A Comprehensive Genetic and Bioinformatic Analysis Provides Evidence for the Engagement of COVID-19 GWAS-Significant Loci in the Molecular Mechanisms of Coronary Artery Disease and Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Genes and Polymorphisms
2.2. Genetic Analysis
2.3. Statistical and Bioinformatic Analysis
- GTEx Portal (http://www.gtexportal.org/; accessed on 4 June 2024): this tool was used to analyze the expression levels of the studied genes in whole blood, blood vessels, brain tissue, and heart. It also helped in analyzing the expression of quantitative trait loci (eQTLs) associated with these genes [24].
- eQTLGen (https://www.eqtlgen.org/; accessed on 4 June 2024): This resource was used to examine the binding of GWAS SNPs to eQTLs in peripheral blood [25].
- HaploReg (v4.2), a bioinformatics tool available at https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php; accessed on 4 June 2024). This tool assessed the associations between GWAS SNPs and specific histone modifications that indicate promoters and enhancers. These modifications included acetylation of lysine residues at positions 27 and 9 of the histone H3 protein, as well as monomethylation at position 4 (H3K4me1) and tri-methylation at position 4 (H3K4me3) of the histone H3 protein. Additionally, HaploReg was used to investigate SNP positioning in DNase hypersensitive regions, regulatory motif sites, and binding locations for regulatory proteins [26].
- atSNP Function Prediction (atSNP Search human version 1.0.0) (http://atsnp.biostat.wisc.edu/search; accessed on 3 June 2024): This online tool was utilized to evaluate the impact of GWAS SNPs on gene affinity to transcription factors (TFs) depending on the presence of reference or alternative alleles. TFs were included based on the degree of influence SNPs have on their interaction with DNA, calculated using a positional weight matrix [27].
- Gene Ontology (http://geneontology.org/; accessed on 3 June 2024): This tool enabled the analysis of the joint involvement of TFs linked to the reference or SNP alleles in overrepresented biological processes directly related to the pathogenesis of cardiovascular diseases (CVDs) [28]. Biological functions controlled by transcription factors associated with GWAS SNPs were used as functional groups.
- Cerebrovascular Disease Knowledge Portal (CDKP) (https://cd.hugeamp.org/; accessed on 4 June 2024) and Cardiovascular Disease Knowledge Portal (https://cvd.hugeamp.org/; accessed on 4 June 2024): These online tools, which combine and analyze results from genetic associations by the largest consortia studying cardio- and cerebrovascular diseases, were used for bioinformatic analyses of the associations of GWAS SNPs with atherosclerosis-associated diseases, intermediate phenotypes, and CVD risk factors such as total cholesterol, LDL, and BMI [29].
3. Results
3.1. Assosiations of GWAS-Significant SNPs with the Risk of CVDs in Severe COVID-19 Patients
3.2. Gene–Gene and Gene–Environmental Interactions
3.2.1. Gene–Gene Interactions Associated with Coronary Artery Disease Risk in Patients with Severe COVID-19 (MB-MDR, MDR Modeling)
3.2.2. Gene–Environmental Interactions Associated with Coronary Artery Disease Risk in Severe COVID-19 Patients (MB-MDR, MDR Modeling)
3.2.3. Gene–Gene Interactions Associated with Cerebral Stroke Risk in Patients with Severe COVID-19 (MB-MDR, MDR Modeling)
3.2.4. Gene–Environmental Interactions Associated with Cerebral Stroke Risk in Severe COVID-19 Patients (MB-MDR, MDR Modeling)
3.3. Functional Annotation of CVDs-Associated SNPs
3.3.1. Subsubsection
3.3.2. Histone Modifications
3.3.3. Transcription Factors
3.3.4. Bioinformatic Analysis of the Relationship between GWAS SNPs and CVD-Related Phenotypes
4. Discussion
5. Conclusions
6. Study Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mustafin, R.N.; Khusnutdinova, E.K. Prospects for the Investigation of Retroelements Therapy for COVID-19 (review). Res. Results Biomed. 2023, 9, 422–445. [Google Scholar] [CrossRef]
