Rheumatoid Arthritis: What Inflammation Do We Face?
Abstract
:1. Introduction
2. Development of Rheumatoid Arthritis
3. Innate Immune Response
3.1. Contributions of Mast Cells and Neutrophils
3.2. Role of Chemokines in Immune Cell Recruitment
3.3. Synovial Fibroblasts and Inflammation
3.4. Pro-Angiogenic Mechanisms in RA
3.5. Monocyte Differentiation and Inflammation
3.6. Macrophage Activation and Cytokine Production
3.7. Inflammatory Environment and Synovial Fibroblasts
3.8. Cell–Cell Interactions in the Synovium
3.9. Osteoclast Formation and Bone Erosion
3.10. Surface Markers in Monocyte Function
4. Adaptive Immune Response
4.1. T-Cell Subtypes and Their Roles
4.2. Th17 Cells and Their Contributions
4.3. Th2 Cells and Their Contribution
4.4. The Role of Regulatory T Cells (Tregs)
4.5. Regulatory Checkpoints and Treg Function
4.6. B Cells and Their Roles
4.7. MicroRNA and Inflammatory Responses
4.8. Cytokine Profile in RA
5. Treatment of RA
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lin, Y.J.; Anzaghe, M.; Schülke, S. Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis. Cells 2020, 9, 880. [Google Scholar] [CrossRef]
- Jahid, M.; Khan, K.U.; Rehan-Ul-Haq; Ahmed, R.S. Overview of Rheumatoid Arthritis and Scientific Understanding of the Disease. Mediterr. J. Rheumatol. 2023, 34, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Grätzel, P. Rheuma-Verdacht: Welche Patienten müssen zum Spezialisten? Das entscheidet der Hausarzt [Suspected rheumatoid arthritis: Which patient must be referred to a specialist? The family physician decides]. MMW Fortschritte Med. 2014, 156, 20. [Google Scholar] [CrossRef]
- Feragalli, B.; Mantini, C.; Sperandeo, M.; Galluzzo, M.; Belcaro, G.; Tartaro, A.; Cotroneo, A.R. The lung in systemic vasculitis: Radiological patterns and differential diagnosis. Br. J. Radiol. 2016, 89, 20150992. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, J.; Andersson, M.L.E.; Hafström, I.; Svensson, B.; Forslind, K.; Ajeganova, S.; Leu Agelii, M.; Gjertsson, I. Influence of Age and Sex on Disease Course and Treatment in Rheumatoid Arthritis. Open Access Rheumatol. Res. Rev. 2021, 13, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Romão, V.C.; Fonseca, J.E. Etiology and Risk Factors for Rheumatoid Arthritis: A State-of-the-Art Review. Front. Med. 2021, 8, 689698. [Google Scholar] [CrossRef]
- Pankratov, V.; Yunusbaeva, M.; Ryakhovsky, S.; Zarodniuk, M.; Estonian Biobank Research Team; Yunusbayev, B. Prioritizing autoimmunity risk variants for functional analyses by fine-mapping mutations under natural selection. Nat. Commun. 2022, 13, 7069. [Google Scholar] [CrossRef]
- Pisetsky, D.S. Pathogenesis of autoimmune disease. Nat. Rev. Nephrol. 2023, 19, 509–524. [Google Scholar] [CrossRef]
- Haworth, C.M.; Dale, P.; Plomin, R. A Twin Study into the Genetic and Environmental Influences on Academic Performance in Science in nine-year-old Boys and Girls. Int. J. Sci. Educ. 2008, 30, 1003–1025. [Google Scholar] [CrossRef] [PubMed]
- Reiss, D.; Leve, L.D.; Neiderhiser, J.M. How genes and the social environment moderate each other. Am. J. Public Health 2013, 103 (Suppl. S1), S111–S121. [Google Scholar] [CrossRef]
