Testing the Drop-Size Distribution Based Separation of Stratiform and Convective Rain Using Radar and Disdrometer Data from a Midlatitude Coastal Region †
Abstract
:1. Introduction
2. Instrumentation and Observations
2.1. DSD
2.2. Radar Observations
2.3. Rain Events
3. NW Versus Dm Variations
4. Rain-Bands of Hurricane Dorian
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Steiner, M.; Houze, R.A.; Yuter, S.E. Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data. J. Appl. Meteor. 1995, 34, 1978–2007. [Google Scholar] [CrossRef]
- Tao, W.; Iguchi, T.; Lang, S. Expanding the Goddard CSH Algorithm for GPM: New Extratropical Retrievals. J. Appl. Meteor. Climatol. 2019, 58, 921–946. [Google Scholar] [CrossRef] [PubMed]
- Houze, R.A., Jr. Cloud Dynamics; Academic Press: Cambridge, MA, USA, 1993; 573p. [Google Scholar]
- Tokay, A.; Short, D.A. Evidence from Tropical Raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds. J. Appl. Meteor. 1996, 35, 355–371. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W.L.; Schoenhuber, M. Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis. J. Atmos. Sci. 2003, 60, 354–365. [Google Scholar] [CrossRef]
- Thompson, E.J.; Rutledge, S.A.; Dolan, B.; Thurai, M. Drop Size Distributions and Radar Observations of Convective and Stratiform Rain over the Equatorial Indian and West Pacific Oceans. J. Atmos. Sci. 2015, 72, 4091–4125. [Google Scholar] [CrossRef]
- Atlas, D.; Ulbrich, C.W.; Marks, F.D., Jr.; Black, R.A.; Amitai, E.; Willis, P.T.; Samsur, C.E. Partitioning tropical oceanic convective and stratiform rains by draft strength. J. Geophys. Res. 2000, 105, 2259–2267. [Google Scholar] [CrossRef]
- Testud, J.; Oury, S.; Black, R.A.; Amayenc, P.; Dou, X. The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteorol. 2001, 40, 1118–1140. [Google Scholar] [CrossRef]
- Ulbrich, C.W.; Atlas, D. On the separation of tropical convective and stratiform rains. J. Appl. Meteor. 2002, 41, 188–195. [Google Scholar] [CrossRef]
- Yuter, S.E.; Houze, R.A., Jr. Measurements of raindrop size distributions over the Pacific warm pool and implications for Z–R relations. J. Appl. Meteor. 1997, 36, 847–867. [Google Scholar] [CrossRef]
- Bukovcic, P.; Zrnic, D.; Zhang, G. Convective–stratiform separation using video disdrometer observations in central Oklahoma–the Bayesian approach. Atmos. Res. 2009, 155, 176–191. [Google Scholar] [CrossRef]
- Schoenhuber, M.; Lammer, G.; Randeu, W.L. One decade of imaging precipitation measurement by 2D-video-distrometer. Adv. Geosci. 2007, 10, 85–90. [Google Scholar] [CrossRef]
- Schönhuber, M.; Lammer, G.; Randeu, W.L. The 2D-Video-Distrometer. In Precipitation: Advances in Measurement, Estimation and Prediction; Michaelides, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 3–31. ISBN 978-3-540-77654-3. [Google Scholar]
- Bringi, V.N.; Williams, C.R.; Thurai, M.; May, P.T. Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J. Atmos. Oceanic Technol. 2009, 26, 2107–2122. [Google Scholar] [CrossRef]