- Sabatino, J.; De Rosa, S.; Di Salvo, G.; Indolfi, C. Impact of Cardiovascular Risk Profile on COVID-19 Outcome. A Meta-Analysis. PLoS ONE 2020, 15, e0237131. [Google Scholar]
- Gallo Marin, B.; Aghagoli, G.; Lavine, K.; Yang, L.; Siff, E.J.; Chiang, S.S.; Salazar-Mather, T.P.; Dumenco, L.; Savaria, M.C.; Aung, S.N. Predictors of COVID-19 Severity: A Literature Review. Rev. Med. Virol. 2021, 31, 1–10. [Google Scholar] [CrossRef]
- Pairo-Castineira, E.; Rawlik, K.; Bretherick, A.D.; Qi, T.; Wu, Y.; Nassiri, I.; McConkey, G.A.; Zechner, M.; Klaric, L.; Griffiths, F.; et al. GWAS and Meta-Analysis Identifies 49 Genetic Variants Underlying Critical COVID-19. Nature 2023, 617, 764–768. [Google Scholar] [CrossRef]
- Degenhardt, F.; Ellinghaus, D.; Juzenas, S.; Lerga-Jaso, J.; Wendorff, M.; Maya-Miles, D.; Uellendahl-Werth, F.; ElAbd, H.; Rühlemann, M.C.; Arora, J.; et al. Detailed Stratified GWAS Analysis for Severe COVID-19 in Four European Populations. Hum. Mol. Genet. 2022, 31, 3945–3966. [Google Scholar] [CrossRef]
- Severe COVID-19 GWAS Group. Genomewide Association Study of Severe COVID-19 with Respiratory Failure. N. Engl. J. Med. 2020, 383, 1522–1534. [Google Scholar] [CrossRef] [PubMed]
- Pahl, M.C.; Le Coz, C.; Su, C.; Sharma, P.; Thomas, R.M.; Pippin, J.A.; Cruz Cabrera, E.; Johnson, M.E.; Leonard, M.E.; Lu, S.; et al. Implicating Effector Genes at COVID-19 GWAS Loci Using Promoter-Focused Capture-C in Disease-Relevant Immune Cell Types. Genome Biol. 2022, 23, 125. [Google Scholar] [CrossRef] [PubMed]
- Thibord, F.; Chan, M.V.; Chen, M.-H.; Johnson, A.D. A Year of COVID-19 GWAS Results from the GRASP Portal Reveals Potential Genetic Risk Factors. HGG Adv. 2022, 3, 100095. [Google Scholar] [CrossRef]
- Fink-Baldauf, I.M.; Stuart, W.D.; Brewington, J.J.; Guo, M.; Maeda, Y. CRISPRi Links COVID-19 GWAS Loci to LZTFL1 and RAVER1. EBioMedicine 2022, 75, 103806. [Google Scholar] [CrossRef]
- Sanyaolu, A.; Okorie, C.; Marinkovic, A.; Patidar, R.; Younis, K.; Desai, P.; Hosein, Z.; Padda, I.; Mangat, J.; Altaf, M. Comorbidity and Its Impact on Patients with COVID-19. SN Compr. Clin. Med. 2020, 2, 1069–1076. [Google Scholar] [CrossRef]
- Wang, B.; Li, R.; Lu, Z.; Huang, Y. Does Comorbidity Increase the Risk of Patients with COVID-19: Evidence from Meta-Analysis. Aging 2020, 12, 6049–6057. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Li, S.; Yu, H.; Wang, P.; Zhang, Y.; Chen, Z.; Li, Y.; Cheng, L.; Li, W.; Jia, H.; et al. Epidemiological, Comorbidity Factors with Severity and Prognosis of COVID-19: A Systematic Review and Meta-Analysis. Aging 2020, 12, 12493–12503. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Zhang, W.; Li, S.; Qin, G. Coronary Heart Disease and COVID-19: A Meta-Analysis. Med. Clínica 2021, 156, 547–554. [Google Scholar] [CrossRef]
- Nannoni, S.; de Groot, R.; Bell, S.; Markus, H.S. Stroke in COVID-19: A Systematic Review and Meta-Analysis. Int. J. Stroke 2021, 16, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Peng, H.; Chen, F.; Liu, C.; Zheng, Q.; Wang, M.; Wang, J.; Yu, H.; Xue, E.; Chen, X.; et al. Identification of Genetic Loci Jointly Influencing COVID-19 and Coronary Heart Diseases. Hum. Genom. 2023, 17, 101. [Google Scholar] [CrossRef] [PubMed]
- D’Antonio, M.; Nguyen, J.P.; Arthur, T.D.; Matsui, H.; COVID-19 Host Genetics Initiative; D’Antonio-Chronowska, A.; Frazer, K.A. SARS-CoV-2 Susceptibility and COVID-19 Disease Severity Are Associated with Genetic Variants Affecting Gene Expression in a Variety of Tissues. Cell Rep. 2021, 37, 110020. [Google Scholar] [CrossRef]
- Dahabreh, I.; Kitsios, G.; Trikalinos, T.; Kent, D. The Complexity of ABO in Coronary Heart Disease. Lancet 2011, 377, 1493. [Google Scholar] [CrossRef]