- Koziel, J.; Mydel, P.; Potempa, J. The link between periodontal disease and rheumatoid arthritis: An updated review. Curr. Rheumatol. Rep. 2014, 16, 408. [Google Scholar] [CrossRef] [PubMed]
- Chow, Y.C.; Yam, H.C.; Gunasekaran, B.; Lai, W.Y.; Wo, W.Y.; Agarwal, T.; Ong, Y.Y.; Cheong, S.L.; Tan, S.A. Implications of Porphyromonas gingivalis peptidyl arginine deiminase and gingipain R in human health and diseases. Front. Cell. Infect. Microbiol. 2022, 12, 987683. [Google Scholar] [CrossRef] [PubMed]
- Ciesielski, O.; Biesiekierska, M.; Panthu, B.; Soszyński, M.; Pirola, L.; Balcerczyk, A. Citrullination in the pathology of inflammatory and autoimmune disorders: Recent advances and future perspectives. Cell. Mol. Life Sci. CMLS 2022, 79, 94. [Google Scholar] [CrossRef]
- Maoz-Segal, R.; Andrade, P. Molecular Mimicry and Autoimmunity. In Infection and Autoimmunity; Academic Press: Cambridge, MA, USA, 2015; pp. 27–44. [Google Scholar] [CrossRef]
- Neamțu, M.; Bild, V.; Vasincu, A.; Arcan, O.D.; Bulea, D.; Ababei, D.C.; Rusu, R.N.; Macadan, I.; Sciucă, A.M.; Neamțu, A. Inflammasome Molecular Insights in Autoimmune Diseases. Curr. Issues Mol. Biol. 2024, 46, 3502–3532. [Google Scholar] [CrossRef] [PubMed]
- Pruijn, G.J. Citrullination and carbamylation in the pathophysiology of rheumatoid arthritis. Front. Immunol. 2015, 6, 192. [Google Scholar] [CrossRef]
- Haro, I.; Sanmartí, R.; Gómara, M.J. Implications of Post-Translational Modifications in Autoimmunity with Emphasis on Citrullination, Homocitrullination and Acetylation for the Pathogenesis, Diagnosis and Prognosis of Rheumatoid Arthritis. Int. J. Mol. Sci. 2022, 23, 15803. [Google Scholar] [CrossRef]
- Daghestani, M.; Othman, N.; Omair, M.A.; Alenzi, F.; Omair, M.A.; Alqurtas, E.; Amin, S.; Warsy, A. Single Nucleotide Polymorphisms Associated with Rheumatoid Arthritis in Saudi Patients. J. Clin. Med. 2023, 12, 4944. [Google Scholar] [CrossRef]
- Alghamdi, M.; Alasmari, D.; Assiri, A.; Mattar, E.; Aljaddawi, A.A.; Alattas, S.G.; Redwan, E.M. An Overview of the Intrinsic Role of Citrullination in Autoimmune Disorders. J. Immunol. Res. 2019, 2019, 7592851. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. The Role of Reactive Species on Innate Immunity. Vaccines 2022, 10, 1735. [Google Scholar] [CrossRef]
- Unterberger, S.; Davies, K.A.; Rambhatla, S.B.; Sacre, S. Contribution of Toll-Like Receptors and the NLRP3 Inflammasome in Rheumatoid Arthritis Pathophysiology. ImmunoTargets Ther. 2021, 10, 285–298. [Google Scholar] [CrossRef]
- Huang, Q.Q.; Pope, R.M. The role of toll-like receptors in rheumatoid arthritis. Curr. Rheumatol. Rep. 2009, 11, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Anshita, D.; Ravichandiran, V. MCP-1: Function, regulation, and involvement in disease. Int. Immunopharmacol. 2021, 101 Pt B, 107598. [Google Scholar] [CrossRef]
- Zeng, Z.; Lan, T.; Wei, Y.; Wei, X. CCL5/CCR5 axis in human diseases and related treatments. Genes Dis. 2022, 9, 12–27. [Google Scholar] [CrossRef]
- Liu, M.; Guo, S.; Hibbert, J.M.; Jain, V.; Singh, N.; Wilson, N.O.; Stiles, J.K. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev. 2011, 22, 121–130. [Google Scholar] [CrossRef]
