The Potential of Different Reflectance-Based Algorithms to Retrieve Phycocyanin Concentration through Remote Sensing: Application in a Hypereutrophic Mediterranean Lake †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling and Remote Sensing Reflectance (Rrs)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Hourany, R.; Fadel, A.; Gemayel, E.; Abboud-Abi Saab, M.; Faour, G. Spatio-Temporal Variability of the Phytoplankton Biomass in the Levantine Basin between 2002 and 2015 Using MODIS Products. Oceanologia 2017, 59, 153–165. [Google Scholar] [CrossRef]
- Fadel, A.; Sharaf, N.; Siblini, M.; Slim, K.; Kobaissi, A. A Simple Modelling Approach to Simulate the Effect of Different Climate Scenarios on Toxic Cyanobacterial Bloom in a Eutrophic Reservoir. Ecohydrol. Hydrobiol. 2019, 19, 359–369. [Google Scholar] [CrossRef]
- Gregg, W.W.; Conkright, M.E.; Casey, N.W. Ocean Primary Production and Climate: Global Decadal Changes. Geophys. Res. Lett. 2003, 30, 10–13. [Google Scholar] [CrossRef]
- Darwish, T.; Atallah, T.; Fadel, A. Challenges of Soil Carbon Sequestration in the NENA Region. SOIL 2018, 4, 225–235. [Google Scholar] [CrossRef]
- Darwish, T.; Fadel, A. Mapping of Soil Organic Carbon Stock in the Arab Countries to Mitigate Land Degradation. Arab. J. Geosci. 2017, 10. [Google Scholar] [CrossRef]
- Fadel, A.; Guerrieri, F.; Pincebourde, S. The Functional Relationship between Aquatic Insects and Cyanobacteria: A Systematic Literature Review Reveals Major Knowledge Gaps. Total Environ. Res. Themes 2023, 8, 100078. [Google Scholar] [CrossRef]
- Vincent, R.K.; Qin, X.; McKay, R.M.L.; Miner, J.; Czajkowski, K.; Savino, J.; Bridgeman, T. Phycocyanin Detection from LANDSAT TM Data for Mapping Cyanobacterial Blooms in Lake Erie. Remote Sens. Environ. 2004, 89, 381–392. [Google Scholar] [CrossRef]
- Fadel, A.; Mhawej, M.; Faour, G.; Slim, K. On the Application of METRIC-GEE to Estimate Spatial and Temporal Evaporation Rates in a Mediterranean Lake. Remote Sens. Appl. Soc. Environ. 2020, 20, 100431. [Google Scholar] [CrossRef]
- Fadel, A.; Kanj, M.; Slim, K. Water Quality Index Variations in a Mediterranean Reservoir: A Multivariate Statistical Analysis Relating It to Different Variables over 8 Years. Environ. Earth Sci. 2021, 80, 65. [Google Scholar] [CrossRef]
- Fadel, A.; Atoui, A.; Lemaire, B.J.; Vinçon-Leite, B.; Slim, K. Environmental Factors Associated with Phytoplankton Succession in a Mediterranean Reservoir with a Highly Fluctuating Water Level. Environ. Monit. Assess. 2015, 187, 633. [Google Scholar] [CrossRef]
- Slim, K.; Fadel, A.; Atoui, A.; Lemaire, B.J.; Vinçon-Leite, B.; Tassin, B. Global Warming as a Driving Factor for Cyanobacterial Blooms in Lake Karaoun, Lebanon. Desalin. Water Treat. 2014, 52, 2094–2101. [Google Scholar] [CrossRef]
- Fadel, A.; Atoui, A.; Lemaire, B.; Vinçon-Leite, B.; Slim, K. Dynamics of the Toxin Cylindrospermopsin and the Cyanobacterium Chrysosporum (Aphanizomenon) Ovalisporum in a Mediterranean Eutrophic Reservoir. Toxins 2014, 6, 3041–3057. [Google Scholar] [CrossRef]
- Komárek, J.; Anagnostidis, K. Cyanoprokaryota 2 Teil: Oscillatoriales. In Süßwasserflora von Mitteleuropa Band 19/2, Spektrum Akademischer Verlag; Büdel, B., Gärtner, G., Krienitz, L., Schagerl, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Schalles, J.F.; Yacobi, Y.Z. Remote Detection and Seasonal Patterns of Phycocyanin, Carotenoid and Chlorophyll Pigments in Eutrophic Waters. Ergeb. Limnol. 2000, 55, 153–168. [Google Scholar]