- Che Mohd Nassir, C.M.N.; Zolkefley, M.K.I.; Ramli, M.D.; Norman, H.H.; Abdul Hamid, H.; Mustapha, M. Neuroinflammation and COVID-19 Ischemic Stroke Recovery—Evolving Evidence for the Mediating Roles of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis and NLRP3 Inflammasome. Int. J. Mol. Sci. 2022, 23, 3085. [Google Scholar] [CrossRef]
- Bushueva, O.Y. Single Nucleotide Polymorphisms in Genes Encoding Xenobiotic Metabolizing Enzymes Are Associated with Predisposition to Arterial Hypertension. Res. Results Biomed. 2020, 6, 447–456. [Google Scholar] [CrossRef]
- Belykh, A.E.; Soldatov, V.O.; Stetskaya, T.A.; Kobzeva, K.A.; Soldatova, M.O.; Polonikov, A.V.; Deykin, A.V.; Churnosov, M.I.; Freidin, M.B.; Bushueva, O.Y. Polymorphism of SERF2, the Gene Encoding a Heat-Resistant Obscure (Hero) Protein with Chaperone Activity, Is a Novel Link in Ischemic Stroke. IBRO Neurosci. Rep. 2023, 14, 453–461. [Google Scholar] [CrossRef]
- Shilenok, I.; Kobzeva, K.; Stetskaya, T.; Freidin, M.; Soldatova, M.; Deykin, A.; Soldatov, V.; Churnosov, M.; Polonikov, A.; Bushueva, O. SERPINE1 mRNA Binding Protein 1 Is Associated with Ischemic Stroke Risk: A Comprehensive Molecular–Genetic and Bioinformatics Analysis of SERBP1 SNPs. Int. J. Mol. Sci. 2023, 24, 8716. [Google Scholar] [CrossRef] [PubMed]
- Kobzeva, K.A.; Soldatova, M.O.; Stetskaya, T.A.; Soldatov, V.O.; Deykin, A.V.; Freidin, M.B.; Bykanova, M.A.; Churnosov, M.I.; Polonikov, A.V.; Bushueva, O.Y. Association between HSPA8 Gene Variants and Ischemic Stroke: A Pilot Study Providing Additional Evidence for the Role of Heat Shock Proteins in Disease Pathogenesis. Genes 2023, 14, 1171. [Google Scholar] [CrossRef] [PubMed]
- Stetskaya, T.A.; Kobzeva, K.A.; Zaytsev, S.M.; Shilenok, I.V.; Komkova, G.V.; Goryainova, N.V.; Bushueva, O.Y. HSPD1 Gene Polymorphism Is Associated with an Increased Risk of Ischemic Stroke in Smokers. Res. Results Biomed. 2024, 10, 175–186. [Google Scholar] [CrossRef]
- GTEx Consortium. The GTEx Consortium Atlas of Genetic Regulatory Effects across Human Tissues. Science 2020, 369, 1318–1330. [Google Scholar] [CrossRef] [PubMed]
- Võsa, U.; Claringbould, A.; Westra, H.-J.; Bonder, M.J.; Deelen, P.; Zeng, B.; Kirsten, H.; Saha, A.; Kreuzhuber, R.; Kasela, S. Unraveling the Polygenic Architecture of Complex Traits Using Blood eQTL Metaanalysis. BioRxiv 2018, 447367. [Google Scholar] [CrossRef]
- Ward, L.D.; Kellis, M. HaploReg: A Resource for Exploring Chromatin States, Conservation, and Regulatory Motif Alterations within Sets of Genetically Linked Variants. Nucleic Acids Res. 2012, 40, D930–D934. [Google Scholar] [CrossRef]
- Shin, S.; Hudson, R.; Harrison, C.; Craven, M.; Keleş, S. atSNP Search: A Web Resource for Statistically Evaluating Influence of Human Genetic Variation on Transcription Factor Binding. Bioinformatics 2019, 35, 2657–2659. [Google Scholar] [CrossRef]
- Consortium, G.O. The Gene Ontology Resource: 20 Years and Still GOing Strong. Nucleic Acids Res. 2019, 47, D330–D338. [Google Scholar] [CrossRef]
- Crawford, K.M.; Gallego-Fabrega, C.; Kourkoulis, C.; Miyares, L.; Marini, S.; Flannick, J.; Burtt, N.P.; von Grotthuss, M.; Alexander, B.; Costanzo, M.C.; et al. Cerebrovascular Disease Knowledge Portal. Stroke 2018, 49, 470–475. [Google Scholar] [CrossRef]
- Harrison, S.L.; Buckley, B.J.; Rivera-Caravaca, J.M.; Zhang, J.; Lip, G.Y. Cardiovascular Risk Factors, Cardiovascular Disease, and COVID-19: An Umbrella Review of Systematic Reviews. Eur. Heart J. Qual. Care Clin. Outcomes 2021, 7, 330–339. [Google Scholar] [CrossRef]
- Aggarwal, G.; Cheruiyot, I.; Aggarwal, S.; Wong, J.; Lippi, G.; Lavie, C.J.; Henry, B.M.; Sanchis-Gomar, F. Association of Cardiovascular Disease with Coronavirus Disease 2019 (COVID-19) Severity: A Meta-Analysis. Curr. Probl. Cardiol. 2020, 45, 100617. [Google Scholar] [CrossRef] [PubMed]
- Bregel, L.V.; Efremova, O.S.; Kostyunin, K.Y.; Rudenko, N.Y.; Kozlov, Y.A.; Albot, V.V.; Knyzeva, N.A.; Tolmacheva, O.V.; Ovanesyan, S.V.; Barakin, A.O.; et al. Thrombosis in Multisystem Inflammatory Syndrome Associated with COVID-19 in Children: Retrospective Cohort Study Analysis and Review of the Literature. Biomedicines 2023, 11, 2206. [Google Scholar] [CrossRef] [PubMed]
