Bone Health in Mood Disorders: A Narrative Review about Clinical and Biological Connections
Abstract
:1. Introduction and Background
1.1. Mood Disorders
1.2. Bone Healing and Osteoporosis
2. Materials and Methods
3. Results
3.1. How Are Mood Disorders and Bone Tissue Health Related?
3.1.1. Increased Risk of Fractures and Osteoporosis in Patients with BD and DD
3.1.2. Molecules Involved in Mood Disorder Genesis and/or Clinical Presentation with Effects on Bone Tissue Health
3.2. Neuropeptide Y (NPY)
3.3. Melatonin (MLT)
3.4. Mood Disorders and Bone Disease: The Role of Psychomotor Performance
3.5. Psychoactive Drugs: Positive or Negative Effects on Bone Health?
3.5.1. Lithium Treatment
3.5.2. Antipsychotics (APs)
3.5.3. Antidepressants (ADs)
4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sekhon, S.; Gupta, V. Mood Disorder. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK558911/ (accessed on 8 May 2023).
- Jain, A.; Mitra, P. Bipolar Disorder. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Vieta, E.; Berk, M.; Schulze, T.G.; Carvalho, A.F.; Suppes, T.; Calabrese, J.R.; Gao, K.; Miskowiak, K.W.; Grande, I. Bipolar disorders. Nat. Rev. Dis. Prim. 2018, 4, 18008. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Berk, M.; Brietzke, E.; Goldstein, B.I.; López-Jaramillo, C.; Kessing, L.V.; Malhi, G.S.; Nierenberg, A.A.; Rosenblat, J.D.; Majeed, A.; et al. Bipolar disorders. Lancet 2020, 396, 1841–1856. [Google Scholar] [CrossRef]
- Williams, L.J.; Stuart, A.L.; Berk, M.; Brennan-Olsen, S.L.; Hodge, J.M.; Quirk, S.E.; Koivumaa-Honkanen, H.; Honkanen, R.; Heikkinen, J.; Chandrasekaran, V.; et al. Bipolar disorder and bone health: A case-control study. J. Affect. Disord. 2022, 308, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Abdoli, N.; Salari, N.; Darvishi, N.; Jafarpour, S.; Solaymani, M.; Mohammadi, M.; Shohaimi, S. The global prevalence of major depressive disorder (MDD) among the elderly: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2021, 132, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, M.H. Major Depressive Disorder in Primary Care: Strategies for Identification. J. Clin. Psychiatry 2020, 81, UT17042BR1C. [Google Scholar] [CrossRef] [PubMed]
- WHO. Factsheet Depression. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 1 January 2020).
- Shao, M.; Lin, X.; Jiang, D.; Tian, H.; Xu, Y.; Wang, L.; Ji, F.; Zhou, C.; Song, X.; Zhuo, C. Depression and cardiovascular disease: Shared molecular mechanisms and clinical implications. Psychiatry Res. 2020, 285, 112802. [Google Scholar] [CrossRef] [PubMed]
- Al-Khatib, Y.; Akhtar, M.A.; Kanawati, M.A.; Mucheke, R.; Mahfouz, M.; Al-Nufoury, M. Depression and metabolic syndrome: A narrative review. Cureus 2022, 14, e22153. [Google Scholar] [CrossRef] [PubMed]
- Gold, S.M.; Köhler-Forsberg, O.; Moss-Morris, R.; Mehnert, A.; Miranda, J.J.; Bullinger, M.; Steptoe, A.; Whooley, M.A.; Otte, C. Comorbid depression in medical diseases. Nat. Rev. Dis. Prim. 2020, 6, 69. [Google Scholar] [CrossRef] [PubMed]
- Fraile-Martinez, O.; Alvarez-Mon, M.A.; Garcia-Montero, C.; Pekarek, L.; Guijarro, L.G.; Lahera, G.; Saez, M.A.; Monserrat, J.; Motogo, D.; Quintero, J.; et al. Understanding the basis of major depressive disorder in oncological patients: Biological links, clinical management, challenges, and lifestyle medicine. Front. Oncol. 2022, 12, 956923. [Google Scholar] [CrossRef]
