Cautionary Observations Concerning the Introduction of Psychophysiological Biomarkers into Neuropsychiatric Practice
Abstract
:1. Introduction
- Though frequently unreliable, patient report is, and will remain, central to clinical practice;
- Distortions of cognitive processes can be an element in some neuropsychiatric presentations, and the physiological implementation of these processes is not understood;
- The interaction of conscious and unconscious processes is not understood, but is clinically important;
- Psychophysiological measures are characterized by broad distributions;
- Psychophysiological measures have low diagnostic specificity;
- The test–retest reliability of psychophysiological measures is frequently untested and can be unacceptably low;
- Psychophysiological measures vary with age, sex, and ethnicity, thus complicating determination of normative values and reliability;
- As the result of central nervous system adaptation rather than repair, psychophysiological measures do not invariably normalize during recovery;
- Psychophysiological measures can change and, in some cases, normalize in response to placebo interventions;
- The mathematical procedures of statistical learning are not robust to misapplication and to data artifacts.
2. The Central Role of Patient Report
2.1. Observation
2.2. Response to Observation
3. Distortions of Cognitive Processes Can Be an Element in Some Neuropsychiatric Presentations, and the Physiological Implementation of These Processes Is Not Understood
3.1. Observation
3.2. Response to Observation
4. The Interaction between Conscious and Unconscious Processes Is Not Understood but Is Clinically Important
4.1. Observation
4.2. Response to Observation
5. High Inter-Individual Variation
5.1. Observation
5.2. Response to Observation
6. Psychophysiological Measures Have Low Diagnostic Specificity
6.1. Observation
6.2. Response to Observation
7. The Test–Retest Reliability of Psychophysiological Measures Is Frequently Untested and Can Be Unacceptably Low
7.1. Observation
7.2. Response to Observation
- Test–retest reliability should be quantified with the intraclass correlation coefficient using an adequate sample size;
- The version of the ICC used should be specified;
- The report of the ICC should include confidence intervals and a specification of the procedure used to calculate the confidence interval;
- The population used to determine the ICC should be appropriate for the clinical question being addressed;
- Consideration should be given to including the simultaneous measurement of a variable of known reliability in order to evaluate the validity of the test–retest study;
- The report should include determination of the standard error, the minimum detectable difference, and their confidence intervals;
- If the measure is being used for pre- and post-trial evaluation in a clinical trial, the test–retest interval should be equal to the duration of the trial;
- Consideration should be given to incorporating a determination of the minimum clinically-important difference into the study.
8. Variation of Psychophysiological Measures with Age, Sex, and Ethnicity
8.1. Observation
8.2. Response to Observation
9. Adaptation Not Repair: Psychophysiological Measures Do Not Invariably Normalize during Recovery
9.1. Observation
9.2. Response to Observation
10. Psychophysiological Biomarkers Can Change and, in Some Cases, Normalize in Response to Placebo Interventions
10.1. Observation
10.2. Response to Observation
11. The Mathematical Procedures of Statistical Learning Are Not Robust to Misapplication and to Data Artifacts
11.1. Observation
11.2. Response to Observation 10
12. Discussion
- Common inclusion/exclusion criteria should be used to define study populations. A lack of uniformity in defining, for example, depression has made it impossible to compare results obtained in different studies. These criteria should be based on standardized questionnaires (patient-reported outcomes) that satisfy the COSMIN Criteria;
- Standardized data acquisition protocols should be used;
- Explicit descriptions of data analysis procedures and ideally analysis software should be provided;
- Uniform result report formats should be adopted;
- Deidentified data should be publicly available for independent reanalysis. In addition to raw physiological data from each participant, this availability should include the item-by-item questionnaire results that established study eligibility. This will make it possible to correlate specific elements of the clinical presentation with measures calculated from the physiological data.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Takeuchi, H.; Fervaha, G.; Remington, G. Reliability of patient-reported outcome measures in schizophrenia: Results from back-to-back self-ratings. Psychiatry Res. 2016, 244, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, J.; Gooding, K.; Gibbons, E.; Dalkin, S.; Wright, J.; Valderas, J.; Black, N. How do patient-reported outcome measures (PROMs) support clinician-patient communication and patient care? A realist synthesis. J. Patient Rep. Outcomes 2018, 2, 42. [Google Scholar] [CrossRef] [PubMed]
- Rush, A.J.; First, M.B.; Blacker, D. Handbook of Psychiatric Measures, 2nd ed.; American Psychiatric Publishers: Washington, DC, USA, 2008. [Google Scholar]
- Streiner, D.L.; Norman, G.R. Health Measurement Scales: A Practical Guide to Their Development and Use, 4th ed.; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Food and Drug Administration. Guidance for Industry. Patient-Reported Outcome Measures: Use in Medical Product Development to Support Labeling Claims; Food and Drug Administration: Silver Spring, MD, USA, 2009.
