The Prospect of Focal Ultrasound in the Treatment of Mental Disorders
Abstract
:1. Introduction
2. Application of FUS in Mental Disorders
2.1. Obsessive-Compulsive Disorder (OCD)
2.2. Major Depression
2.3. Alzheimer’s Disease
2.4. Addiction
2.5. Anorexia Nervosa
2.6. Aggressive Behavior
3. Low-Intensity FUS as a Tool to Modulate Deep Brain Structures
4. Perspectives and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camargo, D.; Navarro-Tapia, E.; Pérez-Tur, J.; Cardona, F. Relationship between COVID-19 Pandemic Confinement and Worsening or Onset of Depressive Disorders. Brain Sci. 2023, 13, 899. [Google Scholar] [CrossRef]
- Chudzicka-Czupała, A.; Hapon, N.; Chiang, S.-K.; Żywiołek-Szeja, M.; Karamushka, L.; Lee, C.T.; Grabowski, D.; Paliga, M.; Rosenblat, J.D.; Ho, R.; et al. Depression, anxiety and post-traumatic stress during the 2022 Russo-Ukrainian war, a comparison between populations in Poland, Ukraine, and Taiwan. Sci. Rep. 2023, 13, 3602. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Tor, M.A.; Ogidigo, J.; Sani, I.H.; Rowaiye, A.B.; Ramalan, M.A.; Najib, S.Y.; Danbala, A.; Adamu, F.; Abdullah, A.; et al. Challenges and Implications of the COVID-19 Pandemic on Mental Health: A Systematic Review. Psych 2022, 4, 435–464. [Google Scholar] [CrossRef]
- Nochaiwong, S.; Ruengorn, C.; Thavorn, K.; Hutton, B.; Awiphan, R.; Phosuya, C.; Ruanta, Y.; Wongpakaran, N.; Wongpakaran, T. Global prevalence of mental health issues among the general population during the coronavirus disease-2019 pandemic: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 10173. [Google Scholar] [CrossRef]
- Harvey, A.G.; Gumport, N.B. Evidence-based psychological treatments for mental disorders: Modifiable barriers to access and possible solutions. Behav. Res. Ther. 2015, 68, 1–12. [Google Scholar] [CrossRef]
- Rzesnitzek, L.; Hariz, M.; Krauss, J.K. Psychosurgery in the History of Stereotactic Functional Neurosurgery. Ster. Funct. Neurosurg. 2020, 98, 241–247. [Google Scholar] [CrossRef]
- Temel, Y.; Hescham, S.A.; Jahanshahi, A.; Janssen, M.L.; Tan, S.K.; van Overbeeke, J.J.; Ackermans, L.; Oosterloo, M.; Duits, A.; Leentjens, A.F.; et al. Neuromodulation in psychiatric disorders. Int. Rev. Neurobiol. 2012, 107, 283–314. [Google Scholar] [CrossRef]
- Humphrey, V.F. Ultrasound and matter—Physical interactions. Prog. Biophys. Mol. Biol. 2007, 93, 195–211. [Google Scholar] [CrossRef]
- Di Biase, L.; Falato, E.; Di Lazzaro, V. Transcranial Focused Ultrasound (tFUS) and Transcranial Unfocused Ultrasound (tUS) Neuromodulation: From Theoretical Principles to Stimulation Practices. Front. Neurol. 2019, 10, 549. [Google Scholar] [CrossRef]
- Sukharev, S.; Corey, D.P. Mechanosensitive Channels: Multiplicity of Families and Gating Paradigms. Sci. STKE 2004, 2004, re4. [Google Scholar] [CrossRef]
- Morris, C.E.; Juranka, P.F. Lipid stress at play: Mechanosensitivity of voltage-gated channels. In Current Topics in Membrane; Elsevier: Amsterdam, The Netherlands, 2007; pp. 297–338. [Google Scholar] [CrossRef]
- Tyler, W.J.; Tufail, Y.; Finsterwald, M.; Tauchmann, M.L.; Olson, E.J.; Majestic, C. Remote Excitation of Neuronal Circuits Using Low-Intensity, Low-Frequency Ultrasound. PLoS ONE 2008, 3, e3511. [Google Scholar] [CrossRef]
