Implementation of Valid HPV Diagnostics for the Early Detection of Cervical Cancer in Molecular Pathology: HPV 3.5 LCD-Array (Chipron GmbH) vs. PapilloCheck® (Greiner Bio-One GmbH) vs. VisionArray® (ZytoVision GmbH)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collective of Patients
2.2. Sample Preparation
2.3. HPV Genotyping
2.4. Agreement Analysis
2.5. Ethics
3. Results
3.1. 3.5 LCD-Array Versus PapilloCheck®
3.1.1. The HPV 3.5 LCD-Array Kit
3.1.2. PapilloCheck®
3.2. Discrepant Samples in Detail
3.3. Quality Parameters: Sample Concentrations and Fragment Lengths
3.4. Agreement Analysis
3.5. LCD-Array/PapilloCheck® Versus VisionArray® HPV to Verify Discrepant Cases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robert Koch-Institut. Krebs in Deutschland|2015/2016|Gebärmutterhals C53. Available online: https://www.krebsdaten.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland/kid_2019/kid_2019_c53_gebaermutterhals.pdf?__blob=publicationFile (accessed on 16 May 2021).
- Bernard, H.-U.; Bruk, R.D.; Chen, Z.; von Doorslaer, K.; Zur Hausen, H.; de Villiers, E.-M. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 2010, 401, 70–79. [Google Scholar] [CrossRef]
- World Health Organization: Regional Office for Europe. World Cancer Report: Cancer Research for Cancer Prevention; IARC: Lyon, France, 2020. [Google Scholar]
- Shanmugasundaram, S.; You, J. Targeting Persistent Human Papillomavirus Infection. Viruses 2017, 9, 229. [Google Scholar] [CrossRef]
- Schiffman, M.; Wentzensen, N.; Wacholder, S.; Kinney, W.; Gage, J.C.; Castle, P.E. Human papillomavirus testing in the prevention of cervical cancer. J. Natl. Cancer Inst. 2011, 103, 368–383. [Google Scholar] [CrossRef]
- Plummer, M.; Schiffman, M.; Castle, P.E.; Maucort-Boulch, D.; Wheeler, C.M. A 2-year prospective study of human papillomavirus persistence among women with a cytological diagnosis of atypical squamous cells of undetermined significance or low-grade squamous intraepithelial lesion. J. Infect. Dis. 2007, 195, 1582–1589. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, M.; Castle, P.E.; Jeronimo, J.; Rodriguez, A.C.; Wacholder, S. Human papillomavirus and cervical cancer. Lancet 2007, 370, 890–907. [Google Scholar] [CrossRef]
- Clifford, G.M.; Smith, J.S.; Plummer, M.; Muñoz, N.; Franceschi, S. Human papillomavirus types in invasive cervical cancer worldwide: A meta-analysis. Br. J. Cancer 2003, 88, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Lindsay, L.; Hoots, B.; Keys, J.; Franceschi, S.; Winer, R.; Clifford, G.M. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: A meta-analysis update. Int. J. Cancer 2007, 121, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.V. Human papillomavirus: Gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies. Future Microbiol. 2010, 5, 1493–1506. [Google Scholar] [CrossRef] [PubMed]
- Moody, C.A.; Laimins, L.A. Human papillomavirus oncoproteins: Pathways to transformation. Nat. Rev. Cancer 2010, 10, 550–560. [Google Scholar] [CrossRef]
- Prati, B.; Marangoni, B.; Boccardo, E. Human papillomavirus and genome instability: From productive infection to cancer. Clinics 2018, 73, e539s. [Google Scholar] [CrossRef]
- Sitz, J.; Blanchet, S.A.; Gameiro, S.F.; Biquand, E.; Morgan, T.M.; Galloy, M.; Dessapt, J.; Lavoie, E.G.; Blondeau, A.; Smith, B.C.; et al. Human papillomavirus E7 oncoprotein targets RNF168 to hijack the host DNA damage response. Proc. Natl. Acad. Sci. USA 2019, 116, 19552–19562. [Google Scholar] [CrossRef]
- de Villiers, E.-M.; Fauquet, C.; Broker, T.R.; Bernard, H.-U.; zur Hausen, H. Classification of papillomaviruses. Virology 2004, 324, 17–27. [Google Scholar] [CrossRef]
- Burd, E.M. Human Papillomavirus and Cervical Cancer. Clin. Microbiol. Rev. 2003, 16, 1–17. [Google Scholar] [CrossRef]