- Mokkink, L.B.; Terwee, C.B.; Patrick, D.L.; Alonso, J.; Stratford, P.W.; Knol, D.L.; Bouter, L.M.; de Vet, H.C. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient reported outcomes. J. Clin. Epidemiol. 2010, 63, 737–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokkink, L.B.; Terwee, C.B.; Patrick, D.L.; Alonso, J.; Stratford, P.W.; Knol, D.L.; Bouter, L.M.; de Vet, H.C. The COSMIN checklist for assessing methodological studies on measurement properties of health status measurement instruments: An international Delphi study. Qual. Life Res. 2010, 19, 539–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokkink, L.B.; Terwee, C.B.; Knol, D.L.; Stratford, P.W.; Alonso, J.; Patrick, D.L.; Boute, L.M.; de Vet, H.C. The COSMIN checklist for evaluating the methodological quality of studies on measurement properties: A clarification of its content. BMC Med. Res. Methodol. 2010, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Mokkink, L.B.; Terwee, C.B.; Patrick, D.L.; Alonso, J.; Stratford, P.W.; Knol, D.L.; Bouter, L.M.; de Vet, H.C.W. COSMIN Checklist Manual; VU University Medical Center: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Terwee, C.B.; Mokkink, L.B.; Knol, D.L.; Ostelo, R.W.J.G.; Bouter, L.M.; de Vet, H.C.W. Rating the methodological quality in systemic reviews of studies on measurement properties: A scoring system for the COSMIN checklist. Qual. Life Res. 2012, 21, 651–657. [Google Scholar] [CrossRef] [Green Version]
- McGinn, C. Can we solve the mind-body problem? Mind 1989, 98, 349–366. [Google Scholar] [CrossRef] [Green Version]
- Dennett, D.C. The brain and its boundaries. Review of McGinn: The Problem of Consciousness. The Times Literary Supplement, 10 May 1991. [Google Scholar]
- Harrington, A. Mind Fixers: Psychiatry’s Troubled Search for the Biology of Mental Illness; W.W. Norton and Company: New York, NY, USA, 2019. [Google Scholar]
- Rapp, P.E.; Darmon, D.; Cellucci, C.J.; Keyser, D.O. The physiological basis of consciousness: A clinical ambition and the insufficiency of current philosophical proposals. J. Conscious. Stud. 2018, 25, 191–205. [Google Scholar]
- Koch, C.; Massimini, M.; Boly, M.; Tononi, G. Neural correlates of consciousness: Progress and problems. Nat. Rev. Neurosci. 2016, 17, 307–321. [Google Scholar] [CrossRef]
- Tononi, G.; Boly, M.; Massimini, M.; Koch, C. Integrated Information Theory: From consciousness to its physical substrate. Nat. Rev. Neurosci. 2016, 17, 450–461. [Google Scholar] [CrossRef]
- Boly, M.; Massimini, M.; Tsuchiya, N.; Postle, B.R.; Koch, C.; Tononi, G. Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroengineering evidence. J. Neurosci. 2017, 37, 9603–9613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luck, S.J.; Kappenman, E.S. ERP components and selective attention. In The Oxford Book of Event Related Potential Components; Luck, S.J., Kappenman, E.S., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 295–327. [Google Scholar]
- Perez, V.B.; Vogel, E.K. What ERPs can tell us about working memory. In The Oxford Book of Event Related Potential Components; Luck, S.J., Kappenman, E.S., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 361–372. [Google Scholar]
- Wilding, E.L.; Ranganath, C. Electrophysiological correlates of episodic memory processes. In The Oxford Book of Event Related Potential Components; Luck, S.J., Kappenman, E.S., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 373–395. [Google Scholar]
- Swaab, T.Y.; Ledoux, K.J.; Camblin, C.C.; Boudewyn, M.A. Language related ERP components. In The Oxford Book of Event Related Potential Components; Luck, S.J., Kappenman, E.S., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 397–439. [Google Scholar]
- Hajcak, G.; Weinberg, A.; MacNamara, A.; Foti, D. ERPs and the study of emotion. In The Oxford Book of Event Related Potential Components; Luck, S.J., Kappenman, E.S., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 441–472. [Google Scholar]
- Bruder, G.E.; Kayser, J.; Tenke, C.E. Event-related brain potentials in depression: Clinical, cognitive, and neurophysiological implications. In The Oxford Handbook of Event-Related Potential Components; Luck, S.J., Kappenman, E.S., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 563–692. [Google Scholar]
- O’Donnell, B.F.; Salisbury, D.F.; Niznikiewicz, M.A.; Brenner, C.A.; Vohs, J.L. Abnormalities of event related potential components in schizophrenia. In The Oxford Handbook of Event-Related Potential Components; Luck, S.J., Kappenman, E.S., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 537–562. [Google Scholar]
- Verleger, R. Alterations of ERP components in neurodegenerative diseases. In The Oxford Book of Event Related Potential Components; Luck, S.J., Kappenman, E.S., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 593–610. [Google Scholar]
- Mirand, P.; Cox, C.; Alexander, M.; Danev, S.; Lakey, J. Event related potentials (ERPs) and alpha waves in cognition, aging and selected dementias: A source of biomarkers and therapy. Integr. Mol. Med. 2019, 1, 6. [Google Scholar] [CrossRef]
- Javanbakht, A.; Liberzon, I.; Amirsadri, A.; Gjini, K.; Boutros, N.N. Event-related potential study of post-traumatic stress disorder: A critical review and synthesis. Biol. Mood Anxiety Disord. 2011, 1, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Høyland, A.L.; Nærland, T.; Enjstrøm, M.; Torske, T.; Lydersen, S.; Andreassen, O.A. Atypical event-related potentials revealed during passive parts of a Go-No Go task in autism spectrum disorder: A case control study. Mol. Autism 2019, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Mearees, R.; Melkonian, D.; Gordon, E.; Williams, L. Distinct pattern of P3a event-related potential in borderline personality disorder. Neuroreport 2005, 16, 289–293. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Zhu, Y.; Dai, Y.; Liu, T.; Wang, Y. Cognitive impairment in generalized anxiety disorder reveal by event-related potential N270. Neuropsychiatr. Dis. Treat. 2015, 11, 1405–1411. [Google Scholar]
- Weinberger, J.; Stoycheva, V. The Unconscious: Theory, Research and Clinical Implications; Guilford Press: New York, NY, USA, 2020. [Google Scholar]
