Deep-Learning-Based Edge Detection for Improving Building Footprint Extraction from Satellite Images †
Abstract
:1. Introduction
2. Methodology
2.1. U-Net
2.2. Edge Detection Methods
3. Datasets
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sakeena, M.; Stumpe, E.; Despotovic, M.; Koch, D.; Zeppelzauer, M. On the Robustness and Generalization Ability of Building Footprint Extraction on the Example of SegNet and Mask R-CNN. Remote Sens. 2023, 15, 2135. [Google Scholar] [CrossRef]
- Hosseinpour, H.; Samadzadegan, F.; Javan, F.D. CMGFNet: A deep cross-modal gated fusion network for building extraction from very high-resolution remote sensing images. ISPRS J. Photogramm. Remote Sens. 2022, 184, 96–115. [Google Scholar] [CrossRef]
- Luo, L.; Li, P.; Yan, X. Deep Learning-Based Building Extraction from Remote Sensing Images: A Comprehensive Review. Energies 2021, 14, 7982. [Google Scholar] [CrossRef]
- Li, Z.; Xin, Q.; Sun, Y.; Cao, M. A Deep Learning-Based Framework for Automated Extraction of Building Footprint Polygons from Very High-Resolution Aerial Imagery. Remote Sens. 2021, 13, 3630. [Google Scholar] [CrossRef]
- Abbasi, M.; Shah-Hosseini, R.; Aghdami-Nia, M. Sentinel-1 Polarization Comparison for Flood Segmentation Using Deep Learning. Proceedings 2023, 87, 14. [Google Scholar] [CrossRef]
- Jovhari, N.; Farhadi, N.; Sedaghat, A.; Mohammadi, N. Performance Evaluation of Learning-Based Methods for Multispectral Satellite Image Matching. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, X-4/W1-2022, 335–341. [Google Scholar] [CrossRef]
- Aghdami-Nia, M.; Shah-Hosseini, R.; Salmani, M. Effect of Transferring Pre-Trained Weights on a Siamese Change Detection Network. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023; X-4/W1-2022, 19–24. [Google Scholar] [CrossRef]
- Shao, Z.; Tang, P.; Wang, Z.; Saleem, N.; Yam, S.; Sommai, C. BRRNet: A Fully Convolutional Neural Network for Automatic Building Extraction from High-Resolution Remote Sensing Images. Remote Sens. 2020, 12, 1050. [Google Scholar] [CrossRef]
- Aryal, J.; Neupane, B. Multi-Scale Feature Map Aggregation and Supervised Domain Adaptation of Fully Convolutional Networks for Urban Building Footprint Extraction. Remote Sens. 2023, 15, 488. [Google Scholar] [CrossRef]
- Yu, T.; Tang, P.; Zhao, B.; Bai, S.; Gou, P.; Liao, J.; Jin, C. ConvBNet: A Convolutional Network for Building Footprint Extraction. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction from an Open Aerial and Satellite Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574–586. [Google Scholar] [CrossRef]
- Ma, J.; Wu, L.; Tang, X.; Liu, F.; Zhang, X.; Jiao, L. Building Extraction of Aerial Images by a Global and Multi-Scale Encoder-Decoder Network. Remote Sens. 2020, 12, 2350. [Google Scholar] [CrossRef]
- Yu, D.; Ji, S.; Liu, J.; Wei, S. Automatic 3D building reconstruction from multi-view aerial images with deep learning. ISPRS J. Photogramm. Remote Sens. 2021, 171, 155–170. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Le Saux, B.; Yokoya, N.; Hänsch, R.; Brown, M. Data Fusion Contest 2019 (DFC2019); IEEE Dataport; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Xie, S.; Tu, Z. Holistically-nested edge detection. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
Model | Bands | Accuracy | Precision | Recall | F1-Score | IoU |
---|---|---|---|---|---|---|
Mask-RCNN | RGB | 96.22% | 92.51% | 85.69% | 88.80% | 79.91% |
MA-FCN | RGB | 95.83% | 86.62% | 86.38% | 86.36% | 76.60% |
U-Net | RGB | 96.16% | 87.48% | 90.20% | 88.55% | 79.78% |
MA-FCN | RGB-DSM | 96.13% | 92.20% | 83.87% | 87.26% | 78.07% |
U-Net | RGB-DSM | 96.40% | 91.93% | 86.24% | 88.86% | 80.31% |
U-Net | RGB-DSM-Edge | 96.73% | 89.55% | 91.66% | 90.45% | 82.88% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadian, N.; Sedaghat, A.; Mohammadi, N.; Aghdami-Nia, M. Deep-Learning-Based Edge Detection for Improving Building Footprint Extraction from Satellite Images. Environ. Sci. Proc. 2024, 29, 61. https://doi.org/10.3390/ECRS2023-16615
Ahmadian N, Sedaghat A, Mohammadi N, Aghdami-Nia M. Deep-Learning-Based Edge Detection for Improving Building Footprint Extraction from Satellite Images. Environmental Sciences Proceedings. 2024; 29(1):61. https://doi.org/10.3390/ECRS2023-16615
Chicago/Turabian StyleAhmadian, Nima, Amin Sedaghat, Nazila Mohammadi, and Mohammad Aghdami-Nia. 2024. "Deep-Learning-Based Edge Detection for Improving Building Footprint Extraction from Satellite Images" Environmental Sciences Proceedings 29, no. 1: 61. https://doi.org/10.3390/ECRS2023-16615
APA StyleAhmadian, N., Sedaghat, A., Mohammadi, N., & Aghdami-Nia, M. (2024). Deep-Learning-Based Edge Detection for Improving Building Footprint Extraction from Satellite Images. Environmental Sciences Proceedings, 29(1), 61. https://doi.org/10.3390/ECRS2023-16615