Moisture Sources for Tropical Cyclones Genesis in the Coast of West Africa through a Lagrangian Approach †
Abstract
:1. Introduction
2. Material and Methods
2.1. Data
2.2. Methodology
2.2.1. Cluster Analysis
2.2.2. The Lagrangian Model FLEXPART
3. Results and Discussion
3.1. TC Genesis near the Coast of West Africa
3.2. Moisture Transport
3.3. Identification of Moisture Sources during the Warm and Cold Phases of the ENSO Phenomenon
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ankur, K.; Busireddy, N.K.R.; Osuri, K.K.; Niyogi, D. On the relationship between intensity changes and rainfall distribution in tropical cyclones over the North Indian Ocean. Int. J. Climatol. 2020, 40, 2015–2025. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, J.A.; Vigh, J.L.; Zhu, P.; Liu, H.; Wang, X.; Wadler, J.B. An Observational Study of the Symmetric Boundary Layer Structure and Tropical Cyclone Intensity. Atmosphere 2020, 11, 158. [Google Scholar] [CrossRef]
- DeMaria, M.; Knaff, J.A.; Connell, B.H. A Tropical Cyclone Genesis Parameter for the Tropical Atlantic. Wea. Forecast. 2001, 16, 219–233. [Google Scholar] [CrossRef]
- Palmen, E. On the formation and structure of tropical cyclones. Geophysics 1948, 3, 26–38. [Google Scholar]
- Riehl, H. On the formation of typhoons. J. Meteor. 1948, 5, 247–264. [Google Scholar] [CrossRef]
- Gray, W.M. Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Montgomery, M.T. Recent Advances in Tropical Cyclogenesis. In Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction; Mohanty, U.C., Gopalakrishnan, S.G., Eds.; Springer: Dordrecht, The Netherlands, 2016. [Google Scholar] [CrossRef]
- McBride, J.L. Tropical cyclone formation. In Global Perspectives on Tropical Cyclones; WMO/TD No. 693, Rep. TCP-38; World Meteorological Organization: Geneva, Switzerland, 1995; pp. 63–105. [Google Scholar]
- Huang, H.L.; Yang, M.J.; Sui, C.H. Water budget and precipitation efficiency of Typhoon Morakot (2009). J. Atmos. Sci. 2014, 71, 112–129. [Google Scholar] [CrossRef]
- Makarieva, A.M.; Gorshkov, V.G.; Nefiodov, A.V.; Chikunov, A.V.; Sheil, D.; Donato Nobre, A.; Li, B.L. Fuel for cyclones: The water vapor budget of a hurricane as dependent on its movement. Atmos. Res. 2017, 193, 216–230. [Google Scholar] [CrossRef]
- Fujiwara, K.; Kawamura, R.; Hirata, H.; Kawano, T.; Kato, M.; Shinoda, T. A positive feedback process between tropical cyclone intensity and the moisture conveyor belt assessed with Lagrangian diagnostics. J. Geophys. Res. Atmos. 2017, 122, 12502–12521. [Google Scholar] [CrossRef]
- Yoshida, R.; Miyamoto, Y.; Tomita, H.; Kajikawa, Y. The effect of water vapor on tropical cyclone genesis: A numerical experiment of a non-developing disturbance observed in PALAU 2010. J. Meteor. Soc. Jpn. 2017, 95, 35–47. [Google Scholar] [CrossRef]
- Wu, L.; Su, H.; Fovell, R.G.; Dunkerton, T.J.; Wang, Z.; Kahn, B.H. Impact of environmental moisture on tropical cyclone intensification. Atmos. Chem. Phys. 2015, 15, 14041–14053. [Google Scholar] [CrossRef]
- Bosilovich, M.G.; Schubert, S.D. Water vapor tracers as diagnostics of the regional hydrologic cycle. J. Hydrometeorol. 2002, 3, 149–165. [Google Scholar] [CrossRef]
- van der Ent, R.J.; Savenije, H.H.G.; Schaefli, B.; SteeleDunne, S.C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 2010, 46, W09525. [Google Scholar] [CrossRef]