- Lefèvre, S.; Knedla, A.; Tennie, C.; Kampmann, A.; Wunrau, C.; Dinser, R.; Korb, A.; Schnäker, E.M.; Tarner, I.H.; Robbins, P.D.; et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 2009, 15, 1414–1420. [Google Scholar] [CrossRef]
- Matsukura, S.; Odaka, M.; Kurokawa, M.; Kuga, H.; Homma, T.; Takeuchi, H.; Notomi, K.; Kokubu, F.; Kawaguchi, M.; Schleimer, R.P.; et al. Transforming growth factor-β stimulates the expression of eotaxin/CC chemokine ligand 11 and its promoter activity through binding site for nuclear factor-κβ in airway smooth muscle cells. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2010, 40, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.E.; Lee, S.H.; Kim, W.U. Cytokines, Vascular Endothelial Growth Factors, and PlGF in Autoimmunity: Insights from Rheumatoid Arthritis to Multiple Sclerosis. Immune Netw. 2024, 24, e10. [Google Scholar] [CrossRef]
- Le, T.H.V.; Kwon, S.M. Vascular Endothelial Growth Factor Biology and Its Potential as a Therapeutic Target in Rheumatic Diseases. Int. J. Mol. Sci. 2021, 22, 5387. [Google Scholar] [CrossRef]
- Tang, H.; Huang, L.; Hu, J. Inhibition of the m6A Methyltransferase METTL3 Attenuates the Inflammatory Response in Fusarium solani-Induced Keratitis via the NF-κB Signaling Pathway. Investig. Ophthalmol. Vis. Sci. 2022, 63, 2. [Google Scholar] [CrossRef]
- Edilova, M.I.; Akram, A.; Abdul-Sater, A.A. Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed. J. 2021, 44, 172–182. [Google Scholar] [CrossRef]
- Cecchinato, V.; D’Agostino, G.; Raeli, L.; Nerviani, A.; Schiraldi, M.; Danelon, G.; Manzo, A.; Thelen, M.; Ciurea, A.; Bianchi, M.E.; et al. Redox-Mediated Mechanisms Fuel Monocyte Responses to CXCL12/HMGB1 in Active Rheumatoid Arthritis. Front. Immunol. 2018, 9, 2118. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Y.; Yang, H.Y.; Huang, J.L.; Lai, J.H. Signals and Mechanisms Regulating Monocyte and Macrophage Activation in the Pathogenesis of Juvenile Idiopathic Arthritis. Int. J. Mol. Sci. 2021, 22, 7960. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Ruan, J.; Nie, L.; Ye, X.; Li, J. Effects of synovial macrophages in osteoarthritis. Front. Immunol. 2023, 14, 1164137. [Google Scholar] [CrossRef] [PubMed]
- Kondo, N.; Kuroda, T.; Kobayashi, D. Cytokine Networks in the Pathogenesis of Rheumatoid Arthritis. Int. J. Mol. Sci. 2021, 22, 10922. [Google Scholar] [CrossRef] [PubMed]
- Koedderitzsch, K.; Zezina, E.; Li, L.; Herrmann, M.; Biesemann, N. TNF induces glycolytic shift in fibroblast like synoviocytes via GLUT1 and HIF1A. Sci. Rep. 2021, 11, 19385. [Google Scholar] [CrossRef]
- Mukherjee, A.; Das, B. The role of inflammatory mediators and matrix metalloproteinases (MMPs) in the progression of osteoarthritis. Biomater. Biosyst. 2024, 13, 100090. [Google Scholar] [CrossRef]
- Roberts, C.A.; Dickinson, A.K.; Taams, L.S. The Interplay Between Monocytes/Macrophages and CD4(+) T Cell Subsets in Rheumatoid Arthritis. Front. Immunol. 2015, 6, 571. [Google Scholar] [CrossRef] [PubMed]
