Internet Addiction and Depression among Syrian College Students: A Cross-Sectional Study
Abstract
:1. Introduction
2. Methods
2.1. Study Strategy and Questionnaire Design
2.2. Measures
2.2.1. Sociodemographic Variables
2.2.2. Health, Behavioral, and Internet Activity Variables
2.2.3. Depression Prediction Scale
2.2.4. Internet Addiction Assessment Tool
2.3. Pilot Study
2.4. Sample Size
2.5. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics Approval and Consent to Participate
References
- Hasan, A.A.H.; Jaber, A.A. Prevalence of Internet Addiction, Its Association with Psychological Distress, Coping Strategies among Undergraduate Students. Nurse Educ. Today 2019, 81, 78–82. [Google Scholar] [CrossRef]
- Kuss, D.J.; Shorter, G.W.; Van Rooij, A.J.; Van De Mheen, D.; Griffiths, M.D. The Internet Addiction Components Model and Personality: Establishing Construct Validity via a Nomological Network. Comput. Human Behav. 2014, 39, 312–321. [Google Scholar] [CrossRef]
- Laconi, S.; Kaliszewska-Czeremska, K.; Gnisci, A.; Sergi, I.; Barke, A.; Jeromin, F.; Groth, J.; Gamez-Guadix, M.; Ozcan, N.K.; Demetrovics, Z.; et al. Cross-Cultural Study of Problematic Internet Use in Nine European Countries. Comput. Human Behav. 2018, 84, 430–440. [Google Scholar] [CrossRef]
- Al-Gamal, E.; Alzayyat, A.; Ahmad, M.M. Prevalence of Internet Addiction and Its Association with Psychological Distress and Coping Strategies among University Students in Jordan. Perspect. Psychiatr. Care 2016, 52, 49–61. [Google Scholar] [CrossRef]
- Çelebioğlu, A.; Aytekin Özdemir, A.; Küçükoğlu, S.; Ayran, G. The Effect of Internet Addiction on Sleep Quality in Adolescents. J. Child Adolesc. Psychiatr. Nurs. 2020, 33, 221–228. [Google Scholar] [CrossRef]
- Cheung, L.M.; Wong, W.S. The Effects of Insomnia and Internet Addiction on Depression in Hong Kong Chinese Adolescents: An Exploratory Cross-Sectional Analysis. J. Sleep Res. 2011, 20, 311–317. [Google Scholar] [CrossRef]
- Bener, A.; Bhugra, D. Lifestyle and Depressive Risk Factors Associated with Problematic Internet Use in Adolescents in an Arabian Gulf Culture. J. Addict. Med. 2013, 7, 236–242. [Google Scholar] [CrossRef]
- Sayeed, A.; Rahman, M.H.; Hassan, M.N.; Christopher, E.; Kundu, S.; Al Banna, M.H.; Hasan, A.R.; Mallick, T.; Meem, A.E.; Hasan, M.T. Problematic Internet Use Associated with Depression, Health, and Internet-Use Behaviors among University Students of Bangladesh: A Cross-Sectional Study. Child Youth Serv. Rev. 2021, 120, 105771. [Google Scholar] [CrossRef]
- Morrison, C.M.; Gore, H. The Relationship between Excessive Internet Use and Depression: A Questionnaire-Based Study of 1,319 Young People and Adults. Psychopathology 2010, 43, 121–126. [Google Scholar] [CrossRef]
- Grow, A.; Perrotta, D.; Del Fava, E.; Cimentada, J.; Rampazzo, F.; Gil-Clavel, S.; Zagheni, E. Addressing Public Health Emergencies via Facebook Surveys: Advantages, Challenges, and Practical Considerations. J. Med. Internet Res. 2020, 22, e20653. [Google Scholar] [CrossRef]
- Pew Research Center: Internet, Science & Tech. Day: March 1, 2018. Available online: https://www.pewresearch.org/internet/2018/03/01/ (accessed on 9 August 2023).