- Marrie, R.A.; Walld, R.; Bolton, J.M.; Sareen, J.; Walker, J.R.; Patten, S.B.; Singer, A.; Lix, L.M.; Hitchon, C.A.; El-Gabalawy, R.; et al. Rising incidence of psychiatric disorders before diagnosis of immune-mediated inflammatory disease. Epidemiol. Psychiatr. Sci. 2017, 28, 333–342. [Google Scholar] [CrossRef]
- Yohannes, A.M.; Newman, M.; Kunik, M.E. Psychiatric Collaborative Care for Patients With Respiratory Disease. Chest 2019, 155, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Steffen, A.; Nübel, J.; Jacobi, F.; Bätzing, J.; Holstiege, J. Mental and somatic comorbidity of depression: A comprehensive cross-sectional analysis of 202 diagnosis groups using German nationwide ambulatory claims data. BMC Psychiatry 2020, 20, 142. [Google Scholar] [CrossRef]
- Cizza, G.; Primma, S.; Coyle, M.; Gourgiotis, L.; Csako, G. Depression and Osteoporosis: A Research Synthesis with Meta-Analysis. Horm. Metab. Res. 2010, 42, 467–482. [Google Scholar] [CrossRef] [PubMed]
- Pajarinen, J.; Lin, T.; Gibon, E.; Kohno, Y.; Maruyama, M.; Nathan, K.; Lu, L.; Yao, Z.; Goodman, S.B. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 2019, 196, 80–89. [Google Scholar] [CrossRef]
- Bahney, C.S.; Zondervan, R.L.; Allison, P.; Theologis, A.; Ashley, J.W.; Ahn, J.; Miclau, T.; Marcucio, R.S.; Hankenson, K.D. Cellular biology of fracture healing. J. Orthop. Res. 2019, 37, 35–50. [Google Scholar] [CrossRef]
- Maruyama, M.; Rhee, C.; Utsunomiya, T.; Zhang, N.; Ueno, M.; Yao, Z.; Goodman, S.B. Modulation of the Inflammatory Response and Bone Healing. Front. Endocrinol. 2020, 11, 386. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. Osteoporosis: Assessing the Risk of Fragility Fracture; NICE: London, UK, 2012. [Google Scholar]
- Sobh, M.M.; Abdalbary, M.; Elnagar, S.; Nagy, E.; Elshabrawy, N.; Abdelsalam, M.; Asadipooya, K.; El-Husseini, A. Secondary Osteoporosis and Metabolic Bone Diseases. J. Clin. Med. 2022, 11, 2382. [Google Scholar] [CrossRef] [PubMed]
- Löffler, M.; Sollmann, N.; Mei, K.; Valentinitsch, A.; Noël, P.; Kirschke, J.; Baum, T. X-ray-based quantitative osteoporosis imaging at the spine. Osteoporos. Int. 2020, 31, 233–250. [Google Scholar] [CrossRef]
- Jain, S. Role of Bone Turnover Markers in Osteoporosis Therapy. Endocrinol. Metab. Clin. N. Am. 2021, 50, 223–237. [Google Scholar] [CrossRef]
- Rudang, R.; Zoulakis, M.; Sundh, D.; Brisby, H.; Diez-Perez, A.; Johansson, L.; Mellstrom, D.; Darelid, A.; Lorentzon, M. Bone material strength is associated with areal BMD but not with prevalent fractures in older women. Osteoporos Int. 2016, 27, 1585–1592. [Google Scholar] [CrossRef]
- Aspray, T.J.; Hill, T.R. Osteoporosis and the Ageing Skeleton. Methods Mol. Biol. 2019, 91, 453–476. [Google Scholar] [CrossRef]
- Chin, K.-Y.; Ng, B.N.; Rostam, M.K.I.; Muhammad Fadzil, N.F.D.; Raman, V.; Mohamed Yunus, F.; Syed Hashim, S.A.; Ekeuku, S.O. A Mini Review on Osteoporosis: From Biology to Pharmacological Management of Bone Loss. J. Clin. Med. 2022, 11, 6434. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Cao, M.M.; Li, Y.J.; Zhang, R.L.; Wu, M.T.; Yu, Q.; Rui, Y.F. Fecal microbiota transplantation as a promising treatment option for osteoporosis. J. Bone Miner. Metab. 2022, 40, 874–889. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Li, Y.J.; Lu, P.P.; Dai, G.C.; Chen, X.X.; Rui, Y.F. The modulatory effect and implication of gut microbiota on osteoporosis: From the perspective of “brain-gut-bone” axis. Food Funct. 2021, 12, 5703–5718. [Google Scholar] [CrossRef]