- Bernard, I.; Limonta, D.; Mahal, L.K.; Hobman, T.C. Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. Viruses 2021, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska, A.; Chmiel, M.; Chwarścianek, N.; Czyżewski, K.; Richert-Przygońska, M. Coagulopathy and Thromboembolism in Children with COVID-19—Pathophysiology, Thrombotic Risk, Clinical Manifestations and Management. Acta Haematol. Pol. 2022, 53, 376–385. [Google Scholar] [CrossRef]
- Pardali, E.; ten Dijke, P. TGFβ Signaling and Cardiovascular Diseases. Int. J. Biol. Sci. 2012, 8, 195–213. [Google Scholar] [CrossRef]
- Ye, X.; Fan, F.; Bhattacharya, R.; Bellister, S.; Boulbes, D.R.; Wang, R.; Xia, L.; Ivan, C.; Zheng, X.; Calin, G.A. VEGFR-1 Pseudogene Expression and Regulatory Function in Human Colorectal Cancer Cells. Mol. Cancer Res. 2015, 13, 1274–1282. [Google Scholar] [CrossRef]
- Carmeliet, P.; Moons, L.; Luttun, A.; Vincenti, V.; Compernolle, V.; De Mol, M.; Wu, Y.; Bono, F.; Devy, L.; Beck, H.; et al. Synergism between Vascular Endothelial Growth Factor and Placental Growth Factor Contributes to Angiogenesis and Plasma Extravasation in Pathological Conditions. Nat. Med. 2001, 7, 575–583. [Google Scholar] [CrossRef]
- Seno, A.; Takeda, Y.; Matsui, M.; Okuda, A.; Nakano, T.; Nakada, Y.; Kumazawa, T.; Nakagawa, H.; Nishida, T.; Onoue, K.; et al. Suppressed Production of Soluble Fms-Like Tyrosine Kinase-1 Contributes to Myocardial Remodeling and Heart Failure. Hypertension 2016, 68, 678–687. [Google Scholar] [CrossRef]
- Boring, L.; Gosling, J.; Cleary, M.; Charo, I.F. Decreased Lesion Formation in CCR2-/- Mice Reveals a Role for Chemokines in the Initiation of Atherosclerosis. Nature 1998, 394, 894–897. [Google Scholar] [CrossRef]
- McDermott, D.H.; Halcox, J.P.J.; Schenke, W.H.; Waclawiw, M.A.; Merrell, M.N.; Epstein, N.; Quyyumi, A.A.; Murphy, P.M. Association Between Polymorphism in the Chemokine Receptor CX3CR1 and Coronary Vascular Endothelial Dysfunction and Atherosclerosis. Circ. Res. 2001, 89, 401–407. [Google Scholar] [CrossRef]
- Soehnlein, O.; Drechsler, M.; Döring, Y.; Lievens, D.; Hartwig, H.; Kemmerich, K.; Ortega-Gómez, A.; Mandl, M.; Vijayan, S.; Projahn, D. Distinct Functions of Chemokine Receptor Axes in the Atherogenic Mobilization and Recruitment of Classical Monocytes. EMBO Mol. Med. 2013, 5, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, J.; Xiao, P.; Lin, Y.; Gong, X.; Liu, S.; Xu, Q.; Wang, M.; Ren, H.; Lu, M.; et al. PtdIns4P Restriction by Hydrolase SAC1 Decides Specific Fusion of Autophagosomes with Lysosomes. Autophagy 2021, 17, 1907–1917. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Han, B.; Zeng, Y.; Su, D.; Liu, C. The Roles of Macrophage Autophagy in Atherosclerosis. Acta Pharmacol. Sin. 2016, 37, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Alloza, I.; Goikuria, H.; Freijo, M.D.M.; Vandenbroeck, K. A Role for Autophagy in Carotid Atherosclerosis. Eur. Stroke J. 2016, 1, 255–263. [Google Scholar] [CrossRef]
- Nishino, I.; Fu, J.; Tanji, K.; Yamada, T.; Shimojo, S.; Koori, T.; Mora, M.; Riggs, J.E.; Oh, S.J.; Koga, Y. Primary LAMP-2 Deficiency Causes X-Linked Vacuolar Cardiomyopathy and Myopathy (Danon Disease). Nature 2000, 406, 906–910. [Google Scholar] [CrossRef]
- Tanaka, Y.; Guhde, G.; Suter, A.; Eskelinen, E.-L.; Hartmann, D.; Lüllmann-Rauch, R.; Janssen, P.M.; Blanz, J.; Von Figura, K.; Saftig, P. Accumulation of Autophagic Vacuoles and Cardiomyopathy in LAMP-2-Deficient Mice. Nature 2000, 406, 902–906. [Google Scholar] [CrossRef]
- Xiong, R.; Wu, Y.; Wu, Q.; Muskhelishvili, L.; Davis, K.; Tripathi, P.; Chen, Y.; Chen, T.; Bryant, M.; Rosenfeldt, H. Integration of Transcriptome Analysis with Pathophysiological Endpoints to Evaluate Cigarette Smoke Toxicity in an in Vitro Human Airway Tissue Model. Arch. Toxicol. 2021, 95, 1739–1761. [Google Scholar] [CrossRef] [PubMed]