- Gendronneau, C.; Wisniowski, A.; Yildiz, D.; Zagheni, E.; Florio, L.; Hsiao, Y.; Stepanek, M.; Weber, I.; Abel, G.; Hoorens, S. Measuring Labour Mobility and Migration Using Big Data: Exploring the Potential of Social-Media Data for Measuring EU Mobility Flows and Stocks of EU Movers; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Al Saadi, T.; Zaher Addeen, S.; Turk, T.; Abbas, F.; Alkhatib, M. Psychological Distress among Medical Students in Conflicts: A Cross-Sectional Study from Syria. BMC Med. Educ. 2017, 17, 173. [Google Scholar] [CrossRef] [PubMed]
- Swed, S.; Sohib, S.; Hassan, N.A.I.F.; Almoshantaf, M.B.; Alkadi, S.M.S.; AbdelQadir, Y.H.; Ibrahim, N.; Khair, L.T.; Bakkour, A.; Muwaili, A.H.H.; et al. Stigmatizing Attitudes towards Depression among University Students in Syria. PLoS ONE 2022, 17, e0273483. [Google Scholar] [CrossRef]
- Mengistu, N.; Tarekegn, D.; Bayisa, Y.; Yimer, S.; Madoro, D.; Assefa, D.G.; Zeleke, E.D.; Molla, W.; Wudneh, A.; Shumye, S.; et al. Prevalence and Factors Associated with Problematic Internet Use among Ethiopian Undergraduate University Students in 2019. J. Addict. 2021, 2021, 6041607. [Google Scholar] [CrossRef]
- Stubbs, M.; Bateman, C.J.; Hull, D.M. Problematic Internet Use among University Students in Jamaica. Int. J. Ment. Health Addict. 2022, 1–12. [Google Scholar] [CrossRef]
- Romero-López, M.; Pichardo, C.; De Hoces, I.; García-Berbén, T. Problematic Internet Use among University Students and Its Relationship with Social Skills. Brain Sci. 2021, 11, 1301. [Google Scholar] [CrossRef]
- Mamun, M.A.; Hossain, M.S.; Griffiths, M.D. Mental Health Problems and Associated Predictors among Bangladeshi Students. Int. J. Ment. Health Addict. 2022, 20, 657–671. [Google Scholar] [CrossRef]
- Beck, A.T.; Beamesderfer, A. Assessment of Depression: The Depression Inventory. Mod. Probl. Pharmacopsychiatry 1974, 7, 151–169. [Google Scholar] [CrossRef]
- Mostafa Alim, S.M.A.H.; Ahmed, M.N.; Mullick, M.S.I.; Chowdhury, N.F.; Akhter, F.; Alam, M.S. Validation of the Bangla Version of Beck Depression Inventory-II. Brain Behav. 2020, 10, e01563. [Google Scholar] [CrossRef]
- Chen, L.; Wang, L.; Qiu, X.H.; Yang, X.X.; Qiao, Z.X.; Yang, Y.J.; Liang, Y. Depression among Chinese University Students: Prevalence and Socio-Demographic Correlates. PLoS ONE 2013, 8, e58379. [Google Scholar] [CrossRef]
- Young, K.S. Caught in the Net: How to Recognize the Signs of Internet Addiction--and a Winning Strategy for Recovery; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1998; p. 248. [Google Scholar]
- Mamun, M.A.; Hossain, M.S.; Siddique, A.B.; Sikder, M.T.; Kuss, D.J.; Griffiths, M.D. Problematic Internet Use in Bangladeshi Students: The Role of Socio-Demographic Factors, Depression, Anxiety, and Stress. Asian J. Psychiatr. 2019, 44, 48–54. [Google Scholar] [CrossRef]