- Kihlstrom, J.F. The cognitive unconscious. Science 1987, 237, 1445–1452. [Google Scholar] [CrossRef]
- Kihlstrom, J.F.; Barnhardt, T.M.; Tartaryn, D. The psychological unconscious: Found, lost and regained. Am. Psychol. 1992, 47, 788–791. [Google Scholar] [CrossRef]
- Wilson, T.D. Strangers to Ourselves. Discovering the Adaptive Unconscious; Belknap Press of Harvard University Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Bargh, J.A. The modern unconscious. World Psychiatry 2019, 18, 225–226. [Google Scholar] [CrossRef]
- Berridge, K.C.; Winkielman, P. What is an unconscious emotion? The case for unconscious ‘liking’. Cogn. Emot. 2003, 17, 181–211. [Google Scholar] [CrossRef]
- Brosschot, J.F. Markers of chronic stress: Prolonged physiological activation and (un)conscious perseverative cognition. Neurosci. Behav. Rev. 2010, 35, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Wiers, R.W.; Teachman, B.A.; De Houwer, J. Implicit cognitive processes in psychopathology: An introduction. J. Behav. Ther. Exp. Psychiat 2007, 38, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Sperdin, H.F.; Spierer, L.; Becker, R.; Michel, C.M.; Landis, T. Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses. Hum. Brain Mapp. 2015, 36, 1470–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elgendi, M.; Kumar, P.; Barbic, S.; Howard, N.; Abbott, D.; Cichocki, A. Subliminal priming—State of the art and future perspectives. Behav. Sci. 2018, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Herzog, M.H.; Drissi-Daoudi, L.; Doerig, A. All in good time: Long-lasting postdictive effects reveal discrete perception. Trends Cogn. Sci. 2020, 24, 826–837. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Bailey, K.; Xiao, X. Midfrontal theta and posterior parietal alpha band oscillations support conflict resolution in a masked affective priming task. Front. Hum. Neurosci. 2018, 12, 175. [Google Scholar] [CrossRef]
- Siegel, P.; Cohen, B.; Warren, R. Nothing to fear but fear itself: A mechanistic test of unconscious exposure. Biol. Psychiatry 2022, 91, 294–302. [Google Scholar] [CrossRef]
- Weiskrantz, L.; Warrington, E.K.; Sanders, M.D.; Marshall, J. Visual capacity in hemianopic field following a restricted occiptal ablation. Brain 1974, 97, 709–728. [Google Scholar] [CrossRef]
- Weiskrantz, L. Blindsight: Not an island unto itself. Curr. Dir. Psychol. Sci. 1995, 4, 146–151. [Google Scholar] [CrossRef]
- De Gelder, B.; Vroomen, J.; Pourtois, G.; Weiskrantz, L. Non-conscious recognition of affect in the absence of striate cortex. NeuroReport 1999, 10, 3759–3763. [Google Scholar] [CrossRef] [Green Version]
- Tamietto, M.; Castelli, L.; Vighetti, S.; Perozzo, P.; Geminiani, G.; Weiskrantz, L.; de Gelder, B. Unseen facial and bodily expressions trigger fast emotional reactions. Proc. Natl. Acad. Sci. USA 2009, 106, 17661–17666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.; Yao, H. Unconscious processing of invisible visual stimuli. Sci. Rep. 2016, 6, 38917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liddell, B.J.; Williams, L.M.; Rathjen, J.; Shevrin, H.; Gordon, E. A temporal dissociation of subliminal versus supraliminal fear perception: An event related potential study. J. Cogn. Neurosci. 2004, 16, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Kiss, M.; Eimer, M. ERPs reveal subliminal processing of fearful faces. Psychophysiology 2008, 45, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Del Cul, A.; Dehaene, S.; Leboyer, M. Preserved subliminal processing and impaired conscious access in schizophrenia. Arch. Gen. Psychiatry 2006, 63, 1313–1323. [Google Scholar] [CrossRef] [Green Version]
- Green, M.R.; Nuechterlein, K.H.; Breitmeyer, B.; Mintz, J. Backward masking in unmedicated schizophrenia patients in psychotic remission: Possible reflection of aberrant cortical oscillations. Am. J. Psychiatry 1999, 156, 1367–1373. [Google Scholar]
- Green, M.F.; Mintz, J.; Salveson, D.; Nuechterlein, K.H.; Breitmeyer, B.; Light, G.A.; Braff, D.L. Visual masking as a probe for abnormal gamma range activity in schizophrenia. Biol. Psychiatry 2003, 53, 1113–1119. [Google Scholar] [CrossRef]
- Shackman, A.J.; Fox, A.S. Getting serious about variation: Lessons for clinical neuroscience. (A commentary on the myth of optimality in clinical neuroscience). Trends Cogn. Sci. 2018, 22, 368–369. [Google Scholar] [CrossRef]
- Holmes, A.J.; Patrick, L.M. The myth of optimality in clinical neuroscience. Trends Cogn. Sci. 2018, 22, 241–257. [Google Scholar] [CrossRef]
- Rapp, P.E.; Cellucci, C.J.; Keyser, D.O.; Gilpin, A.M.K.; Darmon, D.M. Statistical issues in TBI clinical studies. Front. Neurol. 2013, 4, 177. [Google Scholar] [CrossRef] [Green Version]
- Mahalanobis, P.C. On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 1936, 2, 49–55. [Google Scholar]
- Lachenbruch, P.A. Discriminant Analysis; Hafner Press: New York, NY, USA, 1975. [Google Scholar]
- Rapp, P.E.; Keyser, D.O.; Albano, A.M.; Hernandez, R.; Gibson, D.; Zambon, R.; Hariston, W.D.; Hughes, J.D.; Krystal, A.; Nichols, A. Traumatic brain injury detection using electrophysiological methods. Front. Hum. Neurosci. 2015, 9, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapur, S.; Phillips, A.G.; Insel, T.R. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol. Psychiatry 2012, 17, 1174–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newson, J.J.; Pastukh, V.; Thiagarajan, T.C. Poor separation of symptom profiles by DSM-5 disorder criteria. Front. Psychiatry 2021, 12, 775762. [Google Scholar] [CrossRef] [PubMed]
- Freedman, R.; Lewis, D.A.; Michels, R.; Pine, D.S.; Schultz, S.K.; Tamminga, C.A.; Gabbard, G.O.; Shur-Fen Gau, S.; Javitt, D.C.; Oquendo, M.A. Initial field trials of DSM-5: New blooms and old thorns. Am. J. Psychiatry 2013, 170, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Clarke, D.E.; Narrow, W.E.; Regier, D.A.; Kuramoto, S.J.; Kupfer, D.J.; Kuhl, E.A.; Greiner, L.; Kraemer, H.C. DSM-5 field trials in the United States and Canada, Part I: Study design, sampling strategy, implementation, and analytic approaches. Am. J. Psychiatry 2013, 170, 43–58. [Google Scholar] [CrossRef]
