Mineralization, Alteration Assemblages and Stable Isotopes of the Intermediate-Sulfidation Epithermal Strauss Deposit, Drake Goldfield, North-Eastern NSW, Australia †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Lithology, Alteration, and Mineralisation
3.1.1. Lithology
3.1.2. Alteration and Veining
3.1.3. Mineralization
3.2. pXRF
3.3. Assay Data Analysis
3.4. Stable Isotopes
4. Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cumming, G. New Geological Constraints for the Drake Volcanics, Drake Area, Northern NSW; Internal Report for White Rock Minerals Limited; White Rock Minerals Limited: Ballarat, VIC, Australia, 2011. [Google Scholar]
- Andrews, E.C. Report on the Drake Gold and Copper Field; William Applegate Gullick: Sydney, NSA, Australia, 1908. [Google Scholar]
- Bottomer, L. Epithermal silver-gold mineralization in the Drake area, north eastern New South Wales. Aust. J. Earth Sci. 1986, 33, 457–473. [Google Scholar] [CrossRef]
- Perkins, C. The Red Rock deposit: A late Permian submarine epithermal precious metal system in Northeastern New South Wales. In Pacific Rim 87. International Congress on the Geology, Structure, Mineralization and Economics of Pacific Rim; Elsevier Science: Amsterdam, The Netherlands, 1987; pp. 895–898. [Google Scholar]
- White Rock Minerals. Mt Carrington Project: Overview, Geological Setting, Resources, Development, Exploration Gold and Silver, and Exploration Copper. Available online: https://www.whiterockminerals.com.au/mt-carrington-overview (accessed on 10 March 2020).
- Craighead, G.; Gordon, M. White Rock Minerals (WRM): Low Cost Gold/Silver Start-Up Opportunity, Sydney. Breakaway Investment Group; White Rock Minerals Limited: Ballarat, VIC, Australia, 2016. [Google Scholar]
- White Rock Minerals Limited. Exceptional Updated Gold Pre-Feasibility Results. ASX Announcement 19th August 2020; White Rock Minerals Limited: Ballarat, VIC, Australia, 2020. [Google Scholar]
- Burkett, D.A.; Graham, I.T.; Ward, C.R. The application of portable X-ray diffraction to quantitative mineralogical analysis of hydrothermal systems. Can. Mineral. 2015, 53, 429–454. [Google Scholar] [CrossRef]
- Lau, F. Geochemical Discrimination of the Chemostratigraphy and Alteration Assemblages of the Kulumadau Epithermal Gold Deposit, Woodlark Island, Papua New Guinea. Bachelor’s Honours Thesis, University of New South Wales, Kensington, NSW, Australia, 2012. [Google Scholar]
- Markowska, M.; Cuthbert, M.O.; Baker, A.; Treble, P.C.; Andersen, M.S.; Adler, L.; Griffiths, A.; Frisia, S. Modern speleothem oxygen isotope hydroclimate records in water-limited SE Australia. Geochim. Cosmochim. Acta 2020, 270, 431–448. [Google Scholar] [CrossRef]
- Corbett, G.J.; Leach, T.M. Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization. In Society of Economic Geologists Special Publication 6; The Economic Geology Publishing Company (PUBCO): New Haven, CT, USA, 1997. [Google Scholar]
- Simmons, S.F.; White, N.C.; John, D.A.; Hedenquist, J.W.; Thompson, J.F.H.; Goldfarb, R.J.; Richards, J.P. Geological Characteristics of Epithermal Precious and Base Metal Deposits. One Hundredth Anniv. Vol. 2005, 485–522. [Google Scholar] [CrossRef]
- Ohmoto, H.; Rye, R.; Barnes, H. Geochemistry of Hydrothermal Ore Deposits; Wiley: New York, NY, USA, 1979; Volume 67. [Google Scholar]
- Shanks, W.P. Stable Isotope Geochemistry of Mineral Deposits. Treatise Geochem. 2014, 13, 59–85. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhai, Y. Oxygen isotope studies of epithermal systems: A review. Chin. J. Geochem. 1992, 11, 329–343. [Google Scholar] [CrossRef]