- Morris, C.E.; Juranka, P.F. Nav Channel Mechanosensitivity: Activation and Inactivation Accelerate Reversibly with Stretch. Biophys. J. 2007, 93, 822–833. [Google Scholar] [CrossRef]
- Plaksin, M.; Shoham, S.; Kimmel, E. Intramembrane Cavitation as a Predictive Bio-Piezoelectric Mechanism for Ultrasonic Brain Stimulation. Phys. Rev. X 2014, 4, 011004. [Google Scholar] [CrossRef]
- Krasovitski, B.; Frenkel, V.; Shoham, S.; Kimmel, E. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc. Natl. Acad. Sci. USA 2011, 108, 3258–3263. [Google Scholar] [CrossRef] [PubMed]
- Lynn, J.G.; Zwemer, R.L.; Chick, A.J.; Miller, A.E. A new method for the generation and use of focused ultrasound in experimental biology. J. Gen. Physiol. 1942, 26, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Magara, A.; Bühler, R.; Moser, D.; Kowalski, M.; Pourtehrani, P.; Jeanmonod, D. First experience with MR-guided focused ultra-sound in the treatment of parkinson’s disease. J. Ther. Ultrasound 2014, 2, 11. [Google Scholar] [CrossRef]
- Kennedy, J.E. High-intensity focused ultrasound in the treatment of solid tumours. Nat. Rev. Cancer 2005, 5, 321–327. [Google Scholar] [CrossRef]
- Miller, D.L.; Smith, N.B.; Bailey, M.R.; Czarnota, G.J.; Hynynen, K.; Makin, I.R.S.; Bioeffects Committee of the American Institute of Ultrasound in Medicine. Overview of Therapeutic Ultrasound Applications and Safety Considerations. J. Ultrasound Med. 2012, 31, 623–634. [Google Scholar] [CrossRef]
- Abramowitz, J.S.; Taylor, S.; McKay, D. Obsessive-compulsive disorder. Lancet 2009, 374, 491–499. [Google Scholar] [CrossRef]
- Kim, S.J.; Roh, D.; Jung, H.H.; Chang, W.S.; Kim, C.-H.; Chang, J.W. A study of novel bilateral thermal capsulotomy with focused ultrasound for treatment refractory obsessive–compulsive disorder: 2-year follow-up. J. Psychiatry Neurosci. 2018, 43, 327–337. [Google Scholar] [CrossRef]
- Chang, K.W.; Jung, H.H.; Chang, J.W. Magnetic Resonance-Guided Focused Ultrasound Surgery for Obsessive-Compulsive Disorders: Potential for use as a Novel Ablative Surgical Technique. Front. Psychiatry 2021, 12, 640832. [Google Scholar] [CrossRef] [PubMed]
- Davidson, B.; Hamani, C.; Rabin, J.S.; Goubran, M.; Meng, Y.; Huang, Y.; Baskaran, A.; Sharma, S.; Ozzoude, M.; Richter, M.A.; et al. Magnetic resonance-guided focused ultrasound capsulotomy for refractory obsessive compulsive disorder and major depressive disorder: Clinical and imaging results from two phase I trials. Mol. Psychiatry 2020, 25, 1946–1957. [Google Scholar] [CrossRef] [PubMed]
- Germann, J.; Elias, G.J.B.; Neudorfer, C.; Boutet, A.; Chow, C.T.; Wong, E.H.Y.; Parmar, R.; Gouveia, F.V.; Loh, A.; Giacobbe, P.; et al. Potential optimization of focused ultrasound capsulotomy for obsessive compulsive disorder. Brain 2021, 144, 3529–3540. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, H.; Yang, J.; Jia, J.; Niu, L.; Sun, Z.; Shi, D.; Meng, L.; Qiu, W.; Wang, X.; et al. Low-intensity pulsed ultrasound ameliorates depression-like behaviors in a rat model of chronic unpredictable stress. CNS Neurosci. Ther. 2021, 27, 233–243. [Google Scholar] [CrossRef]