- Beckert, S.; Farrahi, F.; Aslam, R.S.; Scheuenstuhl, H.; Königsrainer, A.; Hussain, M.Z.; Hunt, T.K. Lactate Stimulates Endothelial Cell Migration. Wound Repair Regen. 2006, 14, 321–324. [Google Scholar] [CrossRef]
- Michaelis, U.R. Mechanisms of Endothelial Cell Migration. Cell. Mol. Life Sci. 2014, 71, 4131–4148. [Google Scholar] [CrossRef]
- Okondo, M.C.; Johnson, D.C.; Sridharan, R.; Go, E.B.; Chui, A.J.; Wang, M.S.; Poplawski, S.E.; Wu, W.; Liu, Y.; Lai, J.H. DPP8 and DPP9 Inhibition Induces Pro-Caspase-1-Dependent Monocyte and Macrophage Pyroptosis. Nat. Chem. Biol. 2017, 13, 46–53. [Google Scholar] [CrossRef]
- Zhong, F.L.; Robinson, K.; Teo, D.E.T.; Tan, K.-Y.; Lim, C.; Harapas, C.R.; Yu, C.-H.; Xie, W.H.; Sobota, R.M.; Au, V.B.; et al. Human DPP9 Represses NLRP1 Inflammasome and Protects against Autoinflammatory Diseases via Both Peptidase Activity and FIIND Domain Binding. J. Biol. Chem. 2018, 293, 18864–18878. [Google Scholar] [CrossRef] [PubMed]
- Matheeussen, V.; Waumans, Y.; Martinet, W.; Van Goethem, S.; Van der Veken, P.; Scharpé, S.; Augustyns, K.; De Meyer, G.R.Y.; De Meester, I. Dipeptidyl Peptidases in Atherosclerosis: Expression and Role in Macrophage Differentiation, Activation and Apoptosis. Basic. Res. Cardiol. 2013, 108, 350. [Google Scholar] [CrossRef] [PubMed]
- Waumans, Y.; Baerts, L.; Kehoe, K.; Lambeir, A.-M.; De Meester, I. The Dipeptidyl Peptidase Family, Prolyl Oligopeptidase and Prolyl Carboxypeptidase in the Immune System and Inflammatory Disease, Including Atherosclerosis. Front. Immunol. 2015, 6, 146787. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Liu, S. The TIPE (TNFAIP8) Family in Inflammation, Immunity, and Cancer. Mol. Immunol. 2011, 49, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.C.; Lee, J.; Choi, Y. Tumor Necrosis Factor Receptor- Associated Factor 6 (TRAF6) Regulation of Development, Function, and Homeostasis of the Immune System. Immunol. Rev. 2015, 266, 72–92. [Google Scholar] [CrossRef]
- Li, T.; Wang, W.; Gong, S.; Sun, H.; Zhang, H.; Yang, A.-G.; Chen, Y.H.; Li, X. Genome-Wide Analysis Reveals TNFAIP8L2 as an Immune Checkpoint Regulator of Inflammation and Metabolism. Mol. Immunol. 2018, 99, 154–162. [Google Scholar] [CrossRef]
- Bragina, E.Y.; Goncharova, I.A.; Zhalsanova, I.Z.; Nemerov, E.V.; Nazarenko, M.S.; Freidin, M.B. Bronchial Asthma in yhe Genetis Framework of Cardiovascilar Continuum Syntropy. Sib. J. Clin. Exp. Medicine. 2021, 36, 52–61. [Google Scholar] [CrossRef]
- Li, K.; Guo, Y.; Yang, X.; Zhang, Z.; Zhang, C.; Xu, Y. ELF5-Mediated AR Activation Regulates Prostate Cancer Progression. Sci. Rep. 2017, 7, 42759. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, L.; Feng, Z.; Chen, W.; Yan, S.; Yang, R.; Xiao, J.; Gao, J.; Zhang, D.; Ke, X. EPC-Derived Exosomal miR-1246 and miR-1290 Regulate Phenotypic Changes of Fibroblasts to Endothelial Cells to Exert Protective Effects on Myocardial Infarction by Targeting ELF5 and SP1. Front. Cell Dev. Biol. 2021, 9, 647763. [Google Scholar] [CrossRef]
- Bushueva, O.Y.; Bulgakova, I.V.; Ivanov, V.P.; Polonikov, A.V. Association of Flavin Monooxygenase Gene E158K Polymorphism with Chronic Heart Disease Risk. Bull. Exp. Biol. Med. 2015, 159, 776–778. [Google Scholar] [CrossRef]
- Bushueva, O.; Solodilova, M.; Ivanov, V.; Polonikov, A. Gender-Specific Protective Effect of the −463G>A Polymorphism of Myeloperoxidase Gene against the Risk of Essential Hypertension in Russians. J. Am. Soc. Hypertens. 2015, 9, 902–906. [Google Scholar] [CrossRef] [PubMed]
- Bănescu, C.; Trifa, A.P.; Voidăzan, S.; Moldovan, V.G.; Macarie, I.; Benedek Lazar, E.; Dima, D.; Duicu, C.; Dobreanu, M. CAT, GPX1, MnSOD, GSTM1, GSTT1, and GSTP1 Genetic Polymorphisms in Chronic Myeloid Leukemia: A Case-Control Study. Oxid. Med. Cell Longev. 2014, 2014, 875861. [Google Scholar] [CrossRef] [PubMed]