- Herbert, H.; Smith, J. Sulfur isotopes and origin of some sulfide deposits, New England, Australia. Miner. Depos. 1978, 13, 51–63. [Google Scholar] [CrossRef]
- White, N.; Hendequist, J. Epithermal gold deposits: Styles, characteristics, and exploration. SEG Newsp. 1995, 1, 9–13. [Google Scholar] [CrossRef]
- Wang, L.; Qin, K.-Z.; Song, G.-X.; Li, G.-M. A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geol. Rev. 2019, 107, 434–456. [Google Scholar] [CrossRef]
SRDD015 (n = 164) Poorly Mineralized | SRDD016 (n = 124) Strongly Mineralized | SRDD021 (n = 114) Moderately Mineralized | |
---|---|---|---|
Au vs. Pb + Zn | R2 = 0.47, p = 0 | R2 = 0.28, p = 0 | R2 = 0.25, p = 0 |
Au vs. Cu | R2 = 0.65, p = 0 | R2 = 0.39, p = 0 | R2 = 0.66, p = 0 |
Au vs. Ag | R2 = 0.71, p = 0 | R2 = 0.54, p = 0 | R2 = 0.44, p = 0 |
Au vs. As | R2 = 0.55, p = 0 | R2 = 0.36, p = 0 | R2 = 0.62, p = 0 |
Sample ID | Depth (m) | Mineralogy | δ13CPDB (‰) | δ18OSMOW (‰) | δ34SCDT (‰) |
---|---|---|---|---|---|
SRDD001-165.75 | 165.75 | Calcite | −9.07 | 8.93 | |
SRDD002-156.6 | 156.6 | Calcite | −9.48 | 16.34 | |
SRDD002-176.5 | 176.5 | Calcite | −8.46 | 13.53 | |
SRDD002-205.7-205.75A | 205.7–205.75 | Dolomite | −5.15 | 13.19 | |
SRDD002-205.7-205.75B | 205.7–205.75 | Magnesite | −5.37 | 12.97 | |
SRDD002-212.6 | 212.6 | Magnesite and Calcite | −7.43 | 19.03 | |
SRDD002-227.7 | 227.7 | Magnesite and Calcite | −7.84 | 17.18 | |
SRDD002-236.6-237 | 236.6–237 | Calcite | −7.46 | 17.60 | |
SRDD002-242.6 | 242.6 | Calcite | −11.46 | 7.80 | |
SRDD010-111.9 | 111.9 | Magnesite | −8.72 | 11.73 | |
SRDD010-113.3 | 113.3 | Siderite and Magnesite | −10.44 | 17.67 | |
SRDD015-68.7 | 68.7 | Dolomite | −8.59 | 8.82 | |
SRDD015-106.5 | 106.5 | Magnesite and Calcite | −6.36 | 17.23 | |
SRDD010-50.5 | 50.5 | Sphalerite | −2.23 | ||
SRDD020-10A | 10 | Pyrite and Sphalerite | −2.39 | ||
SRDD020-10B | 10 | Sphalerite | −3.09 | ||
SRDD020-12.6 | 12.6 | Sphalerite | −2.39 | ||
SRDD020-14.8 | 14.8 | Pyrite | −2.70 | ||
SRDD020-38.15 | 38.15 | Sphalerite | −4.15 | ||
SRDD020-23.2 | 23.2–23.3 | Sphalerite | −1.80 | ||
SRDD021-72.6 | 72.6 | Sphalerite | −2.41 | ||
EM56 | - | Sphalerite | −0.53 | ||
EM57 | - | Sphalerite | −1.45 | ||
EM61 | - | Sphalerite | −2.09 | ||
EM62 | - | Sphalerite | −3.45 | ||
EM68 | - | Pyrite | −2.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madayag, E.; Graham, I.; Quan, H.; Worland, R.; Adler, L.; Dietz, C. Mineralization, Alteration Assemblages and Stable Isotopes of the Intermediate-Sulfidation Epithermal Strauss Deposit, Drake Goldfield, North-Eastern NSW, Australia. Environ. Sci. Proc. 2021, 6, 27. https://doi.org/10.3390/iecms2021-09350
Madayag E, Graham I, Quan H, Worland R, Adler L, Dietz C. Mineralization, Alteration Assemblages and Stable Isotopes of the Intermediate-Sulfidation Epithermal Strauss Deposit, Drake Goldfield, North-Eastern NSW, Australia. Environmental Sciences Proceedings. 2021; 6(1):27. https://doi.org/10.3390/iecms2021-09350
Chicago/Turabian StyleMadayag, Emmanuel, Ian Graham, Hongyan Quan, Rohan Worland, Lewis Adler, and Christian Dietz. 2021. "Mineralization, Alteration Assemblages and Stable Isotopes of the Intermediate-Sulfidation Epithermal Strauss Deposit, Drake Goldfield, North-Eastern NSW, Australia" Environmental Sciences Proceedings 6, no. 1: 27. https://doi.org/10.3390/iecms2021-09350
APA StyleMadayag, E., Graham, I., Quan, H., Worland, R., Adler, L., & Dietz, C. (2021). Mineralization, Alteration Assemblages and Stable Isotopes of the Intermediate-Sulfidation Epithermal Strauss Deposit, Drake Goldfield, North-Eastern NSW, Australia. Environmental Sciences Proceedings, 6(1), 27. https://doi.org/10.3390/iecms2021-09350