- Yi, S.-S.; Zou, J.-J.; Meng, L.; Chen, H.-M.; Hong, Z.-Q.; Liu, X.-F.; Farooq, U.; Chen, M.-X.; Lin, Z.-R.; Zhou, W.; et al. Ultrasound Stimulation of Prefrontal Cortex Improves Lipopolysaccharide-Induced Depressive-Like Behaviors in Mice. Front. Psychiatry 2022, 13, 864481. [Google Scholar] [CrossRef]
- Zielinski, M.; Mahdavi, K.; Jordan, S.; Haroon, J.; Habelhah, B.; Beccera, S.; Spivak, N.; Kuhn, T.; Bystrisky, A. A case study of low-intensity focused ultrasound for treatment-resistant generalized anxiety disorder and major depressive disorder. Brain Stimul. 2021, 14, 1667. [Google Scholar] [CrossRef]
- Knopman, D.S.; Amieva, H.; Petersen, R.C.; Chételat, G.; Holtzman, D.M.; Hyman, B.T.; Nixon, R.A.; Jones, D.T. Alzheimer disease. Nat. Rev. Dis. Prim. 2021, 7, 33. [Google Scholar] [CrossRef]
- Eguchi, K.; Shindo, T.; Ito, K.; Ogata, T.; Kurosawa, R.; Kagaya, Y.; Monma, Y.; Ichijo, S.; Kasukabe, S.; Miyata, S.; et al. Whole-brain low-intensity pulsed ultrasound therapy markedly improves cognitive dysfunctions in mouse models of dementia-Crucial roles of endothelial nitric oxide synthase. Brain Stimul. 2018, 11, 959–973. [Google Scholar] [CrossRef]
- Nicodemus, N.E.; Becerra, S.; Kuhn, T.P.; Packham, H.R.; Duncan, J.; Mahdavi, K.; Iovine, J.; Kesari, S.; Pereles, S.; Whitney, M.; et al. Focused transcranial ultrasound for treatment of neurodegenerative dementia. Alzheimers Dement. 2019, 5, 374–381. [Google Scholar] [CrossRef]
- Meng, Y.; Goubran, M.; Rabin, J.S.; McSweeney, M.; Ottoy, J.; Pople, C.B.; Huang, Y.; Storace, A.; Ozzoude, M.; Bethune, A.; et al. Blood–brain barrier opening of the default mode network in Alzheimer’s disease with magnetic resonance-guided focused ultrasound. Brain 2023, 146, 865–872. [Google Scholar] [CrossRef]
- Cont, C.; Stute, N.; Galli, A.; Schulte, C.; Logmin, K.; Trenado, C.; Wojtecki, L. Retrospective real-world pilot data on transcranial pulse stimulation in mild to severe Alzheimer’s patients. Front. Neurol. 2022, 13, 948204. [Google Scholar] [CrossRef] [PubMed]
- Matt, E.; Dörl, G.; Beisteiner, R. Transcranial pulse stimulation (TPS) improves depression in AD patients on state-of-the-art treatment. Alzheimers Dement. 2022, 8, e12245. [Google Scholar] [CrossRef] [PubMed]
- Matt, E.; Kaindl, L.; Tenk, S.; Egger, A.; Kolarova, T.; Karahasanović, N.; Amini, A.; Arslan, A.; Sariçiçek, K.; Weber, A.; et al. First evidence of long-term effects of transcranial pulse stimulation (TPS) on the human brain. J. Transl. Med. 2022, 20, 26. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wu, H.; Hu, A.; Dong, L.; Lin, X.; Li, M.; Wang, Y.; Li, W.; Chang, L.; Chang, Y.; et al. Ultrasound combined with glial cell line-derived neurotrophic factor-loaded microbubbles for the targeted treatment of drug addiction. Front. Bioeng. Biotechnol. 2022, 10, 961728. [Google Scholar] [CrossRef] [PubMed]
- Deveci, E.; Kılıç, A.; Yılmaz, O.; Nabi, A.; Ergün, A.S.; Bozkurt, A.; Kurtulmuş, A.; Öztürk, A.; Eşrefoğlu, M.; Aydın, M.Ş.; et al. The effects of focused ultrasound pulsation of nucleus accumbens in opioid-dependent rats. Psychiatry Clin. Psychopharmacol. 2019, 29, 748–759. [Google Scholar] [CrossRef]