- Thurai, M.; Bringi, V.N.; May, P.T. CPOL radar-derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia. J. Atmos. Oceanic Technol. 2010, 27, 932–942. [Google Scholar] [CrossRef]
- Thurai, M.; Gatlin, P.N.; Bringi, V.N. Separating stratiform and convective rain types based on the drop size distribution characteristics using 2D video disdrometer data. Atmos. Res. 2016, 169 Pt B, 416–423. [Google Scholar]
- Thurai, M.; Kennedy, P.; Dolan, B.; Bringi, V.N. Testing the DSD-Based Stratiform-Convective Rain Separation for Ten Events in Greeley, Colorado. In Proceedings of the 38th Conference on Radar Meteorology, Chicago, IL, USA, 1 September 2017; p. 24. [Google Scholar]
- Knollenberg, R. The optical array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteorol. 1970, 9, 86–103. [Google Scholar] [CrossRef]
- Baumgardner, D.; Kok, G.; Dawson, W.; O’Connor, D.; Newton, R. A new ground-based precipitation spectrometer: The Meteorological Particle Sensor (MPS). In Proceedings of the 11th Conference on Cloud Physics, Ogden, UT, USA, 3–7 June 2002. [Google Scholar]
- Bringi, V.N.; Thurai, M.; Baumgardner, D. Raindrop fall velocities from an optical array probe and 2-D video disdrometer. Atmos. Meas. Tech. 2018, 11, 1377–1384. [Google Scholar] [CrossRef]
- Bringi, V.N.; Hoferer, R.; Brunkow, D.A.; Schwerdtfeger, R.; Chandrasekar, V.; Rutledge, S.A.; George, J.; Kennedy, P.C. Design and Performance Characteristics of the New 8.5-m Dual-Offset Gregorian Antenna for the CSU–CHILL Radar. J. Atmos. Ocean. Technol. 2011, 28, 907–920. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The Global Precipitation Measurement (GPM) Mission for science and society. Bull. Am. Meteorol. Soc. 2016, 98, 1679–1696. [Google Scholar] [CrossRef]
- Tokay, A.; Bashor, P.G.; McDowell, V.L. Comparison of Rain Gauge Measurements in the Mid-Atlantic Region. J. Hydrometeor. 2010, 11, 553–565. [Google Scholar] [CrossRef]
- OTT Hydromet GmbH. Operating Instructions: OTT Pluvio2 Precipitation Gauge. OTT Hydromet. 2010, 60. Available online: http://www.ott.com/en-us/products/download/operating-instructions-precipitation-gauge-ott-pluvio2/ (accessed on 24 January 2020).
- Rasmussen, R.; Baker, B.; Kochendorfer, J.; Meyers, T.; Landolt, S.; Fischer, A.P.; Black, J.; Thériault, J.M.; Kucera, P.; Gochis, D.; et al. How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed. Bull. Amer. Meteor. Soc. 2012, 93, 811–829. [Google Scholar] [CrossRef]
- Raupach, T.H.; Thurai, M.; Bringi, V.N.; Berne, A. Reconstructing the Drizzle Mode of the Raindrop Size Distribution Using Double-Moment Normalization. J. Appl. Meteor. 2019, 58, 145–164. [Google Scholar] [CrossRef]
- Wolff, D.B.D.A. Marks, and W.A. Petersen, 2015: General Application of the Relative Calibration Adjustment (RCA) Technique for Monitoring and Correcting Radar Reflectivity Calibration. J. Atmos. Ocean. Technol. 2015, 32, 496–506. [Google Scholar] [CrossRef]
- Thurai, M.; Bringi, V.N.; Wolff, D.B.; Marks, D.A.; Pabla, C.S. Drop Size Distribution Measurements in Outer Rainbands of Hurricane Dorian at the NASA Wallops Precipitation-Research Facility. Atmosphere 2020, 11, 578. [Google Scholar] [CrossRef]