- Samadi, S.; Mehramiz, M.; Kelesidis, T.; Mobarhan, M.G.; Sahebkar, A.H.; Esmaily, H.; Moohebati, M.; Farjami, Z.; Ferns, G.A.; Mohammadpour, A.H.; et al. High-Density Lipoprotein Lipid Peroxidation as a Molecular Signature of the Risk for Developing Cardiovascular Disease: Results from MASHAD Cohort. J. Cell Physiol. 2019, 234, 16168–16177. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, Z.; Tao, Y.; He, L.; Zhan, F.; Li, J. Linking Homocysteine and Ferroptosis in Cardiovascular Disease: Insights and Implications. Apoptosis 2024. [Google Scholar] [CrossRef]
- Mosa, R.A.; Hlophe, N.B.; Ngema, N.T.; Penduka, D.; Lawal, O.A.; Opoku, A.R. Cardioprotective Potential of a Lanosteryl Triterpene from Protorhus Longifolia. Pharm. Biol. 2016, 54, 3244–3248. [Google Scholar] [CrossRef]
- Mayyas, F.; Alzoubi, K.H. Cardiac Effects of Cigarette Tobacco Smoking in Rat Model of Diabetes. Life Sci. 2018, 211, 279–285. [Google Scholar] [CrossRef]
- Işık, M.; Tunç, A.; Beydemir, Ş. Oxidative Stress and Changes of Important Metabolic Gene Expressions as a Potential Biomarker in the Diagnosis of Atherosclerosis in Leukocytes. Braz. J. Cardiovasc. Surg. 2022, 37, 481–487. [Google Scholar] [CrossRef]
- Bushueva, O.Y.; Stetskaya, T.A.; Polonikov, A.V.; Ivanov, V.P. The relationship between polymorphism 640A>G of the CYBA gene with the risk of ischemic stroke in the population of the Central Russia. Zhurnal Nevrol. I Psikhiatrii Im. SS Korsakova 2015, 115, 38–41. [Google Scholar] [CrossRef]
- Bushueva, O.; Barysheva, E.; Markov, A.; Belykh, A.; Koroleva, I.; Churkin, E.; Polonikov, A.; Ivanov, V.; Nazarenko, M. DNA Hypomethylation of the MPO Gene in Peripheral Blood Leukocytes Is Associated with Cerebral Stroke in the Acute Phase. J. Mol. Neurosci. 2021, 71, 1914–1932. [Google Scholar] [CrossRef]
- Vichova, T.; Motovska, Z. Oxidative Stress: Predictive Marker for Coronary Artery Disease. Exp. Clin. Cardiol. 2013, 18, e88. [Google Scholar]
- Sorokin, A.; Kotani, K.; Bushueva, O.; Taniguchi, N.; Lazarenko, V. The Cardio-Ankle Vascular Index and Ankle-Brachial Index in Young Russians. J. Atheroscler. Thromb. 2015, 22, 211–218. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y.V. Contribution of Neovascularization and Intraplaque Haemorrhage to Atherosclerotic Plaque Progression and Instability. Acta Physiol. 2015, 213, 539–553. [Google Scholar] [CrossRef] [PubMed]
Baseline and Clinical Characteristics | COVID-19 Patients without CVD | COVID-19 Patients with CVD | p-Value | |
---|---|---|---|---|
AH | ||||
n = 70 | n = 129 | |||
Age, Me [Q1; Q3] | 56 [45; 70] | 72 [65; 80] | <0.001 | |
BMI, Me [Q1; Q3] | 24.9 [22.5; 30] | 31.6 [27.4; 36.5] | <0.001 | |
Low physical activity | Yes, N (%) | 23 (32.9%) | 87 (67.4%) | <0.001 |
No, N (%) | 47 (67.1%) | 42 (32.6%) | ||
CAD | ||||
n = 115 | n = 84 | |||
Age, Me [Q1; Q3] | 61 [49; 71] | 76.5 [67.5; 83] | <0.001 | |
Low physical activity | Yes, N (%) | 49 (42.6%) | 61 (72.6%) | <0.001 |
No, N (%) | 66 (57.4%) | 23 (27.4%) | ||
Cerebral stroke | ||||
n = 167 | n = 32 | |||
Age, Me [Q1; Q3] | 67 [55; 77] | 75 [66.5; 83.5] | <0.001 | |
Low physical activity | Yes, N (%) | 86 (51.5%) | 24 (75%) | <0.05 |
No, N (%) | 81 (48.5%) | 8 (25%) |
Genetic Variant | Effect Allele | Other Allele | N | OR [95% CI] 1 | p 2 | OR [95% CI] 1 | p 2 | OR [95% CI] 1 | p 2 |
---|---|---|---|---|---|---|---|---|---|
AH | CAD | CS | |||||||
rs12610495 DPP9 | G | A | 183 | 1.84 [0.28–11.91] | 0.52 | 1.69 [1.02–2.81] | 0.04 | 1.41 [0.80–2.48] | 0.24 |
rs61882275 ELF5 | A | G | 185 | 2.64 [0.59–11.92] | 0.18 | 1.51 [0.96–2.39] | 0.073 | 1.98 [1.14–3.45] | 0.01 |
rs7949972 ELF5 | T | C | 185 | 4.25 [0.39–46.54] | 0.2 | 2.57 [1.43–4.61] | 0.0009 | 2.67 [1.38–5.19] | 0.003 |
Gene–Gene Interaction Models | NH | beta H | WH | NL | beta L | WL | Wmax | pperm |
---|---|---|---|---|---|---|---|---|
The best two-locus models of gene–gene interactions (for G × G models with pmin. < 0.001, 1000 permutations) | ||||||||