- Shi, T.T.; Min, M.; Zhang, Y.; Sun, C.Y.; Liang, M.M.; Sun, Y.H. Depression and risk of hip fracture: A systematic review and meta-analysis of cohort studies. Osteoporos Int. 2019, 30, 1157–1165. [Google Scholar] [CrossRef]
- Briggs, R.; Kennelly, S.P.; Kenny, R.A. Does baseline depression increase the risk of unexplained and accidental falls in a cohort of community-dwelling older people? Data from The Irish Longitudinal Study on Ageing (TILDA). Int. J. Geriatr. Psychiatry 2018, 33, e205–e211. [Google Scholar] [CrossRef] [PubMed]
- Kvelde, T.; McVeigh, C.; Toson, B.; Greenaway, M.; Lord, S.R.; Delbaere, K.; Close, J.C. Depressive Symptomatology as a Risk Factor for Falls in Older People: Systematic Review and Meta-Analysis. J. Am. Geriatr. Soc. 2013, 61, 694–706. [Google Scholar] [CrossRef]
- Heidari, M.E.; Irvani SS, N.; Dalvand, P.; Khadem, M.; Eskandari, F.; Torabi, F.; Shahsavari, H. Prevalence of depression in older people with hip fracture: A systematic review and meta-analysis. Int. J. Orthop. Trauma Nurs. 2021, 40, 100813. [Google Scholar] [CrossRef]
- Wu, J.Q.; Jiang, N.; Yu, B. Mechanisms of action of neuropeptide Y on stem cells and its potential applications in orthopaedic disorders. World J. Stem Cells 2020, 12, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Lee, J.K.; Oh, D.J.; Kong, I.G.; Choi, H.G. Depression and incident hip fracture: A longitudinal follow-up study using a national sample cohort. Medicine 2019, 98, e16268. [Google Scholar] [CrossRef]
- Kashfi, S.S.; Abdollahi, G.; Hassanzadeh, J.; Mokarami, H.; Jeihooni, A.K. The relationship between osteoporosis and depression. Sci. Rep. 2022, 12, 11177. [Google Scholar] [CrossRef] [PubMed]
- Tański, W.; Kosiorowska, J.; Szymańska-Chabowska, A. Osteoporosis-risk factors, pharmaceutical and non-pharmaceutical treatment. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 3557–3566. [Google Scholar] [CrossRef] [PubMed]
- Sarris, J.; Thomson, R.; Hargraves, F.; Eaton, M.; de Manincor, M.; Veronese, N.; Solmi, M.; Stubbs, B.; Yung, A.R.; Firth, J. Multiple lifestyle factors and depressed mood: A cross-sectional and longitudinal analysis of the UK Biobank (N = 84,860). BMC Med. 2020, 18, 354. [Google Scholar] [CrossRef] [PubMed]
- Donoso, F.; Cryan, J.F.; Olavarría-Ramírez, L.; Nolan, Y.M.; Clarke, G. Inflammation, Lifestyle Factors, and the Microbiome-Gut-Brain Axis: Relevance to Depression and Antidepressant Action. Clin. Pharmacol. Ther. 2023, 113, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, M.B.; Oliveira, J.; Bauman, A.; Fairhall, N.; Kwok, W.; Sherrington, C. Evidence on physical activity and osteoporosis prevention for people aged 65+ years: A systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 150. [Google Scholar] [CrossRef] [PubMed]