- Regier, D.A.; Narrow, W.E.; Clarke, D.E.; Kraemer, H.C.; Kuramoto, S.J.; Kuhl, E.A.; Kupfer, D.J. DSM-5 field trials in the United States and Canada. Part II: Test-retest reliability of selected categorical diagnoses. Am. J. Psychiatry 2013, 170, 59–70. [Google Scholar] [CrossRef]
- Narrow, W.E.; Clarke, D.E.; Kuramoto, S.J.; Kraemer, H.C.; Kupfer, D.J.; Greiner, L.; Regier, D.A. DSM-5 trials in the United States and Canada. Part III: Development and reliability of a cross-cutting symptom assessment for DSM-5. Am. J. Psychiatry 2013, 170, 71–82. [Google Scholar] [CrossRef]
- Byeon, H. Screening dementia and predicting high dementia risk groups using machine learning. World J. Psychiatry 2022, 12, 204–211. [Google Scholar] [CrossRef]
- Beaudoin, M.; Hudon, A.; Giguere, C.E.; Potvin, S.; Dumais, A. Prediction of quality of life in schizophrenia using machine learning models on data from Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial. NPJ Schizophr. 2022, 8, 29. [Google Scholar] [CrossRef]
- Insel, T.R. The arrival of preemptive psychiatry. Early Interv. Psychiatry 2007, 1, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Costanzo, M.E.; Rapp, P.E.; Darmon, D.; Bashirelahi, K.; Nathan, D.E.; Cellucci, C.J.; Roy, M.J.; Keyser, D.O. Identifying electrophysiological prodromes of post-traumatic stress disorder: Results form a pilot study. Front. Psychiatry 2017, 8, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoeffding, W. Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 1963, 58, 13–30. [Google Scholar] [CrossRef]
- Clopper, C.J.; Pearson, E.S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 1934, 26, 404–413. [Google Scholar] [CrossRef]
- Thulin, M. The cost of using exact confidence intervals for a binomial proportion. Electron. J. Stat. 2014, 8, 817–840. [Google Scholar] [CrossRef]
- Button, K.S.; Ioannidis, J.P.A.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, S.J.; Munafo, M.R. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Brandler, T.C.; Wang, C.; Oh-Park, M.; Holtzer, R.; Verghese, J. Depression symptoms and gait dysfunction in the elderly. Am. J. Geriatr. Psychiatry 2012, 20, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Shankman, S.A.; Mittal, V.A.; Walther, S. An examination of psychomotor disturbance in current and remitted MDD: An RDoC study. J. Psychiatry Brain Sci. 2020, 5, E200007. [Google Scholar]
- Kumar, D.; Villarereal, D.J.; Meuret, A.E. Walking on the bright side: Associations between affect, depression, and gait. PLoS ONE 2021, 16, e0260893. [Google Scholar] [CrossRef]
- Bernard, P.; Romain, A.J.; Vancampfort, D.; Baillot, A.; Esseul, E.; Ninot, G. Six minutes walk test for individuals with schizophrenia. Disabil. Rehabil. 2015, 37, 921–927. [Google Scholar] [CrossRef]
- Gomes, E.; Bastos, T.; Probst, M.; Ribeiro, J.C.; Silva, G.; Corredeira, R. Reliability and validity of 6MWT for outpatients with schizophrenia: A preliminary study. Psychiatry Res. 2016, 237, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcés, L.; Sánchez-López, M.I.; Cano, S.L.; Meliá, Y.C.; Marqués-Azcona, D.; Biviá-Roig, G.; Lisón, J.F.; Peyró-Gregori, L. The short and long-term effects of aerobic, strength, or mixed exercise programs on schizophrenia symptomatology. Sci. Rep. 2021, 11, 24300. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.A.A.; Cellucci, C.J.; Kohegyi, E.; Bashore, T.R.; Josiassen, R.C.; Greenbaun, N.N.; Rapp, P.E. The algorithmic complexity of multichannel EEGs is sensitive to changes in behavior. Psychophysiology 2003, 40, 77–97. [Google Scholar] [CrossRef] [PubMed]
- Hastie, T.; Tibshirani, R.; Friedman, J. Elements of Statistical Learning, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Ambrose, C.; McLachlan, G. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc. Natl. Acad. Sci. USA 2002, 99, 6562–6566. [Google Scholar] [CrossRef] [Green Version]
- Bashore, T.R.; Osman, A. On the temporal relation between perceptual analysis and response selection: A psychophysiological investigation of stimulus congruency and S-R compatibility effects on human information processing. In Proceedings of the Fourth International Conference on Cognitive Neurosciences, Paris, France, 14–19 June 1987. [Google Scholar]
- Cole, W.R.; Arrieux, J.P.; Schwab, K.; Ivins, B.J.; Qashu, F.M.; Lewis, S.C. Test-retest reliability of four computerized neurocognitive assessment tools in an active duty military population. Arch. Clin. Neuropsychol. 2013, 28, 732–742. [Google Scholar] [CrossRef]
- Polich, J.; Herbst, K.L. P300 as a clinical assay: Rationale, evaluation and findings. Int. J. Psychophysiol. 2000, 38, 3–19. [Google Scholar] [CrossRef]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- McGraw, K.O.; Wong, S.P. Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1996, 1, 30–46. [Google Scholar] [CrossRef]
- Müller, R.; Büttner, P. A critical discussion of intraclass correlation coefficients. Stat. Med. 1994, 13, 2465–2476. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Res. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Krebs, D.E. Declare your ICC type. Phys. Ther. 1986, 66, 1431. [Google Scholar] [CrossRef] [PubMed]
- Fleiss, J.L. The Design and Analysis of Clinical Experiments; John Wiley and Sons: New York, NY, USA, 1986. [Google Scholar]
- De Mast, J. Agreement and kappa-type indices. Am. Stat. 2007, 61, 148–153. [Google Scholar] [CrossRef] [Green Version]
- Donner, A.; Wells, G. A comparison of confidence interval methods for the intraclass correlation coefficient. Biometrics 1986, 42, 401–412. [Google Scholar] [CrossRef]
- Doros, G.; Lew, R. Design based on intraclass correlation coefficients. Am. J. Biostat. 2010, 1, 1–8. [Google Scholar]
- Ionan, A.C.; Polley, M.-Y.; McShane, L.M.; Dobbin, K.K. Comparison of confidence interval methods for an intraclass correlation coefficient (ICC). BMC Med. Res. Methodol. 2014, 14, 121. [Google Scholar] [CrossRef] [Green Version]
- Portney, L.G.; Watkins, M.P. Foundations of Clinical Research. Applications to Practice, 3rd ed.; Prentice Hall Health: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Copay, A.G.; Subach, B.R.; Glassman, S.D.; Polly, D.W.; Shuler, T.C. Understanding the minimum clinically important difference: A review of concepts and methods. Spine J. 2007, 7, 541–546. [Google Scholar] [CrossRef]