- Tran, C.N.; Lundy, S.K.; Fox, D.A. Synovial biology and T cells in rheumatoid arthritis. Pathophysiol. Off. J. Int. Soc. Pathophysiol. 2005, 12, 183–189. [Google Scholar] [CrossRef]
- Gu, Q.; Yang, H.; Shi, Q. Macrophages and bone inflammation. J. Orthop. Transl. 2017, 10, 86–93. [Google Scholar] [CrossRef]
- Cutolo, M.; Campitiello, R.; Gotelli, E.; Soldano, S. The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Front. Immunol. 2022, 13, 867260. [Google Scholar] [CrossRef]
- Salnikova, D.I.; Nikiforov, N.G.; Postnov, A.Y.; Orekhov, A.N. Target Role of Monocytes as Key Cells of Innate Immunity in Rheumatoid Arthritis. Diseases 2024, 12, 81. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.; Mack, C.; Baraz, R.; Marimuthu, R.; Naralashetty, S.; Li, S.; Medbury, H. Monocyte Differentiation and Heterogeneity: Inter-Subset and Interindividual Differences. Int. J. Mol. Sci. 2023, 24, 8757. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Riva, M.; Björk, P.; Swärd, K.; Mörgelin, M.; Leanderson, T.; Ivars, F. CD14 Is a Co-Receptor for TLR4 in the S100A9-Induced Pro-Inflammatory Response in Monocytes. PLoS ONE 2016, 11, e0156377. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Takeuchi, S.; Kubota, K.; Kobayashi, Y.; Kozakai, S.; Ukai, I.; Shichiku, A.; Okubo, M.; Numasaki, M.; Kanemitsu, Y.; et al. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKϵ-IRF3 axis activation. J. Biol. Chem. 2018, 293, 10186–10201. [Google Scholar] [CrossRef] [PubMed]
- Ruder, A.V.; Wetzels, S.M.W.; Temmerman, L.; Biessen, E.A.L.; Goossens, P. Monocyte heterogeneity in cardiovascular disease. Cardiovasc. Res. 2023, 119, 2033–2045. [Google Scholar] [CrossRef]
- Kinne, R.W.; Bräuer, R.; Stuhlmüller, B.; Palombo-Kinne, E.; Burmester, G.R. Macrophages in rheumatoid arthritis. Arthritis Res. 2000, 2, 189–202. [Google Scholar] [CrossRef]
- Jang, S.; Kwon, E.J.; Lee, J.J. Rheumatoid Arthritis: Pathogenic Roles of Diverse Immune Cells. Int. J. Mol. Sci. 2022, 23, 905. [Google Scholar] [CrossRef]
- Wang, W.; Sung, N.; Gilman-Sachs, A.; Kwak-Kim, J. T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Front. Immunol. 2020, 11, 2025. [Google Scholar] [CrossRef]
- Ren, J.; Crowley, S.D. Role of T-cell activation in salt-sensitive hypertension. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H1345–H1353. [Google Scholar] [CrossRef]
- Brevi, A.; Cogrossi, L.L.; Grazia, G.; Masciovecchio, D.; Impellizzieri, D.; Lacanfora, L.; Grioni, M.; Bellone, M. Much More Than IL-17A: Cytokines of the IL-17 Family Between Microbiota and Cancer. Front. Immunol. 2020, 11, 565470. [Google Scholar] [CrossRef]
- Elemam, N.M.; Talaat, I.M.; Maghazachi, A.A. CXCL10 Chemokine: A Critical Player in RNA and DNA Viral Infections. Viruses 2022, 14, 2445. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Wang, P.; Xu, J.; Hou, W.; Xu, P.; Xu, K.; Liu, L. Immunomodulatory role of T helper cells in rheumatoid arthritis: A comprehensive research review. Bone Jt. Res. 2022, 11, 426–438. [Google Scholar] [CrossRef]
- Chen, Z.; Bozec, A.; Ramming, A.; Schett, G. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat. Rev. Rheumatol. 2019, 15, 9–17. [Google Scholar] [CrossRef]