- Toutain, M.; Gauthier, A.; Leconte, P. Exercise therapy in the treatment of anorexia nervosa: Its effects depending on the type of physical exercise—A systematic review. Front. Psychiatry 2022, 13, 939856. [Google Scholar] [CrossRef]
- Gorla, K.; Mathews, M. Pharmacological treatment of eating disorders. Psychiatry 2005, 2, 43–48. [Google Scholar]
- Lipsman, N.; Lam, E.; Volpini, M.; Sutandar, K.; Twose, R.; Giacobbe, P.; Sodums, D.J.; Smith, G.S.; Woodside, D.B.; Lozano, A.M. Deep brain stimulation of the subcallosal cingulate for treatment-refractory anorexia nervosa: 1 year follow-up of an open-label trial. Lancet Psychiatry 2017, 4, 285–294. [Google Scholar] [CrossRef]
- Gouveia, F.V.; Lea-Banks, H.; Aubert, I.; Lipsman, N.; Hynynen, K.; Hamani, C. Anesthetic-loaded nanodroplets with focused ultrasound reduces agitation in Alzheimer’s mice. Ann. Clin. Transl. Neurol. 2023, 10, 507–519. [Google Scholar] [CrossRef]
- Folloni, D.; Verhagen, L.; Mars, R.B.; Fouragnan, E.; Constans, C.; Aubry, J.-F.; Rushworth, M.F.; Sallet, J. Manipulation of Subcortical and Deep Cortical Activity in the Primate Brain Using Transcranial Focused Ultrasound Stimulation. Neuron 2019, 101, 1109–1116. [Google Scholar] [CrossRef]
- Verhagen, L.; Gallea, C.; Folloni, D.; Constans, C.; Jensen, D.E.; Ahnine, H.; Roumazeilles, L.; Santin, M.; Ahmed, B.; Lehericy, S.; et al. Offline impact of transcranial focused ultrasound on cortical activation in primates. eLife 2019, 8, e40541. [Google Scholar] [CrossRef] [PubMed]
- Clement, G.T.; Hynynen, K. A non-invasive method for focusing ultrasound through the human skull. Phys. Med. Biol. 2002, 47, 1219–1236. [Google Scholar] [CrossRef]
- Aubry, J.-F.; Tanter, M.; Pernot, M.; Thomas, J.-L.; Fink, M. Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. J. Acoust. Soc. Am. 2003, 113, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Felix, C.; Folloni, D.; Verhagen, L.; Sallet, J.; Jerusalem, A. Modelling transcranial ultrasound neuromodulation: An energy-based multiscale framework. Acta Biomater. 2022, 151, 317–332. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Jin, Y.; Neogi, A. Acoustic Attenuation and Dispersion in Fatty Tissues and Tissue Phantoms Influencing Ultrasound Biomedical Imaging. ACS Omega 2022, 8, 1319–1330. [Google Scholar] [CrossRef]
- Taghizadeh, S.; Labuda, C.; Mobley, J. Development of a Tissue-Mimicking Phantom of the Brain for Ultrasonic Studies. Ultrasound Med. Biol. 2018, 44, 2813–2820. [Google Scholar] [CrossRef]
- Gandhi, K.; Barzegar-Fallah, A.; Banstola, A.; Rizwan, S.B.; Reynolds, J.N.J. Ultrasound-Mediated Blood–Brain Barrier Disruption for Drug Delivery: A Systematic Review of Protocols, Efficacy, and Safety Outcomes from Preclinical and Clinical Studies. Pharmaceutics 2022, 14, 833. [Google Scholar] [CrossRef]
- FDA. Marketing Clearance of Diagnostic 661 Ultrasound Systems and Transducers. Draft Guidance for Industry and Food and Drug 662 Administration Staff 2017; 2017. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-clearance-diagnostic-ultrasound-systems-and-transducers (accessed on 11 July 2023).