- Mishra, S.; Mishra, D.R.; Schluchter, W.M. A Novel Algorithm for Predicting Phycocyanin Concentrations in Cyanobacteria: A Proximal Hyperspectral Remote Sensing Approach. Remote Sens. 2009, 1, 758–775. [Google Scholar] [CrossRef]
- Mishra, S. Remote Sensing of Harmful Algal Bloom; Mississippi State University: Starkville, MS, USA, 2012. [Google Scholar]
- Simis, S.G.H.; Peters, S.W.M.; Gons, H.J. Remote Sensing of the Cyanobacterial Pigment Phycocyanin in Turbid Inland Water. Limnol. Oceanogr. 2005, 50, 237–245. [Google Scholar] [CrossRef]
- Amin, R.; Zhou, J.; Gilerson, A.; Gross, B.; Moshary, F.; Ahmed, S. Novel Optical Techniques for Detecting and Classifying Toxic Dinoflagellate Karenia Brevis Blooms Using Satellite Imagery. Opt. Express 2009, 17, 9126–9144. [Google Scholar] [CrossRef]
- Beck, R.; Xu, M.; Zhan, S.; Liu, H.; Johansen, R.A.; Tong, S.; Yang, B.; Shu, S.; Wu, Q.; Wang, S.; et al. Comparison of Satellite Reflectance Algorithms for Estimating Phycocyanin Values and Cyanobacterial Total Biovolume in a Temperate Reservoir Using Coincident Hyperspectral Aircraft Imagery and Dense Coincident Surface Observations. Remote Sens. 2017, 9, 538. [Google Scholar] [CrossRef]
- Dekker, A.G. Detection of Optical Water Quality Parameters for Eutrophic Waters by High Resolution Remote Sensing. Ph.D. Thesis, Research and Graduation Internal, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 1993. [Google Scholar]
- Ogashawara, I.; Mishra, D.R.; Mishra, S.; Curtarelli, M.P.; Stech, J.L. A Performance Review of Reflectance Based Algorithms for Predicting Phycocyanin Concentrations in Inland Waters. Remote Sens. 2013, 5, 4774–4798. [Google Scholar] [CrossRef]
- Wheeler, S.M.; Morrissey, L.A.; Levine, S.N.; Livingston, G.P.; Vincent, W.F. Mapping Cyanobacterial Blooms in Lake Champlain’s Missisquoi Bay Using QuickBird and MERIS Satellite Data. J. Gt. Lakes Res. 2012, 38, 68–75. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fadel, A.; Faour, G.; Halawi Ghosn, R.; Slim, K. The Potential of Different Reflectance-Based Algorithms to Retrieve Phycocyanin Concentration through Remote Sensing: Application in a Hypereutrophic Mediterranean Lake. Environ. Sci. Proc. 2024, 29, 81. https://doi.org/10.3390/ECRS2023-16840
Fadel A, Faour G, Halawi Ghosn R, Slim K. The Potential of Different Reflectance-Based Algorithms to Retrieve Phycocyanin Concentration through Remote Sensing: Application in a Hypereutrophic Mediterranean Lake. Environmental Sciences Proceedings. 2024; 29(1):81. https://doi.org/10.3390/ECRS2023-16840
Chicago/Turabian StyleFadel, Ali, Ghaleb Faour, Raed Halawi Ghosn, and Kamal Slim. 2024. "The Potential of Different Reflectance-Based Algorithms to Retrieve Phycocyanin Concentration through Remote Sensing: Application in a Hypereutrophic Mediterranean Lake" Environmental Sciences Proceedings 29, no. 1: 81. https://doi.org/10.3390/ECRS2023-16840
APA StyleFadel, A., Faour, G., Halawi Ghosn, R., & Slim, K. (2024). The Potential of Different Reflectance-Based Algorithms to Retrieve Phycocyanin Concentration through Remote Sensing: Application in a Hypereutrophic Mediterranean Lake. Environmental Sciences Proceedings, 29(1), 81. https://doi.org/10.3390/ECRS2023-16840