- Younes, F.; Halawi, G.; Jabbour, H.; El Osta, N.; Karam, L.; Hajj, A.; Khabbaz, L.R. Internet Addiction and Relationships with Insomnia, Anxiety, Depression, Stress and Self-Esteem in University Students: A Cross-Sectional Designed Study. PLoS ONE 2016, 11, e0161126. [Google Scholar] [CrossRef] [PubMed]
- Anand, N.; Thomas, C.; Jain, P.A.; Bhat, A.; Thomas, C.; Prathyusha, P.V.; Aiyappa, S.; Bhat, S.; Young, K.; Cherian, A.V. Internet Use Behaviors, Internet Addiction and Psychological Distress among Medical College Students: A Multi Centre Study from South India. Asian J. Psychiatr. 2018, 37, 71–77. [Google Scholar] [CrossRef]
- Widyanto, L.; McMurran, M. The Psychometric Properties of the Internet Addiction Test. Cyberpsychol. Behav. 2004, 7, 443–450. [Google Scholar] [CrossRef]
- Kuss, D.; Griffiths, M.; Karila, L.; Billieux, J. Internet Addiction: A Systematic Review of Epidemiological Research for the Last Decade. Curr. Pharm. Des. 2014, 20, 4026–4052. [Google Scholar] [CrossRef]
- Kuss, D.J.; Lopez-Fernandez, O. Internet Addiction and Problematic Internet Use: A Systematic Review of Clinical Research. World J. Psychiatry 2016, 6, 143–176. [Google Scholar] [CrossRef]
- Weinstein, A.; Lejoyeux, M. Internet Addiction or Excessive Internet Use. Am. J. Drug Alcohol Abuse 2010, 36, 277–283. [Google Scholar] [CrossRef]
- Noroozi, F.; Hassanipour, S.; Eftekharian, F.; Eisapareh, K.; Kaveh, M.H. Internet Addiction Effect on Quality of Life: A Systematic Review and Meta-Analysis. Sci. World J. 2021, 2021, 2556679. [Google Scholar] [CrossRef]
- Hahn, C.; Kim, D.J. Is There a Shared Neurobiology between Aggression and Internet Addiction Disorder? J. Behav. Addict. 2014, 3, 12–20. [Google Scholar] [CrossRef]
- Zajac, K.; Ginley, M.K.; Chang, R.; Petry, N.M. Treatments for Internet Gaming Disorder and Internet Addiction: A Systematic Review. Psychol. Addict. Behav. 2017, 31, 979–994. [Google Scholar] [CrossRef]
- Huang, X.Q.; Li, M.C.; Tao, R. Treatment of Internet Addiction. Curr. Psychiatry Rep. 2010, 12, 462–470. [Google Scholar] [CrossRef]
- Liu, Q.X.; Fang, X.Y.; Yan, N.; Zhou, Z.K.; Yuan, X.J.; Lan, J.; Liu, C.Y. Multi-Family Group Therapy for Adolescent Internet Addiction: Exploring the Underlying Mechanisms. Addict. Behav. 2015, 42, 1–8. [Google Scholar] [CrossRef]
- King, D.L.; Delfabbro, P.H.; Griffiths, M.D.; Gradisar, M. Assessing Clinical Trials of Internet Addiction Treatment: A Systematic Review and CONSORT Evaluation. Clin. Psychol. Rev. 2011, 31, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- Łukawski, K.; Rusek, M.; Czuczwar, S.J. Can Pharmacotherapy Play a Role in Treating Internet Addiction Disorder? Expert Opin. Pharmacother. 2019, 20, 1299–1301. [Google Scholar] [CrossRef] [PubMed]
Frequency | Percentage % | Internet Addiction Score | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Non-PIU | PIU | |||||||
Frequency 272 | Percentage % 11% | Frequency 2281 | Percentage % 89% | |||||
Gender | Female | 2173 | 75.2% | 201 | 8.1% | 1641 | 65.9% | 0.975 |
Male | 718 | 24.8% | 71 | 2.9% | 577 | 23.2% | ||