- Kong, C.; Ahn, J.W.; Kim, S.; Park, J.Y.; Na, Y.C.; Chang, J.W.; Chung, S.; Chang, W.S. Long-lasting restoration of memory function and hippocampal synaptic plasticity by focused ultrasound in Alzheimer’s disease. Brain Stimul. 2023, 16, 857–866. [Google Scholar] [CrossRef]
- Sikdar, S.; Shah, J.P.; Gebreab, T.; Yen, R.-H.; Gilliams, E.; Danoff, J.; Gerber, L.H. Novel Applications of Ultrasound Technology to Visualize and Characterize Myofascial Trigger Points and Surrounding Soft Tissue. Arch. Phys. Med. Rehabil. 2009, 90, 1829–1838. [Google Scholar] [CrossRef]
- Alimova, S.; Sharobaro, V.; Yukhno, A.; Bondarenko, E. Possibilities of Ultrasound Examination in the Assessment of Age-Related Changes in the Soft Tissues of the Face and Neck: A Review. Appl. Sci. 2023, 13, 1128. [Google Scholar] [CrossRef]
- Giammalva, G.R.; Gagliardo, C.; Marrone, S.; Paolini, F.; Gerardi, R.M.; Umana, G.E.; Yagmurlu, K.; Chaurasia, B.; Scalia, G.; Midiri, F.; et al. Focused Ultrasound in Neuroscience. State of the Art and Future Perspectives. Brain Sci. 2021, 11, 84. [Google Scholar] [CrossRef] [PubMed]
- Min, B.K.; Bystritsky, A.; Jung, K.I.; Fischer, K.; Zhang, Y.; Maeng, L.S.; In Park, S.; Chung, Y.A.; Jolesz, F.A.; Yoo, S.S. Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity. BMC Neurosci. 2011, 12, 23. [Google Scholar] [CrossRef]
- Hakimova, H.; Kim, S.; Chu, K.; Lee, S.K.; Jeong, B.; Jeon, D. Ultrasound stimulation inhibits recurrent seizures and improves behavioral outcome in an experimental model of mesial temporal lobe epilepsy. Epilepsy Behav. 2015, 49, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Chou, C.C.; Hsiao, F.J.; Chen, Y.H.; Lin, C.F.; Chen, C.J.; Peng, S.J.; Liu, H.L.; Yu, H.Y. Pilot study of focused ultrasound for drug-resistant epilepsy. Epilepsia 2022, 63, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yan, J.; Wang, X.; Yuan, Y.; Li, X. Transcranial ultrasound stimulation directly influences the cortical excitability of the motor cortex in Parkinsonian mice. Mov. Disord. 2020, 35, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Lu, X.; Peng, D.; Wang, G.; Chen, C.; Liu, W.; Wu, W.; Mason, T.J. Ultrasonic stimulation of the brain to enhance the release of dopamine–a potential novel treatment for Parkinson’s disease. Ultrason. Sonochem. 2020, 63, 104955. [Google Scholar] [CrossRef]
- Dell’Italia, J.; Sanguinetti, J.L.; Monti, M.M.; Bystritsky, A.; Reggente, N. Current State of Potential Mechanisms Supporting Low Intensity Focused Ultrasound for Neuromodulation. Front. Hum. Neurosci. 2022, 16, 872639. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trenado, C.; Pedroarena-Leal, N.; Ruge, D. The Prospect of Focal Ultrasound in the Treatment of Mental Disorders. Psychiatry Int. 2023, 4, 297-306. https://doi.org/10.3390/psychiatryint4030029
Trenado C, Pedroarena-Leal N, Ruge D. The Prospect of Focal Ultrasound in the Treatment of Mental Disorders. Psychiatry International. 2023; 4(3):297-306. https://doi.org/10.3390/psychiatryint4030029
Chicago/Turabian StyleTrenado, Carlos, Nicole Pedroarena-Leal, and Diane Ruge. 2023. "The Prospect of Focal Ultrasound in the Treatment of Mental Disorders" Psychiatry International 4, no. 3: 297-306. https://doi.org/10.3390/psychiatryint4030029
APA StyleTrenado, C., Pedroarena-Leal, N., & Ruge, D. (2023). The Prospect of Focal Ultrasound in the Treatment of Mental Disorders. Psychiatry International, 4(3), 297-306. https://doi.org/10.3390/psychiatryint4030029