- Zou, G.Y. Sample size formulas for estimating intraclass correlation coefficients with precision and assurance. Stat. Med. 2012, 31, 3972–3981. [Google Scholar] [CrossRef]
- Head, H. Aphasia and Kindred Disorders of Speech; Cambridge University Press: Cambridge, UK, 1926. [Google Scholar]
- Bleiberg, J.; Garmoe, W.S.; Halpern, E.L.; Reeves, D.L.; Nadler, J.D. Consistency of within-day and across-day performance after mild brain injury. Neuropsychiatry Neuropsychol. Behav. Neurol. 1997, 10, 247–253. [Google Scholar]
- Garavaglia, L.; Gulich, D.; Defeo, M.M.; Mailland, J.T.; Irurzun, I.M. The effect of age on heart rate variability of healthy subjects. PLoS ONE 2021, 16, e0255894. [Google Scholar] [CrossRef]
- Voss, A.; Schroeder, R.; Heitmann, A.; Peters, A.; Perez, S. Short-term heart rate variability—Influence of gender and age in healthy subjects. PLoS ONE 2015, 10, e0118308. [Google Scholar]
- Dietrich, D.F.; Schindler, C.; Schwartz, J.; Barthélémy, J.C.; Tschopp, J.M.; Roche, F. von Eckardstein, A; Brändli; Leuenberger, P.; Gold, D.R.; et al. Heart rate variability in an ageing population and its association with lifestyle and cardiovascular risk factors: Results of the SAPALDIA study. Europace 2006, 8, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Yukishita, T.; Lee, K.; Kim, S.; Yumoto, Y.; Kobayashi, A.; Shirasawa, T.; Kobayashi, H. Age and sex-dependent alterations in heart rate variability profiling the characteristics of men and women in their 30 s. Anti-Aging Med. 2010, 7, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Gutchess, A.H.; Ieuji, Y.; Federmeier, K.D. Event-related potentials reveal age differences in the encoding and recognition of scenes. J. Cogn. Neurosci. 2007, 19, 1089–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillem, E.; Mograss, M. Gender differences in memory processing: Evidence from event related potentials to faces. Brain Cogn. 2005, 57, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Campanella, S.; Rossignol, M.; Mejias, S.; Joassin, F.; Maurage, P.; Bruyer, R.; Crommelinck, M.; Guérit, J.M. Human gender differences in an emotional visual oddball task: An event-related potentials study. Neurosci. Lett. 2004, 367, 14–18. [Google Scholar] [CrossRef]
- Aslaksen, P.M.; Bystad, M.; Vambheim, S.M.; Flaten, M.A. Gender differences in placebo analgesia: Event-related potentials and emotional modulation. Psychosom. Med. 2011, 73, 193–199. [Google Scholar] [CrossRef]
- Fukusaki, C.; Kawakubo, K.; Yamamoto, Y. Assessment of the primary effect of aging on heart rate variability in humans. Clin. Auton. Res. 2000, 10, 123–130. [Google Scholar] [CrossRef]
- Choi, J.; Cha, W.; Park, M.-G. Declining trends of heart rate variability according to aging in healthy Asian adults. Front. Aging Neurosci. 2020, 12, 610626. [Google Scholar] [CrossRef]
- Mu, Y.; Kitayama, S.; Han, S.; Gelfand, M.J. How culture gets enbrained: Cultural differences in event-related potentials of social norm violations. Proc. Natl. Acad. Sci. USA 2015, 112, 15348–15353. [Google Scholar] [CrossRef] [Green Version]
- Kemp, A.H.; Quintana, D.S.; Gray, M.A.; Felmingham, K.L.; Brown, K.; Gatt, J.M. Impact of depression and antidepressant treatment on heart rate variability: A review and meta-analysis. Biol. Psychiatry 2010, 67, 1067–1074. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Kemp, A.H.; Dantas, E.M. Heart rate variability is a trait marker of major depressive disorder: Evidence from the sertraline vs. electric current therapy to treat depression: Clinical study. Int. J. Neuropsychopharmacol. 2013, 16, 1937–1949. [Google Scholar] [CrossRef] [Green Version]
- Bozkurt, A.; Barcin, C.; Isintas, M.; Ak, M.; Erdem, M.; Ozmenier, K.N. Changes in heart rate variability before and after ECT in the treatment of resistant major depressive disorder. Isr. J. Psychiatry Relat. Sci. 2013, 50, 40–46. [Google Scholar] [PubMed]
- Alvares, G.A.; Quintana, D.S.; Hickie, I.B.; Guastella, A.J. Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: A systematic review and meta-analysis. J. Psychiatry Neurosci. 2016, 41, 89–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udupa, K.; Thirthalli, J.; Sathyaprabha, T.N.; Kishore, K.R.; Raju, T.R.; Gangadhar, B.N. Differential actions of antidepressant treatments on cardiac autonomic alterations in depression: A prospective comparison. Asian J. Psychiatry 2011, 4, 100–106. [Google Scholar] [CrossRef]
- Nahshoni, E.; Aizenberg, D.; Sigler, M.; Strasberg, B.; Zalsman, G.; Imbar, S.; Adler, E.; Weizman, A. Heart rate variability increases in elderly patients who respond to electroconvulsive therapy. J. Psychosom. Med. 2004, 56, 89–94. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Nishanen, J.-P.; Lipponen, J.A.; Ranta-aho, P.O.; Karjalainen, P.S. Kubios HRV heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef]
- Buchheim, A.; Labek, K.; Taubner, S.; Kessler, H.; Pokorny, D.; Kächele, H.; Cierpka, M.; Roth, G.; Pogarell, O.; Karch, S. Modulation of gamma band activity and late positive potential in patients with chronic depression after psychodynamic psychotherapy. Psychother. Psychosom. 2018, 87, 252–254. [Google Scholar] [CrossRef] [PubMed]
- Siegle, G.J.; Condray, R.; Thase, M.E.; Keshavan, M.; Steinhauer, S.R. Sustained gamma-band EEG following negative words in depression and schizophrenia. Int. J. Psychophysiol. 2010, 75, 107–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackwood, D.H.; Whalley, L.J.; Christie, J.E.; Blackburn, I.M.; St Clair, D.M.; McInnes, A. Changes in auditory P3 event-related potential in schizophrenia and depression. Br. J. Psychiatry 1987, 150, 154–160. [Google Scholar] [CrossRef]
- Gangadhar, B.N.; Ancy, J.; Janakiramaiah, N.; Umapathy, C. P300 amplitude in non-bipolar melancholic depression. J. Affect. Disord. 1993, 28, 57–60. [Google Scholar] [CrossRef]