rs7949972 ELF5 × rs17078346 SLC6A20-LZTFL1 | 2 | 0.2778 | 13.34 | 1 | −0.1453 | 3.980 | 13.34 | 0.003 |
rs9636867 IFNAR2 × rs12610495 DPP9 | 3 | 0.2362 | 13.13 | 1 | −0.2002 | 7.132 | 13.13 | 0.006 |
rs7949972 ELF5 × rs12610495 DPP9 | 2 | 0.2397 | 11.71 | 2 | −0.2051 | 10.747 | 11.71 | 0.017 |
The best three-locus models of gene–gene interactions (for G × G models with pmin. < 2 × 10−4, 1000 permutations) | ||||||||
rs7949972 ELF5 × rs61882275 ELF5 × rs12610495 DPP9 | 2 | 0.2807 | 14.63 | 2 | −0.2132 | 9.971 | 14.63 | 0.005 |
rs9636867 IFNAR2 × rs61882275 ELF5 × rs17078346 SLC6A20-LZTFL1 | 4 | 0.4438 | 16.20 | 2 | −0.2596 | 7.125 | 16.20 | 0.019 |
rs9636867IFNAR2 × rs12610495 DPP9 × rs12585036 ATP11A | 2 | 0.4049 | 15.09 | 2 | −0.2640 | 7.089 | 15.09 | 0.028 |
The best four-locus models of gene–gene interactions (for G × G models with pmin. < 5 × 10−6, 1000 permutations) | ||||||||
rs7949972 ELF5 × rs9636867 IFNAR2 × rs61882275 ELF5 × rs17078346 SLC6A20-LZTFL1 | 6 | 0.4660 | 25.32 | 2 | −0.2633 | 7.358 | 25.32 | < 0.001 |
rs9636867 IFNAR2 × rs12610495 DPP9 × rs12585036 ATP11A × rs17713054 SLC6A20-LZTFL1 | 4 | 0.4245 | 23.36 | 2 | −0.2907 | 6.638 | 23.36 | 0.006 |
rs7949972 ELF5 × rs9636867 IFNAR2 × rs12610495 DPP9 × rs17713054 SLC6A20-LZTFL1 | 6 | 0.4511 | 22.59 | 3 | −0.3020 | 8.573 | 22.59 | 0.017 |
Gene–Gene Interaction Models | NH | beta H | WH | NL | beta L | WL | Wmax | pperm |
---|---|---|---|---|---|---|---|---|
The best two-order models of gene- interactions (for G × E models with pmin. < 0.001, 1000 permutations) | ||||||||
rs12610495 DPP9 × SMOKE | 1 | 0.2256 | 6.458 | 1 | −0.2236 | 12.038 | 12.04 | 0.003 |
rs17078346 SLC6A20-LZTFL1 × SMOKE | 1 | 0.1599 | 4.122 | 1 | −0.2143 | 12.085 | 12.09 | 0.004 |
rs17713054 SLC6A20-LZTFL1 × SMOKE | 1 | 0.1641 | 4.642 | 1 | −0.2132 | 11.988 | 11.99 | 0.005 |
The best three-order models of gene- interactions (for G × E models with pmin. < 0.0003, 1000 permutations) | ||||||||
rs61882275 ELF5 × rs17078346 SLC6A20-LZTFL1 × SMOKE | 2 | 0.3420 | 14.902 | 1 | −0.1674 | 4.220 | 14.90 | 0.017 |
rs7949972 ELF5 × rs17713054 SLC6A20-LZTFL1 × SMOKE | 2 | 0.2891 | 8.943 | 2 | −0.2364 | 14.471 | 14.47 | 0.011 |
The best four-order models of gene- interactions (for G × E models with pmin. < 8 × 10−6, 1000 permutations) | ||||||||
rs9636867 IFNAR2 × rs61882275 ELF5 × rs17078346 SLC6A20-LZTFL1 × SMOKE | 6 | 0.5166 | 25.77 | 2 | −0.2424 | 7.451 | 25.77 | 0.004 |
rs9636867 IFNAR2 × rs61882275 ELF5 × rs17713054 SLC6A20-LZTFL1 × SMOKE | 5 | 0.5910 | 22.24 | 2 | −0.2400 | 7.539 | 22.24 | 0.013 |
Gene–Gene Interaction Models | NH | beta H | WH | NL | beta L | WL | Wmax | pperm |
---|---|---|---|---|---|---|---|---|
The best two-locus models of gene–gene interactions (for G × G models with pmin. < 0.001, 1000 permutations) | ||||||||
rs17078346 SLC6A20-LZTFL1 × rs12610495 DPP9 | 1 | 0.2915 | 14.82 | 1 | −0.1521 | 4.812 | 14.82 | 0.014 |
rs12610495 DPP9 × rs17713054 SLC6A20-LZTFL1 | 1 | 0.2638 | 12.59 | 1 | −0.1576 | 5.300 | 12.59 | 0.046 |
The best three-locus models of gene–gene interactions (for G × G models with pmin. < 1 × 10−8, 1000 permutations) | ||||||||
rs7949972 ELF5 × rs9636867 IFNAR2 × rs12610495 DPP9 | 5 | 0.4991 | 38.48 | 0 | NA | NA | 38.48 | 0.004 |
The best four-locus models of gene–gene interactions (for G × G models with pmin. < 1 × 10−11, 1000 permutations) | ||||||||
rs7949972 ELF5 × rs9636867 IFNAR2 × rs12610495 DPP9 × rs143334143 CCHCR1 | 6 | 0.6534 | 60.64 | 0 | NA | NA | 60.64 | 0.005 |
rs7949972 ELF5 × rs9636867 IFNAR2 × rs12610495 DPP9 ×rs11183780 CCHCR1 | 5 | 0.6379 | 53.99 | 0 | NA | NA | 53.99 | 0.012 |
Gene–Gene Interaction Models | NH | beta H | WH | NL | beta L | WL | Wmax | pperm |
---|---|---|---|---|---|---|---|---|
The best two-order models of gene- interactions (for G × E models with pmin. < 0.01, 1000 permutations) | ||||||||
rs12610495 DPP9 × SMOKE | 1 | 0.2671 | 8.424 | 1 | −0.1162 | 2.849 | 8.424 | 0.047 |