- Lüdicke, F.; Stalberg, A.; Vassilakos, P.; Major, A.L.; Campana, A. High- and intermediate-risk human papillomavirus infection in sexually active adolescent females. J. Pediatr. Adolesc. Gynecol. 2001, 14, 171–174. [Google Scholar] [CrossRef]
- World Health Organization (European Region). Questions and Answers About Human Papillomavirus, 2nd ed.; Document Number: WHO/EURO:2024-5631-49185-73415; World Health Organization (European Region): Copenhagen, Denmark, 2024. [Google Scholar]
- Van Doorslaer, K.; Chen, Z.; Bernard, H.-U.; Chan, P.K.S.; DeSalle, R.; Dillner, J.; Forslund, O.; Haga, T.; McBride, A.A.; Villa, L.L.; et al. ICTV virus taxonomy profile: Papillomaviridae. J. Gen. Virol. 2018, 99, 989–990. [Google Scholar] [CrossRef]
- Harari, A.; Chen, Z.; Burk, R.D. Introduction Human Papillomavirus Genomics: Past, Present and Future; Current Problems in Dermatology; Karger: Basel, Switzerland, 2014; Volume 45, pp. 1–18. [Google Scholar]
- Doorbar, J.; Egawa, N.; Griffin, H.; Kranjec, C.; Murakami, I. Human papillomavirus molecular biology and disease association. Rev. Med. Virol. 2015, 25 (Suppl. S1), 2–23. [Google Scholar] [CrossRef] [PubMed]
- Paavonen, J. Human papillomavirus infection and the development of cervical cancer and related genital neoplasias. Int. J. Infect. Dis. 2007, 11, S3–S9. [Google Scholar] [CrossRef]
- Schiller, J.T.; Day, P.M.; Kines, R.C. Current understanding of the mechanism of HPV infection. Gynecol. Oncol. 2010, 118 (Suppl. S1), S12–S17. [Google Scholar] [CrossRef]
- DiGiuseppe, S.; Bienkowska-Haba, M.; Guion, L.G.; Sapp, M. Cruising the cellular highways: How human papillomavirus travels from the surface to the nucleus. Virus Res. 2017, 231, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.V. The human papillomavirus replication cycle, and its links to cancer progression: A comprehensive review. Clin. Sci. 2017, 131, 2201–2221. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Campos, S.K.; Wandinger-Ness, A.; Ozbun, M.A. Caveolin-1-dependent infectious entry of human papillomavirus type 31 in human keratinocytes proceeds to the endosomal pathway for pH-dependent uncoating. J. Virol. 2008, 82, 9505–9512. [Google Scholar] [CrossRef] [PubMed]
- Doeberitz, M.v.K.; Vinokurova, S. Host factors in HPV-related carcinogenesis: Cellular mechanisms controlling HPV infections. Arch. Med. Res. 2009, 40, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Maglennon, G.A. The biology of papillomavirus latency. Open Virol. J. 2012, 6, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Westrich, J.A.; Warren, C.J.; Pyeon, D. Evasion of host immune defenses by human papillomavirus. Virus Res. 2017, 231, 21–33. [Google Scholar] [CrossRef]
- Mohr, I.J.; Clark, R.; Sun, S.; Androphy, E.J.; MacPherson, P.; Botchan, M.R. Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science 1990, 250, 1694–1699. [Google Scholar] [CrossRef]
- Bodily, J.; Laimins, L.A. Persistence of human papillomavirus infection: Keys to malignant progression. Trends Microbiol. 2011, 19, 33–39. [Google Scholar] [CrossRef]
- Wilson, R.; Fehrmann, F.; Laimins, L.A. Role of the E1–E4 protein in the differentiation-dependent life cycle of human papillomavirus type 31. J. Virol. 2005, 79, 6732–6740. [Google Scholar] [CrossRef]
- Cardone, G.; Moyer, A.L.; Cheng, N.; Thompson, C.D.; Dvoretzky, I.; Lowy, D.R.; Schiller, J.T.; Steven, A.C.; Buck, C.B.; Trus, B.L. Maturation of the human papillomavirus 16 capsid. mBio 2014, 5, e01104-14. [Google Scholar] [CrossRef]
- Poljak, M.; Kocjan, B.J.; Oštrbenk, A.; Seme, K. Commercially available molecular tests for human papillomaviruses (HPV): 2015 update. J. Clin. Virol. 2016, 76 (Suppl. S1), S3–S13. [Google Scholar] [CrossRef]
- AWMF. S3-Leitlinie Prävention des Zervixkarzinoms. Registernummer 015/027OL. Langversion 1.1. Mar 2020. Available online: https://register.awmf.org/assets/guidelines/015-027OLl_Praevention_Zervixkarzinom_2020-03-verlaengert.pdf (accessed on 17 December 2024).