Place of residence | City area | 1845 | 63.8% | 174 | 7.0% | 1414 | 56.8% | 0.943 |
Village area | 1046 | 36.2% | 98 | 3.9% | 804 | 32.3% | ||
Relationship status | Single | 2428 | 84.2% | 220 | 8.8% | 1871 | 75.2% | 0.127 |
In a relationship | 457 | 15.8% | 52 | 2.1% | 344 | 13.8% | ||
Age | Mean + SD | 21.87 ± 3.211 | 22.58 ± 4.117 | 21.81 ± 3.004 | 0.258 | |||
≤20 years | 1033 | 35.7% | 86 | 3.5% | 778 | 31.2% | ||
>20 years | 1858 | 64.3% | 186 | 7.5% | 1440 | 57.8% | ||
Domestic violence | No | 2625 | 91.1% | 259 | 10.4% | 1996 | 80.4% | 0.008 |
Yes | 256 | 8.9% | 13 | 0.5% | 214 | 8.6% | ||
Breakup (experienced a breakup) | No | 613 | 21.3% | 78 | 3.1% | 448 | 18.0% | 0.0001 |
Yes | 959 | 33.3% | 66 | 2.7% | 773 | 31.1% | ||
Not applicable | 1309 | 45.4% | 128 | 5.2% | 992 | 39.9% | ||
Separated parents | No | 2658 | 93.0% | 247 | 10.0% | 2047 | 83.0% | 0.412 |
Yes | 200 | 7.0% | 22 | 0.9% | 150 | 6.1% | ||
Smoking history | No | 1979 | 68.6% | 187 | 7.5% | 1506 | 60.6% | 0.680 |
Yes | 905 | 31.4% | 83 | 3.3% | 708 | 28.5% | ||
Physical abuse | No | 2505 | 87.0% | 252 | 10.2% | 1896 | 76.5% | 0.001 |
Yes | 373 | 13.0% | 19 | 0.8% | 313 | 12.6% | ||
Sexual abuse | No | 2706 | 94.0% | 260 | 10.5% | 2065 | 83.3% | 0.114 |
Yes | 173 | 6.0% | 11 | 0.4% | 144 | 5.8% | ||
Drug use | No | 2867 | 99.4% | 270 | 10.9% | 2199 | 88.6% | 0.609 |
Yes | 16 | 0.6% | 2 | 0.1% | 11 | 0.4% | ||
Feeling mental stress | No | 798 | 27.7% | 127 | 5.1% | 558 | 22.4% | 0.0001 |
Yes | 2087 | 72.3% | 144 | 5.8% | 1658 | 66.7% | ||
Suicidal attempt | No | 2710 | 93.9% | 261 | 10.5% | 2065 | 83.1% | 0.088 |
Yes | 175 | 6.1% | 11 | 0.4% | 149 | 6.0% | ||
Internet use for educational purposes | No | 613 | 21.3% | 38 | 1.5% | 491 | 19.8% | 0.002 |
Yes | 2263 | 78.7% | 232 | 9.4% | 1717 | 69.3% | ||
Using chat rooms | No | 174 | 6.0% | 31 | 1.2% | 119 | 4.8% | 0.0001 |
Yes | 2707 | 94.0% | 241 | 9.7% | 2091 | 84.2% | ||
Online gaming | No | 2149 | 74.6% | 222 | 8.9% | 1630 | 65.6% | 0.005 |
Yes | 733 | 25.4% | 50 | 2.0% | 581 | 23.4% | ||
Watching YouTube videos | No | 308 | 10.7% | 50 | 2.0% | 216 | 8.7% | 0.0001 |
Yes | 2572 | 89.3% | 222 | 8.9% | 1996 | 80.4% | ||
Online shopping | No | 2044 | 70.8% | 193 | 7.8% | 1569 | 63.1% | 0.976 |
Yes | 843 | 29.2% | 79 | 3.2% | 645 | 25.9% | ||
Using social media like Facebook, Twitter, and Instagram | No | 192 | 6.7% | 32 | 1.3% | 136 | 5.5% | 0.0001 |
Yes | 2687 | 93.3% | 238 | 9.6% | 2077 | 83.6% | ||
Movie and TV series downloading | No | 849 | 29.5% | 110 | 4.4% | 609 | 24.5% | 0.0001 |
Yes | 2031 | 70.5% | 161 | 6.5% | 1602 | 64.5% | ||
Are you a student in medical college? | No | 1134 | 39.5% | 112 | 4.5% | 847 | 34.1% | 0.335 |
Yes | 1740 | 60.5% | 159 | 6.4% | 1364 | 55.0% | ||
Average sleep | <6 h | 357 | 12.4% | 34 | 1.4% | 280 | 11.2% | 0.0001 |
6–8 h | 1696 | 58.7% | 194 | 7.8% | 1275 | 51.2% | ||
>8 h | 837 | 29.0% | 44 | 1.8% | 662 | 26.6% | ||
Depressive symptoms | No probable depression | 174 | 7.0% | 49 | 2.2% | 106 | 4.7% | 0.0001 |