- de Leeuw, J.; Methven, J.; Blackburn, M. Physical factors influencing regional precipitation variability attributed using an airmass trajectory method. J. Clim. 2017, 30, 7359–7378. [Google Scholar] [CrossRef]
- Guo, L.; Klingaman, N.P.; Demory, M.-E.; Vidale, P.L.; Turner, A.G.; Stephan, C.C. The contributions of local and remote atmospheric moisture fluxes to East Asian precipitation and its variability. Clim. Dyn. 2018, 51, 4139–4156. [Google Scholar] [CrossRef]
- Neumann, C.J. Global climatology. In Global Guide to Tropical Cyclone Forecasting; WMO/TD No. 560, Rep. TCP-31; World Meteorological Organization: Geneva, Switzerland, 1993; p. 1. [Google Scholar]
- Pazos, M.; Gimeno, L. Identification of moisture sources in the Atlantic Ocean for cyclogenesis processes. In Proceedings of the 1st International Electronic Conference on Hydrological Cycle (ChyCle-2017), MDPI Sciforum Electronic Conference Series, Basel, Switzerland, 12–16 November 2017; Volume 1. [Google Scholar]
- Redelsperger, J.L.; Diongue, A.; Diedhiou, A.; Ceron, J.P.; Diop, M.; Gueremy, J.F.; Lafore, J.P. Multiscale description of a Sahelian synoptic weather system representative of the West African monsoon. Quart. J. R. Meteor. Soc. 2002, 128, 1229–1257. [Google Scholar] [CrossRef]
- Redelsperger, J.L.; Thorncroft, C.D.; Diedhiou, A.; Lebel, T.; Parker, D.J.; Polcher, J. African monsoon multidisciplinary analysis: An international research project and field campaign. Bull. Amer. Meteor. Soc. 2006, 87, 1739–1746. [Google Scholar] [CrossRef]
- Lélé, M.I.; Leslie, L.M.; Lamb, P.J. Analysis of Low-Level Atmospheric Moisture Transport Associated with the West African Monsoon. J. Clim. 2015, 28, 4414–4430. [Google Scholar] [CrossRef]
- Landsea, C.W.; Franklin, J.L. Atlantic Hurricane Database Uncertainty and Presentation of a New Database Format. Mon. Wea. Rev. 2013, 141, 3576–3592. [Google Scholar] [CrossRef]
- Stohl, A.; Forster, C.; Frank, A.; Seibert, P.; Wotawa, G. Technical Note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys. 2005, 5, 2461–2474. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Pérez-Alarcón, A.; Fernández-Alvarez, J.C.; Sorí, R.; Nieto, R.; Gimeno, L. Dataset of outer tropical cyclone size from a radial wind profile. Data Brief. 2020. under review. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Alarcón, A.; Fernández-Alvarez, J.C.; Sorí, R.; Nieto, R.; Gimeno, L. Comparative climatology of outer tropical cyclone size using radial wind profiles. Atmos. Res. 2020. under review. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Hirahara, S.; Ishii, M.; Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 2014, 27, 57–75. [Google Scholar] [CrossRef]
- Enfield, D.B.; Mestas-Nunez, A.M.; Trimble, P.J. The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys. Res. Lett. 2001, 28, 2077–2080. [Google Scholar] [CrossRef]
- Smith, C.A.; Sardeshmukh, P. The Effect of ENSO on the Intraseasonal Variance of Surface Temperature in Winter. Int. J. Climatol. 2000, 20, 1543–1557. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 27 December 1965–7 January 1966; pp. 281–297. [Google Scholar]
- Corporal-Lodangco, I.; Richman, M.B.; Leslie, L.M.; Lamb, P.J. Cluster Analysis of North Atlantic Tropical Cyclones. Procedia Comput. Sci. 2014, 36, 293–300. [Google Scholar] [CrossRef]