- Greiner Bio-One: oCheck® DNA Extraction Kit, Instructions for use, Cat. No. 515 040, Revision BQ-071-04/October 2018. Available online: https://www.gbo-cn.com/fileadmin/imported_from_old/Downloads/IFU_Instructions_for_Use/IFU_Diagnostics/oCheck_DNA_Extraction_Kit/IFU_oCheck_DNA_Extraction_Kit_Rev04_2018.pdf (accessed on 17 December 2024).
- Qiagen: QIAamp® DNA Micro Handbook, Third Edition, December 2014. Available online: https://www.qiagen.com/us/resources/resourcedetail?id=085e6418-1ec0-45f2-89eb-62705f86f963&lang=en (accessed on 17 December 2024).
- Chipron GmbH: Protocol HPV 3.5, Version V-I-13. Available online: https://www.amplibio.com/gallery/hpv-3.5-brochure.pdf (accessed on 17 December 2024).
- ZytoVision: VisionArray HPV PreCise Master Mix, Vers. 1.2 GB, 2019-04-18, VisionArray Detection Kit, Rev. 1.0, 2016-03-09. Available online: https://www.zytovision.com/downloads_products/manuals/de/es-0007-ce-ivd-de.pdf (accessed on 17 December 2024).
- Deutsche Akkreditierungsstelle (DAkkS). Leitfaden des Sektorkomitees Pathologie/Neuropathologie für die Validierung von Untersuchungsverfahren in der Molekularpathologie (Registernummer 71 SD 4 037). Revision 1.1. Oct 2016. Available online: https://www.dakks.de/docs/download/221 (accessed on 17 December 2024).
- Senapati, R.; Nayak, B.; Kar, S.K.; Dwibedi, B. HPV genotypes co-infections associated with cervical carcinoma: Special focus on phylogenetically related and non-vaccine targeted genotypes. PLoS ONE 2017, 12, e0187844. [Google Scholar] [CrossRef] [PubMed]
- Herrero, R.; Castle, P.E.; Schiffman, M.; Bratti, M.C.; Hildesheim, A.; Morales, J.; Alfaro, M.; Sherman, M.E.; Wacholder, S.; Chen, S.; et al. Epidemiologic profile of type-specific human papillomavirus infection and cervical neoplasia in Guanacaste, Costa Rica. J. Infect. Dis. 2005, 191, 1796–1807. [Google Scholar] [CrossRef] [PubMed]
HPV Type | 3.5 LCD-Array | Papillo-Check® | VisionArray® | HPV Type | 3.5 LCD-Array | Papillo-Check® | VisionArray® |
---|---|---|---|---|---|---|---|
16 (HR) | 70 (IR) | ||||||
18 (HR) | 73 (IR) | ||||||
31 (HR) | 82 (IR) | ||||||
33 (HR) | 6 (LR) | ||||||
35 (HR) | 11 (LR) | ||||||
39 (HR) | 40 (LR) | ||||||
45 (HR) | 42 (LR) | ||||||
51 (HR) | 43 (LR) | ||||||
52 (HR) | 44 (LR) | ||||||
56 (HR) | 54 (LR) | ||||||
58 (HR) | 55 (LR) | ||||||
59 (HR) | 57 (LR) | ||||||
68 (HR) | 61 (LR) | ||||||
26 (IR) | 62 (LR) | ||||||
34 (IR) | 72 (LR) | ||||||
53 (IR) | 81 (LR) | ||||||
66 (IR) | 83 (LR) | ||||||