- Oparaugo, N.C.; Ouyang, K.; Nguyen, N.P.N.; Nelson, A.M.; Agak, G.W. Human Regulatory T Cells: Understanding the Role of Tregs in Select Autoimmune Skin Diseases and Post-Transplant Nonmelanoma Skin Cancers. Int. J. Mol. Sci. 2023, 24, 1527. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, H.; Chen, Y.; Liu, H.; Zhang, S.; Yin, G.; Xie, Q. Augmenting regulatory T cells: New therapeutic strategy for rheumatoid arthritis. Front. Immunol. 2024, 15, 1312919. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Eri, R. Pleiotropic Immune Functions of Chemokine Receptor 6 in Health and Disease. Medicines 2018, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Volkov, M.; van Schie, K.A.; van der Woude, D. Autoantibodies and B Cells: The ABC of rheumatoid arthritis pathophysiology. Immunol. Rev. 2020, 294, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Ou, J.; Nandakumar, K.S. Autoantibodies as Diagnostic Markers and Mediator of Joint Inflammation in Arthritis. Mediat. Inflamm. 2019, 2019, 6363086. [Google Scholar] [CrossRef]
- Walgrave, H.; Penning, A.; Tosoni, G.; Snoeck, S.; Davie, K.; Davis, E.; Wolfs, L.; Sierksma, A.; Mars, M.; Bu, T.; et al. microRNA-132 regulates gene expression programs involved in microglial homeostasis. iScience 2023, 26, 106829. [Google Scholar] [CrossRef]
- Cui, J.; Zheng, W.; Sun, Y.; Xu, T. Inducible MicroRNA-132 Inhibits the Production of Inflammatory Cytokines by Targeting TRAF6, TAK1, and TAB1 in Teleost Fish. Infect. Immun. 2022, 90, e0012022. [Google Scholar] [CrossRef]
- Das, K.; Rao, L.V.M. The Role of microRNAs in Inflammation. Int. J. Mol. Sci. 2022, 23, 15479. [Google Scholar] [CrossRef] [PubMed]
- Boyapati, A.; Schwartzman, S.; Msihid, J.; Choy, E.; Genovese, M.C.; Burmester, G.R.; Lam, G.; Kimura, T.; Sadeh, J.; Weinreich, D.M.; et al. Association of High Serum Interleukin-6 Levels with Severe Progression of Rheumatoid Arthritis and Increased Treatment Response Differentiating Sarilumab from Adalimumab or Methotrexate in a Post Hoc Analysis. Arthritis Rheumatol. 2020, 72, 1456–1466. [Google Scholar] [CrossRef]
- Mueller, A.L.; Payandeh, Z.; Mohammadkhani, N.; Mubarak, S.M.H.; Zakeri, A.; Alagheband Bahrami, A.; Brockmueller, A.; Shakibaei, M. Recent Advances in Understanding the Pathogenesis of Rheumatoid Arthritis: New Treatment Strategies. Cells 2021, 10, 3017. [Google Scholar] [CrossRef]
- Peyrin-Biroulet, L.; Sandborn, W.J.; Panaccione, R.; Domènech, E.; Pouillon, L.; Siegmund, B.; Danese, S.; Ghosh, S. Tumour necrosis factor inhibitors in inflammatory bowel disease: The story continues. Ther. Adv. Gastroenterol. 2021, 14, 17562848211059954. [Google Scholar] [CrossRef]
- Srirangan, S.; Choy, E.H. The role of interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2010, 2, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Yip, R.M.L.; Yim, C.W. Role of Interleukin 6 Inhibitors in the Management of Rheumatoid Arthritis. J. Clin. Rheumatol. Pract. Rep. Rheum. Musculoskelet. Dis. 2021, 27, e516–e524. [Google Scholar] [CrossRef]