- Umbricht, D.; Krljes, S. Mismatch negativity in schizophrenia: A meta-analysis. Schizophr. Res. 2005, 76, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, M.E.; Murray, M.M.; Deppen, P.; Knyazera, M.G.; Berk, M.; Boulat, O.; Bovet, P.; Bush, A.I.; Conus, P.; Copolov, D.; et al. Glutathione precursor N-acetyl-cysteine improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology 2008, 33, 2187–2199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Zhu, H.; Chen, L. Effects of aripiprazole on mismatch negativity (MMN). PLoS ONE 2013, 8, e52186. [Google Scholar] [CrossRef] [Green Version]
- Gehring, W.J.; Liu, Y.; Orr, J.M.; Carp, J. The error related negativity (ERN/Ne). In The Oxford Handbook of Event-Related Potential Components; Luck, S.J., Kappenman, E.S., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 231–292. [Google Scholar]
- Olvet, D.M.; Hajcak, G. The error related negativity (ERN) and pathophysiology: Toward an endophenotype. Clin. Psychophysiol. Rev. 2008, 28, 1343–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moser, J.S.; Moran, T.P.; Schroder, H.S.; Donnellan, M.B.; Yeung, N. On the relationship between anxiety and error monitoring: A meta-analysis and conceptual framework. Front. Hum. Neurosci. 2013, 7, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajcak, G.; Franklin, M.E.; Foa, E.B.; Simons, R.F. Increased error-related brain activity in pediatric obsessive-compulsive disorder before and after treatment. Am. J. Psychiatry 2008, 165, 116–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riesel, A.; Endrass, T.; Auerbach, L.A.; Kathmann, N. Overactive performance monitoring as an endophenotype for obsessive-compulsive disorder: Evidence from a treatment study. Am. J. Psychiatry 2015, 172, 665–673. [Google Scholar] [CrossRef]
- Kujawa, A.; Weinberg, A.; Bunford, N.; Fitzgerald, K.D.; Hanna, G.L.; Monk, C.S.; Kennedy, A.E.; Klumpp, H.; Hajcak, G.; Phan, K.L. Error-related brain activity in youth and young adults before and after treatment for generalized or social anxiety disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 71, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Gorka, S.M.; Burkhouse, K.L.; Klumpp, H.; Kennedy, A.E.; Afshar, K.; Francis, J.; Ajilore, O.; Mariouw, S.; Craske, M.G.; Langenecker, S.; et al. Error-related brain activity as a treatment moderator and index of symptom change during cognitive-behavioral therapy or selective serotonin reuptake inhibitors. Neuropsychopharmacology 2018, 43, 1355–1363. [Google Scholar] [CrossRef]
- Ladouceur, C.B.; Tan, P.Z.; Shama, V.; Bylsma, L.M.; Silk, J.S.; Siegle, G.J.; Forbes, E.F.; McMakin, D.L.; Dahl, R.E.; Kendall, P.C.; et al. Error-related brain activity in pediatric anxiety disorders remains elevated following individual therapy: A randomized clinical trial. J. Child Psychol. Psychiatry 2018, 59, 1152–1161. [Google Scholar] [CrossRef] [Green Version]
- Valt, C.; Huber, D.; Erhardt, K.; Stürmer, B. Internal and external signal processing in patients with panic disorder: An event-related potential (ERP) study. PLoS ONE 2018, 13, e0208257. [Google Scholar] [CrossRef] [PubMed]
- Valt, C.; Huber, D.; Stürmer, B. Treatment-related changes towards normalization of the abnormal external signal processing in panic disorder. PLoS ONE 2020, 15, e0227673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajcak, G.; Klawohn, J.; Meyer, A. The utility of event-related potentials in clinical psychology. Annu. Rev. Clin. Psychol. 2019, 15, 71–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, K. Der Aufbau des Organismus. Einführung in die Biologie unter Besonderer Berücksichtigung der Erfahrungen am Kranken Menschen; Republished in English as The Organism, Forward by Oliver Sachs; Nijhoff: The Hague, The Netherlands; Brooklyn, NY, USA, 1934. [Google Scholar]
- Niv, S. Clinical efficacy and potential mechanisms of neurofeedback. Personal. Individ. Differ. 2013, 54, 676–686. [Google Scholar] [CrossRef]
- Micoulaud-Franchi, J.-A.; Geoffroy, P.A.; Fond, G.; Lopez, R.; Bioulac, S.; Philip, P. EEG neurofeedback treatments in children with ADHD: An updated meta-analysis of randomized controlled trials. Front. Hum. Neurosci. 2014, 8, 906. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, J.P. EEG biofeedback of frontal alpha asymmetry in affective disorders. Biofeedback 1997, 25, 8–25. [Google Scholar]
- Wiedemann, G.; Pauli, P.; Dengler, W.; Lutzenberger, W.; Birbaumer, N.; Buckkremer, G. Frontal brain asymmetry as a biological substrate of emotions in patients with panic disorders. Arch. Gen. Psychiatry 1999, 56, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Papo, D. Neurofeedback: Principles, appraisals, and outstanding issues. Eur. J. Neurosci. 2019, 49, 1454–1469. [Google Scholar] [CrossRef] [Green Version]
- Vaschillo, E.G.; Bates, M.E.; Vaschillo, B.; Lehrer, P.; Udo, T.; Mun, E.Y.; Ray, S. Heart rate variability response to alcohol, placebo, and emotional picture cue challenges: Effects of 0.1-Hz stimulation. Psychophysiology 2008, 45, 847–858. [Google Scholar] [CrossRef] [Green Version]
- Darragh, M.; Vanderboor, T.; Booth, R.J.; Sollers, J.J.; Consedine, N.S. Placebo ‘serotonin’ increases heart rate variability in recovery from psychosocial stress. Physiol. Behav. 2015, 145, 45–49. [Google Scholar] [CrossRef]
- Daniali, H.; Flaten, M.A. Placebo analgesia, nocebo hyperalgesia and the cardiovascular system: A qualitative systematic review. Front. Physiol. 2020, 11, 549807. [Google Scholar] [CrossRef] [PubMed]
- Schienle, A.; Gremsl, A.; Übel, S.; Körner, C. Testing the effect of disgust placebo with eye tracking. Int. J. Psychophysiol. 2016, 101, 69–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schienle, A.; Übel, S.; Schongassner, F.; Ille, R.; Scharmüller, W. Disgust regulation via placebo: An fMRI study. Soc. Cogn. Affect. Neurosci. 2014, 9, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Schienle, A.; Übel, S.; Scharmüller, W. Placebo treatment can alter primary visual cortex activity and connectivity. Neuroscience 2014, 263, 125–129. [Google Scholar] [CrossRef]
- Gremsl, A.; Schwab, D.; Höfler, C.; Schienle, A. Placebo effects in spider phobia: An eye-tracking experiment. Cogn. Emot. 2018, 3, 1571–1577. [Google Scholar] [CrossRef] [Green Version]