Probable depression | 2328 | 93.0% | 185 | 8.3% | 1894 | 84.8% |
Variables | Categories | p-Value | Adjusted Odds Ratio | ||
---|---|---|---|---|---|
Lower | Upper | ||||
Age | (Ref.: ≤20 years) | 1 | |||
>20 years | 0.293 | 0.836 | 0.599 | 1.167 | |
Gender | (Ref.: Female) | 1 | |||
Male | 0.658 | 1.085 | 0.756 | 1.558 | |
Residence | (Ref.: City) | 1 | |||
Rural | 0.685 | 1.068 | 0.778 | 1.464 | |
Relationship status | (Ref.: Single) | 1 | |||
In a relationship | 0.927 | 0.979 | 0.617 | 1.552 | |
Breakup (experienced a breakup) | (Ref.: No) | 1 | |||
Yes | 0.124 | 1.420 | 0.908 | 2.221 | |
Not applicable | 0.375 | 1.206 | 0.797 | 1.823 | |
Domestic violence | (Ref.: No) | 1 | |||
Yes | 0.326 | 1.447 | 0.692 | 3.025 | |
Separated parents | (Ref.: No) | 1 | |||
Yes | 0.354 | 0.756 | 0.418 | 1.367 | |
Smoking history | (Ref.: No) | 1 | |||
Yes | 0.263 | 0.820 | 0.579 | 1.161 | |
Physical abuse | (Ref.: No) | 1 | |||
Yes | 0.177 | 1.501 | 0.833 | 2.705 | |
Sexual abuse | (Ref.: No) | 1 | |||
Yes | 0.571 | 1.238 | 0.591 | 2.594 | |
Suicidal attempt | (Ref.: No) | 1 | |||
Yes | 0.887 | 1.061 | 0.471 | 2.389 | |
Feeling mental stress | (Ref.: No) | 1 | |||
Yes | 0.0001 | 1.952 | 1.404 | 2.715 | |
Drug addiction | (Ref.: No) | 1 | |||
Yes | 0.439 | 0.402 | 0.040 | 4.041 | |
Sleep | <6 h | 0.963 | 0.989 | 0.616 | 1.587 |
(Ref: 6–8 h) | 1 | ||||
>8 h | 0.005 | 1.723 | 1.179 | 2.519 | |
Are you a student in medical college? | (Ref.: No) | 1 | |||
Yes | 0.685 | 1.072 | 0.765 | 1.502 | |
Depressive symptoms | (Ref.: No probable depression) | 1 | |||
Probable depression | 0.0001 | 2.721 | 1.758 | 4.214 | |
Internet use for educational purposes | (Ref.: No) | 1 | |||
Yes | 0.007 | 0.544 | 0.350 | 0.846 | |
Using chat rooms | (Ref.: No) | 1 | |||
Yes | 0.004 | 2.181 | 1.291 | 3.685 | |
Online gaming | (Ref.: No) | 1 | |||
Yes | 0.085 | 1.409 | 0.954 | 2.083 | |
Watching YouTube videos | (Ref.: No) | 1 | |||
Yes | 0.0001 | 2.077 | 1.381 | 3.124 | |
Online shopping | (Ref.: No) | 1 | |||
Yes | 0.304 | 0.831 | 0.584 | 1.183 | |
Using social media like Facebook, Twitter, and Instagram | (Ref.: No) | 1 | |||
Yes | 0.159 | 1.451 | 0.865 | 2.437 | |
Movie and TV series downloading | (Ref.: No) | ||||
Yes | 0.045 | 1.399 | 1.007 | 1.945 |
Variables | Categories | p-Value | Curve Odds Ratio | 95% C.I. for COR | |
---|---|---|---|---|---|
Lower | Upper | ||||
Age | (Ref.: ≤20 years) | 1 | |||
>20 years | 0.258 | 0.856 | 0.653 | 1.121 | |
Gender | (Ref.: Female) | 1 | |||
Male | 0.975 | 0.995 | 0.747 | 1.326 | |
Residence | (Ref.: City) | 1 | |||
Rural | 0.943 | 1.010 | 0.777 | 1.312 | |
Relationship status | (Ref.: Single) | 1 | |||
In a relationship | 0.128 | 0.778 | 0.563 | 1.075 | |
Breakup (experienced a breakup) | (Ref.: No) | 1 | |||
Yes | 0.0001 | 2.039 | 1.440 | 2.887 | |
Not applicable | 0.052 | 1.349 | 0.997 | 1.827 | |
Domestic violence | (Ref.: No) | 1 | |||
Yes | 0.010 | 2.136 | 1.202 | 3.795 | |