- Magyari, L.; Varszegi, D.; Kovesdi, E.; Sarlos, P.; Farago, B.; Javorhazy, A.; Sumegi, K.; Banfai, Z.; Melegh, B. Interleukins and interleukin receptors in rheumatoid arthritis: Research, diagnostics and clinical implications. World J. Orthop. 2014, 5, 516–536. [Google Scholar] [CrossRef] [PubMed]
- Chyuan, I.T.; Chen, J.Y. Role of Interleukin- (IL-) 17 in the Pathogenesis and Targeted Therapies in Spondyloarthropathies. Mediat. Inflamm. 2018, 2018, 2403935. [Google Scholar] [CrossRef]
- Nakayamada, S.; Tanaka, Y. BAFF- and APRIL-targeted therapy in systemic autoimmune diseases. Inflamm. Regen. 2016, 36, 6. [Google Scholar] [CrossRef]
- Yap, H.Y.; Tee, S.Z.; Wong, M.M.; Chow, S.K.; Peh, S.C.; Teow, S.Y. Pathogenic Role of Immune Cells in Rheumatoid Arthritis: Implications in Clinical Treatment and Biomarker Development. Cells 2018, 7, 161. [Google Scholar] [CrossRef]
- Murayama, M.A.; Shimizu, J.; Miyabe, C.; Yudo, K.; Miyabe, Y. Chemokines and chemokine receptors as promising targets in rheumatoid arthritis. Front. Immunol. 2023, 14, 1100869. [Google Scholar] [CrossRef] [PubMed]
- Elemam, N.M.; Hannawi, S.; Maghazachi, A.A. Role of Chemokines and Chemokine Receptors in Rheumatoid Arthritis. ImmunoTargets Ther. 2020, 9, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Hascoët, E.; Blanchard, F.; Blin-Wakkach, C.; Guicheux, J.; Lesclous, P.; Cloitre, A. New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis. Bone Res. 2023, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Vacinova, G.; Vejražkova, D.; Rusina, R.; Holmerová, I.; Vaňková, H.; Jarolímová, E.; Včelák, J.; Bendlová, B.; Vaňková, M. Regulated upon activation, normal T cell expressed and secreted (RANTES) levels in the peripheral blood of patients with Alzheimer’s disease. Neural Regen. Res. 2021, 16, 796–800. [Google Scholar] [CrossRef] [PubMed]
- Filer, A.; Raza, K.; Salmon, M.; Buckley, C.D. The role of chemokines in leucocyte-stromal interactions in rheumatoid arthritis. Front. Biosci. J. Virtual Libr. 2008, 13, 2674–2685. [Google Scholar] [CrossRef]
- Bradfield, P.F.; Amft, N.; Vernon-Wilson, E.; Exley, A.E.; Parsonage, G.; Rainger, G.E.; Nash, G.B.; Thomas, A.M.; Simmons, D.L.; Salmon, M.; et al. Rheumatoid fibroblast-like synoviocytes overexpress the chemokine stromal cell-derived factor 1 (CXCL12), which supports distinct patterns and rates of CD4+ and CD8+ T cell migration within synovial tissue. Arthritis Rheum. 2003, 48, 2472–2482. [Google Scholar] [CrossRef]
- Gómez-Melero, S.; Caballero-Villarraso, J. CCR6 as a Potential Target for Therapeutic Antibodies for the Treatment of Inflammatory Diseases. Antibodies 2023, 12, 30. [Google Scholar] [CrossRef]
Target | Mechanism | Therapeutic Agents | Effects | References |
---|---|---|---|---|
DHFR | Folate antagonist; modulates immune response and suppresses inflammation. | Methotrexate | Reduces disease activity, improves function, and is the cornerstone of RA therapy. | [63] |
TNF-α | Pro-inflammatory cytokine that promotes inflammation and joint destruction. | Infliximab, Adalimumab, Etanercept, Certolizumab, Golimumab | Reduces symptoms, improves function, slows disease progression. | [64,65] |