67 (IR) | 84 (LR) | ||||||
68a (IR) | 90 (LR) | ||||||
68b (IR) | 91 (LR) | ||||||
69 (IR) |
HPV-Detection & Subtypes (n = 42) | 3.5 LCD-Array | PapilloCheck® |
---|---|---|
HPV− | 32 (76.2%) | 23 (54.8%) |
HPV+ | 10 (23.8%) | 19 (45.2%) |
Single HPV+ | 7 (70%) | 12 (63.2%) |
Multiple HPV+ | 3 (30%) | 7 (36.8%) |
HR HPV | 7 (50%) | 12 (40%) |
IR HPV | 6 (42.9%) | 17 (56.7%) |
LR HPV | 1 (7.1%) | 1 (3.3%) |
Number of Detected HPV Types/Sample (x-Fold Infection) | Number of Samples | Number of Positive HR HPV Samples | ||
---|---|---|---|---|
n = 42 | ||||
3.5 LCD-Array | PapilloCheck® | 3.5 LCD-Array (n = 10 HPV+) | PapilloCheck® (n = 19 HPV+) | |
0 (HPV−) | 32 (76.2%) | 23 (54.8%) | 0 (0%) | 0 (0%) |
1 (single) | 7 (16.7%) | 12 (28.6%) | 4/7 (57.1%) | 5/12 (41.7%) |
2 (double) | 2 (4.8%) | 5 (11.9%) | 0/2 (0%) | 2/5 (40%) |
3 (triple) | 1 (2.4%) | 1 (2.4%) | 1/1 (100%) | 1/1 (100%) |
5 (fivefold) | 0 (0%) | 1 (2.4%) | 0 (0%) | 1/1 (100%) |
Risk Group | HPV Type | Number of Detections with 3.5 LCD-Array | Number of Detections with PapilloCheck® | Concordance |
---|---|---|---|---|
HR | HPV16 | 1 | 2 | 1 (50%) |
HPV 31 | 2 | 3 | 2 (66.7%) | |
HPV 33 | 1 | 1 | 1 (100%) | |
HPV 39 | 0 | 2 | 0 (0%) | |
HPV 51 | 1 | 1 | 1 (100%) | |
HPV 52 | 1 | 1 | 1 (100%) | |
HPV 58 | 1 | 1 | 1 (100%) | |
HPV 68 | 0 | 1 | 0 (0%) | |
IR | HPV 53 | 4 | 9 | 4 (44.4%) |
HPV 66 | 2 | 7 | 2 (28.6%) | |
HPV 70 | 0 | 1 | 0 (0%) | |
LR | HPV 42 | 1 | 1 | 1 (100%) |
3.5 LCD-Array | PapilloCheck® | ||
---|---|---|---|
Case No. | Result | HPV Type | SNR-Value |
1 | HPV- | 16 (HR) | 25.4 |
7 | HPV− | 66 (IR) | 229.3 |
10 | 16 (HR) 31 (HR) 33 (HR) | 16 (HR) 31 (HR) 33 (HR) 53 (IR) 66 (IR) | 1958.7 1134.7 879.2 33.0 608.9 |
12 | HPV− | 66 (IR) | 539.5 |
13 | HPV− | 39 (HR) 53 (IR) | 160.9 37.9 |
15 | HPV− | 53 (IR) | 3485.7 |
16 | HPV− | 53 (IR) | 79.3 |
17 | HPV− | 66 (IR) | 211.0 |
19 | 53 (IR) | 53 (IR) 68 (HR) | 2538.2 530.6 |
21 | HPV− | 39 (HR) | 310.2 |
25 | HPV− | 66 (IR) | 134.2 |
33 | 42 (LR) | 31 (HR) 42 (LR) 53 (IR) | 1255.7 1927.8 29.6 |
37 | 51 (HR) | 51 (HR) 70 (IR) | 1728.4 110.3 |
HPV Detection & HPV Types | 3.5 LCD-Array (QIAamp) | PapilloCheck® (oCheck®) | VisionArray® | |
---|---|---|---|---|
QIAamp | oCheck® | |||
HPV− | 8 | 0 | 7 | 7 |
HPV+ | 3 | 11 | 4 | 4 |
Single HPV+ | 3 | 7 | 2 | 2 |
Multiple HPV+ | 0 | 4 | 2 | 2 |
HPV (HR) | 1 | 5 | 3 | 3 |
HPV (IR) | 1 | 10 | 2 | 3 |
HPV (LR) | 1 | 1 | 1 | 2 |
Case No. | QIAamp® | oCheck® | ||