The best three-order models of gene- interactions (for G × E models with pmin. < 1 × 10−4, 1000 permutations) | ||||||||
rs61882275 ELF5 × rs12585036 ATP11A × SMOKE | 1 | 0.7640 | 22.49 | 0 | NA | NA | 22.49 | 0.016 |
The best four-order models of gene- interactions (for G × E models with pmin. < 3 × 10−8, 1000 permutations) | ||||||||
rs61882275 ELF5 × rs12610495 DPP9 × rs11183780 CCHCR1 × VEGET | 2 | 1.7321 | 36.28 | 0 | NA | NA | 36.28 | 0.002 |
rs9636867 IFNAR2 × rs12585036 ATP11A × rs11183780 CCHCR1 × VEGET | 2 | 1.3997 | 35.31 | 0 | NA | NA | 35.31 | 0.002 |
SNP (Ref/Alt Allele) | Tissues Marks | Vessels—Aorta | Heart | Blood |
---|---|---|---|---|
rs17713054 (G/A) SLC6A20-LZTFL1 | H3K4me1 | Enh | Enh | - |
H3K27ac | Enh | Enh | - | |
rs12610495 (A/G) DPP9 | H3K4me1 | - | Enh | Enh |
H3K4me3 | - | - | - | |
H3K27ac | - | Enh | - | |
H3K9ac | - | - | - |
No. | SNP | Phenotype | p-Value | Beta (OR) | Sample Size |
---|---|---|---|---|---|
1 | rs17713054 SLC6A20-LZTFL1 (G/A) | 1 Long QT syndrome | 0.007 | OR▼0.786 | 5673 |
2 | 1 Atrial fibrillation or flutter | 0.012 | OR▼0.9531 | 130,776 | |
3 | 1 LDL cholesterol | 0.018 | Beta▼−0.0048 | 2,783,500 | |
4 | 1 Non-HDL cholesterol | 0.039 | Beta▼−0.006 | 1,087,880 | |
5 | 1 Triglycerides | 0.04 | Beta▼−0.0042 | 2,412,380 | |
6 | rs7949972 ELF5 (C/T) | 2 Coronary artery disease (CAD) | 0.012 | OR▲1.0111 | 1,250,150 |
7 | 2 TOAST other undetermined | 0.012 | OR▲1.07 | 39,776 | |
8 | 2 Pulse pressure | 0.029 | Beta▼−0.0031 | 910,329 | |
9 | 1 Total cholesterol | 0.0004 | Beta▲0.0019 | 2,664,070 | |
10 | 1 LDL cholesterol | 0.0007 | Beta▲0.0028 | 3,137,790 | |
11 | 1 Serum ApoB | 0.001 | Beta▲0.0059 | 436,068 | |
12 | 1 Non-HDL cholesterol | 0.0105 | Beta▲0.0039 | 1,085,390 | |
13 | 1 Long QT syndrome | 0.02 | OR▼0.9116 | 5673 | |
14 | rs61882275 ELF5 (G/A) | 2 TOAST other undetermined | 0.035 | OR▲1.0649 | 39,604 |
15 | rs12610495 DPP9 (A/G) | 1 Total cholesterol | 6.97 × 10−9 | Beta▼−0.0066 | 2,655,840 |
16 | 1 LDL cholesterol | 2.47 × 10−7 | Beta▼−0.0060 | 3,106,200 | |
17 | 1 Non-HDL cholesterol | 2.53 × 10−6 | Beta▼−0.0082 | 1,026,040 | |
18 | 1 Serum ApoB | 0.005 | Beta▼−0.006 | 436,068 | |
19 | 1 Hypertrophic cardiomyopathy | 0.0086 | OR▼0.9178 | 11,942 | |
20 | |||||
21 | 1 Left ventricular stroke volume | 0.014 | Beta▲0.0154 | 77,177 | |
22 | 1 Long QT syndrome | 0.016 | OR▼0.895 | 5673 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loktionov, A.; Kobzeva, K.; Dorofeeva, A.; Babkina, M.; Kolodezhnaya, E.; Bushueva, O. A Comprehensive Genetic and Bioinformatic Analysis Provides Evidence for the Engagement of COVID-19 GWAS-Significant Loci in the Molecular Mechanisms of Coronary Artery Disease and Stroke. J. Mol. Pathol. 2024, 5, 385-404. https://doi.org/10.3390/jmp5030026
Loktionov A, Kobzeva K, Dorofeeva A, Babkina M, Kolodezhnaya E, Bushueva O. A Comprehensive Genetic and Bioinformatic Analysis Provides Evidence for the Engagement of COVID-19 GWAS-Significant Loci in the Molecular Mechanisms of Coronary Artery Disease and Stroke. Journal of Molecular Pathology. 2024; 5(3):385-404. https://doi.org/10.3390/jmp5030026
Chicago/Turabian StyleLoktionov, Alexey, Ksenia Kobzeva, Anna Dorofeeva, Maryana Babkina, Elizaveta Kolodezhnaya, and Olga Bushueva. 2024. "A Comprehensive Genetic and Bioinformatic Analysis Provides Evidence for the Engagement of COVID-19 GWAS-Significant Loci in the Molecular Mechanisms of Coronary Artery Disease and Stroke" Journal of Molecular Pathology 5, no. 3: 385-404. https://doi.org/10.3390/jmp5030026
APA StyleLoktionov, A., Kobzeva, K., Dorofeeva, A., Babkina, M., Kolodezhnaya, E., & Bushueva, O. (2024). A Comprehensive Genetic and Bioinformatic Analysis Provides Evidence for the Engagement of COVID-19 GWAS-Significant Loci in the Molecular Mechanisms of Coronary Artery Disease and Stroke. Journal of Molecular Pathology, 5(3), 385-404. https://doi.org/10.3390/jmp5030026