IL-6 | Promotes inflammation and B-cell differentiation; elevated in the synovial fluid. | Tocilizumab, Sarilumab | Alleviates symptoms, reduces inflammation, prevents joint damage. | [63,66,67] |
IL-1 | Contributes to inflammation and cartilage degradation; produced by activated macrophages. | Anakinra | Effective in patients unresponsive to other treatments; reduces inflammation. | [68] |
IL-17 | Induces production of pro-inflammatory cytokines and matrix metalloproteinases. | Secukinumab, Ixekizumab | Reduces inflammation by neutralizing IL-17 activity. | [69] |
BAFF | Promotes B-cell survival and function; elevated levels contribute to autoantibody production. | Belimumab | Reduces B-cell activity and autoantibody levels; therapeutic benefits. | [70] |
CCL2 (MCP-1) | Facilitates recruitment of monocytes to inflamed joints. | CCL2 inhibitors | Reduces monocyte infiltration, diminishing local inflammation. | [23,71] |
CXCL10 | Promotes T-cell migration to inflamed tissues; involved in Th1 recruitment. | CXCL10 inhibitors | Decreases T-cell influx into the synovium, alleviating inflammation. | [25,72] |
CCL5 (RANTES) | Attracts various immune cells, contributing to inflammatory infiltrate. | CCL5 inhibitors | Reduces recruitment of inflammatory cells to joints. | [24,73] |
CXCL12 | Involved in retention and migration of various immune cells; promotes chronicity. | CXCL12 inhibitors | Reduces retention of inflammatory cells in the joints. | [74,75] |
CCL20 (MIP-3α) | Critical in recruiting Th17 cells, which promote joint destruction. | CCL20 inhibitors | Decreases migration of Th17 cells, reducing IL-17-mediated inflammation. | [76] |
JAK Kinase | Inhibits multiple cytokine signaling pathways involved in inflammation | Tofacitinib, Baricitinib, Upadacitinib | Improves symptoms, reduces inflammation, and provides clinical benefits for patients with moderate-to-severe RA; approved for RA | [77,78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poznyak, A.V.; Kirichenko, T.V.; Beloyartsev, D.F.; Churov, A.V.; Kovyanova, T.I.; Starodubtseva, I.A.; Sukhorukov, V.N.; Antonov, S.A.; Orekhov, A.N. Rheumatoid Arthritis: What Inflammation Do We Face? J. Mol. Pathol. 2024, 5, 454-465. https://doi.org/10.3390/jmp5040030
Poznyak AV, Kirichenko TV, Beloyartsev DF, Churov AV, Kovyanova TI, Starodubtseva IA, Sukhorukov VN, Antonov SA, Orekhov AN. Rheumatoid Arthritis: What Inflammation Do We Face? Journal of Molecular Pathology. 2024; 5(4):454-465. https://doi.org/10.3390/jmp5040030
Chicago/Turabian StylePoznyak, Anastasia V., Tatyana Vladimirovna Kirichenko, Dmitry Felixovich Beloyartsev, Alexey V. Churov, Tatiana Ivanovna Kovyanova, Irina Alexandrovna Starodubtseva, Vasily N. Sukhorukov, Stanislav A. Antonov, and Alexander N. Orekhov. 2024. "Rheumatoid Arthritis: What Inflammation Do We Face?" Journal of Molecular Pathology 5, no. 4: 454-465. https://doi.org/10.3390/jmp5040030
APA StylePoznyak, A. V., Kirichenko, T. V., Beloyartsev, D. F., Churov, A. V., Kovyanova, T. I., Starodubtseva, I. A., Sukhorukov, V. N., Antonov, S. A., & Orekhov, A. N. (2024). Rheumatoid Arthritis: What Inflammation Do We Face? Journal of Molecular Pathology, 5(4), 454-465. https://doi.org/10.3390/jmp5040030