- Vancampfort, D.; Firth, J.; Schuch, F.B.; Rosenbaum, S.; Mugisha, J.; Hallgren, M.; Probst, M.; Ward, P.B.; Gaughran, F.; De Hert, M.; et al. Sedentary behavior and physical activity levels in people with schizophrenia, bipolar disorder and major depressive disorder: A global systematic review and meta-analysis. World Psychiatry 2017, 16, 308–315. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Hsu, Y.-C.; Chang, K.-H.; Lee, C.-Y.; Chong, L.-W.; Wang, Y.-C.; Hsu, C.-Y.; Kao, C.-H. Increased risk of fracture in patients with bipolar disorder: A nationwide cohort study. Soc. Psychiatry Psychiatr. Epidemiol. 2016, 51, 1331–1338. [Google Scholar] [CrossRef]
- Chandrasekaran, V.; Brennan-Olsen, S.L.; Stuart, A.L.; A Pasco, J.; Berk, M.; Hodge, J.M.; Williams, L.J. Bipolar disorder and bone health: A systematic review. J. Affect. Disord. 2019, 249, 262–269. [Google Scholar] [CrossRef]
- Stubbs, B.; Perara, G.; Koyanagi, A.; Veronese, N.; Vancampfort, D.; Firth, J.; Mueller, C. Risk of hospitalized falls and hip fractures in 22,103 older adults receiving mental health care vs 161,603 controls: A large cohort study. J. Am. Med. Dir. Assoc. 2020, 21, 1893–1899. [Google Scholar] [CrossRef]
- Ma, R.; Perera, G.; Romano, E.; Vancampfort, D.; Koyanagi, A.; Stewart, R.; Mueller, C.; Stubbs, B. Predictors of falls and fractures leading to hospitalisation in 36 101 people with affective disorders: A large representative cohort study. BMJ Open 2022, 12, e055070. [Google Scholar] [CrossRef]
- Li, S.; Qui, Y.; Teng, Z.; Chen, J.; Kang, D.; Tang, H.; Xiang, H.; Wu, C.; Tan, Y.; Wang, L.; et al. Association between bipolar disorder and low bone mass: A cross-sectional study with newly diagnosed, drug-naïve patients. Front. Psychiatry 2020, 11, 530. [Google Scholar] [CrossRef]
- Köhler-Forsberg, O.; Rohde, C.; Nierenberg, A.A.; Østergaard, S.D. Association of Lithium Treatment With the Risk of Osteoporosis in Patients With Bipolar Disorder. JAMA Psychiatry 2022, 79, 454–463. [Google Scholar] [CrossRef]
- O’Brien, S.M.; Scully, P.; Scott, L.V.; Dinan, T.G. Cytokine profiles in bipolar affective disorder: Focus on acutely ill patients. J. Affect Disord. 2006, 90, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Kitaura, H.; Marahleh, A.; Ohori, F.; Noguchi, T.; Nara, Y.; Pramusita, A.; Kinjo, R.; Ma, J.; Kanou, K.; Mizoguchi, I. Role of the Interaction of Tumor Necrosis Factor-α and Tumor Necrosis Factor Receptors 1 and 2 in Bone-Related Cells. Int. J. Mol. Sci. 2022, 23, 1481. [Google Scholar] [CrossRef]
- Rege, S.; Hodgkinson, S.J. Immune dysregulation and autoimmunity in bipolar disorder: Synthesis of the evidence and its clinical application. Aust. N. Z. J. Psychiatry 2013, 47, 1136–1151. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Suo, Y.; Yang, Z.; Hao, Y.; Li, W.; Su, Y.; Shi, Y.; Gao, Y.; Song, L.; Yin, X.; et al. Inspiration for the prevention and treatment of neuropsychiatric disorders: New insight from the bone-brain-axis. Brain Res. Bull. 2021, 177, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Uzzan, S.; Azab, A.N. Anti-TNF-α Compounds as a Treatment for Depression. Molecules 2021, 26, 2368. [Google Scholar] [CrossRef]
- Kubo, Y.; Wruck, C.J.; Fragoulis, A.; Drescher, W.; Pape, H.C.; Lichte, P.; Fischer, H.; Tohidnezhad, M.; Hildebrand, F.; Pufe, T.; et al. Role of Nrf2 in Fracture Healing: Clinical Aspects of Oxidative Stress. Calcif. Tissue Int. 2019, 105, 341–352. [Google Scholar] [CrossRef]