Separated parents | (Ref.: No) | 1 | |||
Yes | 0.412 | 0.823 | 0.516 | 1.312 | |
Smoking history | (Ref.: No) | 1 | |||
Yes | 0.680 | 1.059 | 0.806 | 1.392 | |
Physical abuse | (Ref.: No) | 1 | |||
Yes | 0.001 | 2.190 | 1.353 | 3.543 | |
Sexual abuse | (Ref.: No) | 1 | |||
Yes | 0.118 | 1.648 | 0.881 | 3.084 | |
Suicidal attempt | (Ref.: No) | 1 | |||
Yes | 0.092 | 1.712 | 0.916 | 3.201 | |
Feeling mental stress | (Ref.: No) | 1 | |||
Yes | 0.0001 | 2.621 | 2.026 | 3.389 | |
Drug addiction | (Ref.: No) | 1 | |||
Yes | 0.611 | 0.675 | 0.149 | 3.063 | |
Sleep | <6 h | 0.253 | 1.253 | 0.851 | 1.845 |
(Ref: 6–8 h) | 1 | ||||
>8 h | 0.0001 | 2.289 | 1.629 | 3.218 | |
Are you a student in medical college? | (Ref.: No) | 1 | |||
Yes | 0.335 | 1.134 | 0.878 | 1.466 | |
Depressive symptoms | (Ref.: No probable depression) | 1 | |||
Probable depression | 0.0001 | 4.733 | 3.267 | 6.856 | |
Internet use for educational purposes | (Ref.: No) | 1 | |||
Yes | 0.002 | 0.573 | 0.401 | 0.819 | |
Using chat rooms | (Ref.: No) | 1 | |||
Yes | 0.0001 | 2.260 | 1.489 | 3.430 | |
Online gaming | (Ref.: No) | 1 | |||
Yes | 0.005 | 1.583 | 1.148 | 2.182 | |
Watching YouTube videos | (Ref.: No) | 1 | |||
Yes | 0.0001 | 2.081 | 1.485 | 2.916 | |
Online shopping | (Ref.: No) | 1 | |||
Yes | 0.976 | 1.004 | 0.761 | 1.325 | |
Using social media like Facebook, Twitter, and Instagram | (Ref.: No) | 1 | |||
Yes | 0.001 | 2.053 | 1.366 | 3.087 | |
Movie and TV series downloading | (Ref.: No) | ||||
Yes | 0.0001 | 1.797 | 1.386 | 2.330 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swed, S.; Bohsas, H.; Alibrahim, H.; Rais, M.A.; Elsayed, M.; Nashwan, A.J.; Hasan, M.M.; Nour Nasif, M.; Sawaf, B.; Albuni, M.K.; et al. Internet Addiction and Depression among Syrian College Students: A Cross-Sectional Study. Psychiatry Int. 2023, 4, 275-285. https://doi.org/10.3390/psychiatryint4030027
Swed S, Bohsas H, Alibrahim H, Rais MA, Elsayed M, Nashwan AJ, Hasan MM, Nour Nasif M, Sawaf B, Albuni MK, et al. Internet Addiction and Depression among Syrian College Students: A Cross-Sectional Study. Psychiatry International. 2023; 4(3):275-285. https://doi.org/10.3390/psychiatryint4030027
Chicago/Turabian StyleSwed, Sarya, Haidara Bohsas, Hidar Alibrahim, Mohammed Amir Rais, Mohamed Elsayed, Abdulqadir J. Nashwan, Mohammad Mehedi Hasan, Mohamad Nour Nasif, Bisher Sawaf, Mhd Kutaiba Albuni, and et al. 2023. "Internet Addiction and Depression among Syrian College Students: A Cross-Sectional Study" Psychiatry International 4, no. 3: 275-285. https://doi.org/10.3390/psychiatryint4030027
APA StyleSwed, S., Bohsas, H., Alibrahim, H., Rais, M. A., Elsayed, M., Nashwan, A. J., Hasan, M. M., Nour Nasif, M., Sawaf, B., Albuni, M. K., Battikh, E., Abo Kash, R., & Shoib, S. (2023). Internet Addiction and Depression among Syrian College Students: A Cross-Sectional Study. Psychiatry International, 4(3), 275-285. https://doi.org/10.3390/psychiatryint4030027