−0.2 y −1.5 | Erosion |
−0.2 y +0.2 | Stable erosion |
>+0.2 | Accretion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briceño de Urbaneja, I.; Pérez-Martínez, W.; Martínez, C.; Pardo-Pascual, J.; Palomar-Vázquez, J.; Aguirre, C.; Donoso-Garcés, R. Quantification of Coastal Erosion Rates Using Landsat 5, 7, and 8 and Sentinel-2 Satellite Images from 1986–2022—Case Study: Cartagena Bay, Valparaíso, Chile. Environ. Sci. Proc. 2024, 29, 56. https://doi.org/10.3390/ECRS2023-16300
Briceño de Urbaneja I, Pérez-Martínez W, Martínez C, Pardo-Pascual J, Palomar-Vázquez J, Aguirre C, Donoso-Garcés R. Quantification of Coastal Erosion Rates Using Landsat 5, 7, and 8 and Sentinel-2 Satellite Images from 1986–2022—Case Study: Cartagena Bay, Valparaíso, Chile. Environmental Sciences Proceedings. 2024; 29(1):56. https://doi.org/10.3390/ECRS2023-16300
Chicago/Turabian StyleBriceño de Urbaneja, Idania, Waldo Pérez-Martínez, Carolina Martínez, Josep Pardo-Pascual, Jesús Palomar-Vázquez, Catalina Aguirre, and Raimundo Donoso-Garcés. 2024. "Quantification of Coastal Erosion Rates Using Landsat 5, 7, and 8 and Sentinel-2 Satellite Images from 1986–2022—Case Study: Cartagena Bay, Valparaíso, Chile" Environmental Sciences Proceedings 29, no. 1: 56. https://doi.org/10.3390/ECRS2023-16300
APA StyleBriceño de Urbaneja, I., Pérez-Martínez, W., Martínez, C., Pardo-Pascual, J., Palomar-Vázquez, J., Aguirre, C., & Donoso-Garcés, R. (2024). Quantification of Coastal Erosion Rates Using Landsat 5, 7, and 8 and Sentinel-2 Satellite Images from 1986–2022—Case Study: Cartagena Bay, Valparaíso, Chile. Environmental Sciences Proceedings, 29(1), 56. https://doi.org/10.3390/ECRS2023-16300