---|---|---|---|---|
3.5 LCD-Array | VisionArray® | VisionArray® | PapilloCheck® | |
1 | HPV− | HPV− | HPV− | 16 (HR) |
7 | HPV− | HPV− | HPV− | 66 (IR) |
10 | 16 (HR) 31 (HR) 33 (HR) | no material left for a validation | 16 (HR) 31 (HR) 33 (HR) 53 (IR) 66 (IR) | |
12 | HPV− | HPV− | 66 (IR) | 66 (IR) |
13 | HPV− | HPV− | HPV− | 39 (HR) 53 (IR) |
15 | HPV− | no material left for a validation | 53 (IR) | |
16 | HPV− | HPV− | HPV− | 53 (IR) |
17 | HPV− | HPV− | HPV− | 66 (IR) |
19 | 53 (IR) | 53 (IR) 31 (HR) | 6 (LR) 31 (HR) 53 (IR) 68 (HR) | 53 (IR) 68 (HR) |
21 | HPV− | HPV− | HPV− | 39 (HR) |
25 | HPV− | 66 (IR) | HPV− | 66 (IR) |
33 | 42 (LR) | 31 (HR) 42 (LR) | 31 (HR) 42 (LR) | 31 (HR) 42 (LR) 53 (IR) |
37 | 51 (HR) | 51 (HR) | 51 (HR) | 51 (HR) 70 (IR) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeroch, J.; Winter, M.; Bieber, A.; Boger, A.; Schmitt, C.; Ebner, S.; Tahmasbi Rad, M.; Reis, H.; Wild, P.J. Implementation of Valid HPV Diagnostics for the Early Detection of Cervical Cancer in Molecular Pathology: HPV 3.5 LCD-Array (Chipron GmbH) vs. PapilloCheck® (Greiner Bio-One GmbH) vs. VisionArray® (ZytoVision GmbH). J. Mol. Pathol. 2025, 6, 3. https://doi.org/10.3390/jmp6010003
Jeroch J, Winter M, Bieber A, Boger A, Schmitt C, Ebner S, Tahmasbi Rad M, Reis H, Wild PJ. Implementation of Valid HPV Diagnostics for the Early Detection of Cervical Cancer in Molecular Pathology: HPV 3.5 LCD-Array (Chipron GmbH) vs. PapilloCheck® (Greiner Bio-One GmbH) vs. VisionArray® (ZytoVision GmbH). Journal of Molecular Pathology. 2025; 6(1):3. https://doi.org/10.3390/jmp6010003
Chicago/Turabian StyleJeroch, Jan, Melanie Winter, Anna Bieber, Agnes Boger, Christina Schmitt, Silvana Ebner, Morva Tahmasbi Rad, Henning Reis, and Peter. J. Wild. 2025. "Implementation of Valid HPV Diagnostics for the Early Detection of Cervical Cancer in Molecular Pathology: HPV 3.5 LCD-Array (Chipron GmbH) vs. PapilloCheck® (Greiner Bio-One GmbH) vs. VisionArray® (ZytoVision GmbH)" Journal of Molecular Pathology 6, no. 1: 3. https://doi.org/10.3390/jmp6010003
APA StyleJeroch, J., Winter, M., Bieber, A., Boger, A., Schmitt, C., Ebner, S., Tahmasbi Rad, M., Reis, H., & Wild, P. J. (2025). Implementation of Valid HPV Diagnostics for the Early Detection of Cervical Cancer in Molecular Pathology: HPV 3.5 LCD-Array (Chipron GmbH) vs. PapilloCheck® (Greiner Bio-One GmbH) vs. VisionArray® (ZytoVision GmbH). Journal of Molecular Pathology, 6(1), 3. https://doi.org/10.3390/jmp6010003