- Bringi, V.; Seifert, A.; Wu, W.; Thurai, M.; Huang, G.-J.; Siewert, C. Hurricane Dorian Outer Rain Band Observations and 1D Particle Model Simulations: A Case Study. Atmosphere 2020, 11, 879. [Google Scholar] [CrossRef]
- Kennedy, P.C.; Rutledge, S.A. S-Band Dual-Polarization Radar Observations of Winter Storms. J. Appl. Meteor. Climatol. 2011, 50, 844–858. [Google Scholar] [CrossRef]
- Lee, G.; Zawadzki, I.; Szyrmer, W.; Sempere-Torres, D.; Uijlenhoet, R. A General Approach to Double-Moment Normalization of Drop Size Distributions. J. Appl. Meteor. 2004, 43, 264–281. [Google Scholar] [CrossRef]
- Bringi, V.N.; Mishra, K.V.; Thurai, M.; Kennedy, P.C.; Raupach, T.H. Retrieval of lower-order moments of the drop size distribution using CSU-CHILL X-band polarimetric radar: A case study. Atmos. Meas. Tech. 2020, 13, 4727–4750. [Google Scholar] [CrossRef]
Site (Disdrometer Type) | <Dm> mm | Std dev. of Dm in mm | Log <NW> | Std dev. of log NW | ||
---|---|---|---|---|---|---|
Tropical | Conv | Darwin (Joss) | 1.68 | 0.385 | 4.1 | 0.36 |
SCSMX (Joss) | 1.76 | 0.326 | 4.03 | 0.312 | ||
Papua New Guinea (2DVD) | 1.47 | 0.32 | 4.15 | 0.327 | ||
Florida (2DVD) | 1.74 | 0.49 | 4.25 | 0.52 | ||
TOGA-COARE (from airborne data) | 1.6 | 0.34 | 4.33 | 0.4 | ||
Continent | Conv | Graz (2DVD) | 2.12 | 0.53 | 3.39 | 0.45 |
Sydney(Joss) | 2.29 | 0.51 | 3.3 | 0.34 | ||
Arecibo (Joss) | 2.36 | 0.17 | 3.15 | 0.27 | ||
Colorado (2DVD) | 2.45 | 0.58 | 3.43 | 0.38 | ||
All | Strat | Darwin (Joss) | 1.37 | 0.31 | 3.72 | 0.4 |
SCSMX (Joss) | 1.34 | 0.28 | 3.73 | 0.35 | ||
Papua New Guinea (2DVD) | 1.22 | 0.31 | 3.94 | 0.52 | ||
Florida (2DVD) | 1.48 | 0.34 | 3.5 | 0.48 | ||
TOGA-COARE (from airborne data from Testud) | 1.3 | 0.28 | 3.49 | 0.5 | ||
Colorado(2DVD) | 1.58 | 0.3 | 3.28 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thurai, M.; Bringi, V.; Wolff, D.; Marks, D.; Pabla, C. Testing the Drop-Size Distribution Based Separation of Stratiform and Convective Rain Using Radar and Disdrometer Data from a Midlatitude Coastal Region. Environ. Sci. Proc. 2021, 4, 13. https://doi.org/10.3390/ecas2020-08125
Thurai M, Bringi V, Wolff D, Marks D, Pabla C. Testing the Drop-Size Distribution Based Separation of Stratiform and Convective Rain Using Radar and Disdrometer Data from a Midlatitude Coastal Region. Environmental Sciences Proceedings. 2021; 4(1):13. https://doi.org/10.3390/ecas2020-08125
Chicago/Turabian StyleThurai, Merhala, Viswanathan Bringi, David Wolff, David Marks, and Charanjit Pabla. 2021. "Testing the Drop-Size Distribution Based Separation of Stratiform and Convective Rain Using Radar and Disdrometer Data from a Midlatitude Coastal Region" Environmental Sciences Proceedings 4, no. 1: 13. https://doi.org/10.3390/ecas2020-08125
APA StyleThurai, M., Bringi, V., Wolff, D., Marks, D., & Pabla, C. (2021). Testing the Drop-Size Distribution Based Separation of Stratiform and Convective Rain Using Radar and Disdrometer Data from a Midlatitude Coastal Region. Environmental Sciences Proceedings, 4(1), 13. https://doi.org/10.3390/ecas2020-08125