- Jakobson, E.; Vihma, T. Atmospheric moisture budget in the Arctic based on the ERA-40 reanalysis. Int. J. Climatol. 2010, 30, 2175–2194. [Google Scholar] [CrossRef]
- Gimeno, L.; Stohl, A.; Trigo, R.M.; Dominguez, F.; Yoshimura, K.; Yu, L.; Drumond, A.; Durán-Quesada, A.M.; Nieto, R. Oceanic and terrestrial sources of continental precipitation. Rev. Geophys. 2012, 50, RG4003. [Google Scholar] [CrossRef]
- Stohl, A.; James, P. A Lagrangian Analysis of the Atmospheric Branch of the Global Water Cycle. Part I: Method Description, Validation, and Demonstration for the August 2002 Flooding in Central Europe. J. Hydrometeor. 2004, 5, 656–678. [Google Scholar] [CrossRef]
- Numaguti, A. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res. 1999, 104, 1957–1972. [Google Scholar] [CrossRef]
- Stohl, A.; James, P. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between the Earth’s ocean basins and river catchments. J. Hydrometeorol. 2005, 6, 961–984. [Google Scholar] [CrossRef]
- Gray, V.M.; Landsea, C.W. African Rainfall as a Precursor of Hurricane-Related Destruction on the U.S. East Coast. Bull. Am. Meteorol. Soc. 1992, 73, 1352–1364. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Gillies, R.R. 40. Wang, S-Y.; Gillies, R.R. Observed Change in Sahel Rainfall, Circulations, African Easterly Waves, and Atlantic Hurricanes Since 1979. Int. J. Geophys. 2011, 2011, 259529. [Google Scholar] [CrossRef]
- Meynadier, R.; Bock, O.; Guichard, F.; Boone, A.; Roucou, P.; Redelsperger, J.-L. West African monsoon water cycle: 1. A hybrid water budget dataset. J. Geophys. Res. 2010, 115, D19106. [Google Scholar] [CrossRef]
- Niang, C.; Mancho, A.M.; García-Garrido, V.J.; Mohino, E.; Rodriguez-Fonseca, B.; Curbelo, J. Transport pathways across the West African Monsoon as revealed by Lagrangian Coherent Structures. Sci. Rep. 2020, 10, 12543. [Google Scholar] [CrossRef]
- Dieng, A.L.; Sall, S.M.; Eymard, L.; Leduc-Leballeur, M.; Lazar, A. Trains of African Easterly Waves and Their Relationship to Tropical Cyclone Genesis in the Eastern Atlantic. Mon. Wea. Rev. 2017, 145, 599–616. [Google Scholar] [CrossRef]
- Deser, C.; Alexander, M.A.; Xie, S.-P.; Phillips, A.S. Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci. 2010, 2, 115–143. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Alarcón, A.; Sorí, R.; Fernández-Alvarez, J.C.; Nieto, R.; Gimeno, L. Moisture Sources for Tropical Cyclones Genesis in the Coast of West Africa through a Lagrangian Approach. Environ. Sci. Proc. 2021, 4, 3. https://doi.org/10.3390/ecas2020-08126
Pérez-Alarcón A, Sorí R, Fernández-Alvarez JC, Nieto R, Gimeno L. Moisture Sources for Tropical Cyclones Genesis in the Coast of West Africa through a Lagrangian Approach. Environmental Sciences Proceedings. 2021; 4(1):3. https://doi.org/10.3390/ecas2020-08126
Chicago/Turabian StylePérez-Alarcón, Albenis, Rogert Sorí, José Carlos Fernández-Alvarez, Raquel Nieto, and Luis Gimeno. 2021. "Moisture Sources for Tropical Cyclones Genesis in the Coast of West Africa through a Lagrangian Approach" Environmental Sciences Proceedings 4, no. 1: 3. https://doi.org/10.3390/ecas2020-08126
APA StylePérez-Alarcón, A., Sorí, R., Fernández-Alvarez, J. C., Nieto, R., & Gimeno, L. (2021). Moisture Sources for Tropical Cyclones Genesis in the Coast of West Africa through a Lagrangian Approach. Environmental Sciences Proceedings, 4(1), 3. https://doi.org/10.3390/ecas2020-08126