- Wager, T.D.; Dagfinn, M.B.; Casey, K.L. Placebo effects in laser-evoked pain potentials. Brain Behav. Immunol. 2006, 20, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.; El-Deredy, W.; Vogt, B.A.; Jones, A.K.P. Placebo analgesia is not due to compliance or habituation: EEG and behavioural evidence. Neuroreport 2007, 18, 771–775. [Google Scholar] [CrossRef]
- Meyer, B.; Yuen, K.S.L.; Ertl, M.; Polomac, N.; Mulert, C.; Büchel, C.; Kalisch, R. Neural mechanisms of placebo anxiolysis. J. Neurosci. 2015, 35, 7365–7373. [Google Scholar] [CrossRef] [Green Version]
- Übel, S.; Leutgeb, V.; Schienle, A. Electrocortical effects of a disgust placebo in children. Biol. Psychol. 2015, 108, 78–84. [Google Scholar] [CrossRef]
- Schienle, A.; Gremsl, A.; Schwab, D. Placebos can change affective contexts: An event related potential study. Biol. Psychol. 2020, 150, 107843. [Google Scholar] [CrossRef]
- Van Elk, M.; Groenendijk, E.; Hoogeveen, S. Placebo brain stimulation affects subjective by not neurocognitive measures of error processing. J. Cogn. Enhanc. 2020, 4, 389–400. [Google Scholar] [CrossRef]
- Guevarra, D.A.; Moser, J.S.; Wager, T.D.; Kross, D. Placebos without deception reduce self-report and neural measures of emotional distress. Nat. Commun. 2020, 11, E3785. [Google Scholar] [CrossRef] [PubMed]
- Colloca, L.; Howick, J. Placebos without deception: A review of their outcomes, mechanisms, and ethics. Int. Rev. Neurobiol. 2018, 138, 219–240. [Google Scholar] [PubMed] [Green Version]
- Kaptchuk, T.J.; Friedlander, E.; Kelley, J.M.; Sanchez, M.N.; Kokkotou, E.; Singer, J.P.; Kowalczykowski, M.; Miller, F.G.; Kirsch, I.; Lembo, A.J. Placebos without deception: A randomized controlled trial in irritable bowel syndrome. PLoS ONE 2010, 5, e15591. [Google Scholar] [CrossRef]
- Hajcak, G.; MacNamara, A.; Olvet, D.M. Event related potentials, emotion, and emotion regulation: An integrative review. Dev. Neuropsychol. 2010, 35, 129–155. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, H.; McGinnis-Deweese, M.; Keil, A.; Ding, M. Neural substrate of the late positive potential in emotional processing. J. Neurosci. 2012, 32, 14563–14572. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Fisher, M.E.; Roberts, S.M.M.; Moser, J.S. Deconstructing the emotion regulatory properties of mindfulness: An electrophysiological investigation. Front. Hum. Neurosci. 2016, 10, 451. [Google Scholar] [CrossRef] [Green Version]
- Posternak, M.A.; Solomon, D.A.; Leon, A.C.; Mueller, T.I. The naturalistic course of unipolar major depression in the absence of somatic therapy. J. Nerv. Ment. Dieases 2006, 194, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Posternak, M.A.; Miller, I. Untreated short-term course of major depression: A meta-analysis of outcomes from studies using wait-list control groups. J. Affect. Disord. 2001, 66, 139–146. [Google Scholar] [CrossRef]
- Muthukumaraswamy, S.D. High-frequency brain activity and muscle artifacts in MEG/EEG: A review and recommendations. Front. Hum. Neurosci. 2013, 7, 138. [Google Scholar] [CrossRef] [Green Version]
- Rapp, P.E.; Albano, A.M.; Schmah, T.I.; Farwell, L.A. Filtered noise can mimic low dimensional chaotic attractors. Phys. Rev. E 1993, 47, 2289–2297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theiler, J.; Rapp, P.E. Re-examination of evidence for low-dimensional nonlinear structure in the human electroencephalogram. Electroencephalogr. Clin. Neurophysiol. 1996, 98, 213–222. [Google Scholar] [CrossRef]
- Hipp, J.F.; Siegel, M. Dissociating neuronal gamma-band activity from cranial and ocular muscle activity in EEG. Front. Hum. Neurosci. 2013, 7, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luck, S.J. An Introduction to the Event-Related Potential Technique, 2nd ed.; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Head, M.L.; Holman, L.; Lanfear, R.; Kahn, A.T.; Jennions, M.D. The extent and consequences of P-hacking in science. PLoS Biol. 2015, 13, e1002106. [Google Scholar] [CrossRef] [Green Version]
- Adda, J.; Decker, C.; Ottaviani, M. P-hacking in clinical trials and how incentives shape the distribution of results across phases. Proc. Natl. Acad. Sci. USA 2020, 117, 13386–13392. [Google Scholar] [CrossRef]
- Rapp, P.E.; Cellucci, C.J.; Watanabe, T.A.A.; Albano, A.M.; Schmah, T.I. Surrogate data pathologies and the false-positive rejection of the null hypothesis. Int. J. Bifurc. Chaos 2001, 11, 983–997. [Google Scholar] [CrossRef]
- Rapp, P.E.; Albano, A.M.; Zimmerman, I.D.; Jiménez-Montaño, M.A. Phase-randomized surrogates can produce spurious identifications of non-random structure. Phys. Lett. A 1994, 192, 27–33. [Google Scholar] [CrossRef]
- Garrett-Ruffin, S.; Cowden Hindash, A.; Kaczkurkin, A.N.; Mears, R.P.; Morales, S.; Paul, K.; Pavlov, Y.G.; Keil, A. Open science in psychophysiology: An overview of challenges and emerging solutions. Int. J. Psychophysiol. 2021, 162, 69–78. [Google Scholar] [CrossRef]
- Foster, E.D.; Deardorff, A. Open Science Framework (OSF). J. Med. Libr. Assoc. 2017, 105, 203–206. [Google Scholar] [CrossRef] [Green Version]
- Saunders, B.; Inzlicht, M. Pooling resources to enhance rigour in psychophysiological research; insights from open science approaches to meta-analysis. Int. J. Psychophysiol. 2021, 162, 112–120. [Google Scholar] [CrossRef]
- Picton, T.W.; Bentin, S.; Berg, P.; Donchin, E.; Hillyard, S.A.; Johnson, R.; Miller, G.A.; Ritter, W.; Ruchkin, D.S.; Rugg, M.D.; et al. Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology 2000, 37, 127–152. [Google Scholar] [CrossRef] [PubMed]
- Duncan, C.C.; Barry, R.J.; Connolly, J.F.; Fischer, C.; Michie, P.T.; Näätänen, R.; Polich, J.; Reinvang, I.; Van Petten, C. Event-related potentials in clinical research: Guidelines for eliciting recording and quantifying mismatch negativity, P300, and N400. Clin. Neurophysiol. 2009, 120, 1883–1908. [Google Scholar] [CrossRef] [PubMed]
- Campanella, S.; Colin, C. Event-related potentials and biomarkers of psychiatric diseases: The necessity to adopt and develop multi-site guidelines. Front. Behav. Neurosci. 2014, 8, 428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kappenman, E.S.; Luck, S.J. Best practices for event-related potential research in clinical populations. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2016, 1, 101–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campanella, S. Use of cognitive event related potentials in the management of psychiatric disorders: Towards an individual follow-up and multicomponent clinical approach. World J. Psychiatry 2021, 11, 153–168. [Google Scholar] [CrossRef]
- Kappenman, E.S.; Farrens, J.L.; Zhang, W.; Stewart, A.X.; Luck, S.J. ERP CORE: An open resource for human event-related potential research. Neuroimage 2021, 225, 117465. [Google Scholar] [CrossRef]
- Mayer, K.; Wyckoff, S.N.; Strehl, U. Underarousal in adult ADHD: How are peripheral and cortical arousal related? Clin. EEG Neurosci. 2015, 47, 171179. [Google Scholar] [CrossRef]
- Bramon, F.; Rabe-Hesketh, S.; Sham, P.; Murray, R.M.; Frangou, S. Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophr. Res. 2004, 70, 315–329. [Google Scholar] [CrossRef]
- Karaaslan, F.; Gonul, A.S.; Oguz, A.; Erdinc, E.; Esel, E. P300 changes in major depressive disorders with and without psychotic features. J. Affect. Disord. 2003, 73, 283–287. [Google Scholar] [CrossRef]
- Anderson, M.L.; James, J.R.; Kirwan, C.B. An event-related potential investigation of pattern separation and pattern completion processes. Cogn. Neurosci. 2017, 8, 9–23. [Google Scholar] [CrossRef]
- Ehlers, C.L.; Wills, D.N.; Desikan, A.; Phillips, E.; Havstad, J. Decreases in energy and increase in phase locking of event related oscillations to auditory stimuli occur during adolescence in human and rodent brain. Dev. Neurosci. 2014, 36, 175–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehlers, C.L.; Wills, D.N.; Karriker-Jaffe, K.J.; Gilder, D.A.; Phillips, E.; Bernert, R.A. Delta event-related oscillations are related to a history of extreme binge drinking in adolescence and suicide risk. Behav. Sci. 2020, 10, 154. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.; Whitton, A.E.; Deccy, S.; Ironside, M.L.; Rutherford, A.; Beltzer, M.; Sacchet, M.; Pizzagalli, D.A. Abnormalities in electroencephalographic microstates are state and trait markers of major depressive disorder. Neuropsychopharmacology 2020, 45, 2030–2037. [Google Scholar] [CrossRef] [PubMed]
- Darmon, D. Specific differential entropy rate estimation for continuous-valued time series. Entropy 2016, 18, 190. [Google Scholar] [CrossRef] [Green Version]
- Stam, C.J. Modern network science of neurological disorders. Nat. Rev. Neurosci. 2014, 15, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Efron, B. Second thoughts on the bootstrap. Stat. Sci. 2003, 18, 135–140. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R. Bootstrap methods for statistical errors: Confidence intervals and other measures of statistical accuracy. Stat. Sci. 1986, 1, 54–75. [Google Scholar] [CrossRef]
- Fernández-Delgado, M.; Cernadas, E.; Barro, S. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 2014, 15, 3133–3181. [Google Scholar]
- Vanschoren, J.; Blockeel, H.; Pfahringer, B.; Holmes, G. Experiment databases. A new way to share, organize and learn from experiments. Mach. Learn. 2012, 87, 127–158. [Google Scholar] [CrossRef] [Green Version]
- Bache, K.; Lichman, M. UCI Machine Learning Repository. Available online: https://archive.ics.edu (accessed on 3 March 2022).
- Li, R.; Johansen, J.S.; Ahmed, H.; Ilyevsky, T.V.; Wilbur, R.B.; Bharadwaj, H.M.; Siskind, J.M. The perils and pitfalls of block design for EEG classification experiments. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 316–333. [Google Scholar] [CrossRef]
- Ahmed, H.; Wilbur, R.B.; Bharadwaj, H.M.; Siskind, J.M. Confounds in the data—Comments on “Decoding brain representations by multimodal learning of neural activity and visual features”. IEEE Trans. Pattern Anal. Mach. Intell. 2021. [Google Scholar] [CrossRef] [PubMed]
- FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS and Other Tools) Resource; Food and Drug Administration: Silver Spring, MD, USA, 2021.
- Food and Drug Administration. Biomarker qualification: Evidentiary framework. In Guidance for Industry and FDA Staff; Draft Guidance Food and Drug Administration: Silver Spring, MD, USA, 2018. [Google Scholar]
- Leptak, K.C.; Menetski, J.; Wagner, J.A.; Aubrecht, J.; Brady, L.; Brumfeld, M.; Chin, W.W.; Hoffmann, S.; Kelloff, G.; Lavezzari, G.; et al. What evidence do we need for biomarker qualification. Sci. Transl. Med. 2017, 9, Eaal4599. [Google Scholar] [CrossRef]
- Prata, D.; Mochelli, A.; Kapur, S. Clinically meaningful biomarkers for psychosis: A systematic and quantitative review. Neurosci. Biobehav. Rev. 2014, 45, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.K.; Cooper, J.D.; Bot, M.; Steiner, J.; Penninx, B.W.J.H.; Bahn, S. Identification of an immune-neuroendocrine biomarker panel for detection of depression: A joint effects statistical approach. Neuroendocrinology 2016, 103, 693–710. [Google Scholar] [CrossRef]
- Chan, M.K.; Krebs, M.-O.; Cox, D.; Guest, P.C.; Yolken, R.H.; Rahmoune, H.; Rothermundt, M.; Steiner, J.; Leweke, F.M.; van Beveren, N.J.M.; et al. Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset. Transl. Psychiatry 2015, 5, c601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapp, P.E.; Cellucci, C.; Darmon, D.; Keyser, D. Cautionary Observations Concerning the Introduction of Psychophysiological Biomarkers into Neuropsychiatric Practice. Psychiatry Int. 2022, 3, 181-205. https://doi.org/10.3390/psychiatryint3020015
Rapp PE, Cellucci C, Darmon D, Keyser D. Cautionary Observations Concerning the Introduction of Psychophysiological Biomarkers into Neuropsychiatric Practice. Psychiatry International. 2022; 3(2):181-205. https://doi.org/10.3390/psychiatryint3020015
Chicago/Turabian StyleRapp, Paul E., Christopher Cellucci, David Darmon, and David Keyser. 2022. "Cautionary Observations Concerning the Introduction of Psychophysiological Biomarkers into Neuropsychiatric Practice" Psychiatry International 3, no. 2: 181-205. https://doi.org/10.3390/psychiatryint3020015
APA StyleRapp, P. E., Cellucci, C., Darmon, D., & Keyser, D. (2022). Cautionary Observations Concerning the Introduction of Psychophysiological Biomarkers into Neuropsychiatric Practice. Psychiatry International, 3(2), 181-205. https://doi.org/10.3390/psychiatryint3020015