- Kalinichenko, L.S.; Kornhuber, J.; Müller, C.P. Individual differences in inflammatory and oxidative mechanisms of stress-related mood disorders. Front. Neuroendocrinol. 2019, 55, 100783. [Google Scholar] [CrossRef]
- Chimenti, M.S.; Fonti, G.L.; Conigliaro, P.; Triggianese, P.; Bianciardi, E.; Coviello, M.; Lombardozzi, G.; Tarantino, G.; Niolu, C.; Siracusano, A.; et al. The burden of depressive disorders in musculoskeletal diseases: Is there an association between mood and inflammation? Ann. Gen Psychiatry 2021, 20, 1. [Google Scholar] [CrossRef]
- Jones, B.; Daskalakis, Z.; Carvalho, A.; Strawbridge, R.; Young, A.; Mulsant, B.; Husain, M. Inflammation as a treatment target in mood disorders: Review. BJPsych Open 2020, 6, E60. [Google Scholar] [CrossRef] [PubMed]
- Dyzma, M.; Boudjeltia, K.Z.; Faraut, B.; Kerkhofs, M. Neuropeptide Y and Sleep. Sleep Med. Rev. 2010, 14, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Shende, P.; Desai, D. Physiological and Therapeutic Roles of Neuropeptide Y on Biological Functions. Adv. Exp. Med. Biol. 2020, 1237, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Jiang, H.; Yin, Y.; Zhang, Y.; Liang, J.; Li, S.; Wang, J.; Lu, J.; Geng, D.; Wu, A.; et al. The role of neuropeptide Y mRNA expression level in distinguishing different types of depression. Front. Aging Neurosci. 2016, 8, 323. [Google Scholar] [CrossRef]
- Sandberg, J.V.; Jakobsson, J.; Pålsson, E.; Landén, M.; Mathé, A.A. Low neuropeptide Y in cerebrospinal fluid in bipolar patients is associated with previous and prospective suicide attempts. Eur. Neuropsychopharmacol. 2014, 24, 1907–1915. [Google Scholar] [CrossRef] [PubMed]
- Heilig, M. The NPY system in stress, anxiety and depression. Neuropeptides 2004, 38, 213–224. [Google Scholar] [CrossRef]
- Copperi, F.; Kim, J.D.; Diano, S. Melanocortin signaling connecting systemic metabolism with mood disorders. Biol. Psychiatry 2022, 91, 879–887. [Google Scholar] [CrossRef]
- Ozsoy, S.; Olguner Eker, O.; Abdulrezzak, U. The Effects of Antidepressants on Neuropeptide Y in Patients with Depression and Anxiety. Pharmacopsychiatry 2016, 49, 26–31. [Google Scholar] [CrossRef]
- A Mathé, A.; Michaneck, M.; Berg, E.; Charney, D.S.; Murrough, J.W. A Randomized Controlled Trial of Intranasal Neuropeptide Y in Patients with Major Depressive Disorder. Int. J. Neuropsychopharmacol. 2020, 23, 783–790. [Google Scholar] [CrossRef]
- Reichmann, F.; Holzer, P. Neuropeptide Y: A stressful review. Neuropeptides 2016, 55, 99–109. [Google Scholar] [CrossRef]
- Wood, J.; Verma, D.; Lach, G.; Bonaventure, P.; Herzog, H.; Sperk, G.; Tasan, R.O. Structure and Function of the Amygdaloid NPY System: NPY Y2 Receptors Regulate Excitatory and Inhibitory Synaptic Transmission in the Centromedial Amygdala. Brain Struct. Funct. 2016, 221, 3373–3391. [Google Scholar] [CrossRef] [PubMed]
- Bioque, M.; González-Rodríguez, A.; Garcia-Rizo, C.; Cobo, J.; Monreal, J.A.; Usall, J.; Soria, V.; Labad, J. Targeting the microbiome-gut-brain axis for improving cognition in schizophrenia and major mood disorders: A narrative review. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 105, 110130. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Prabhavalkar, K.S.; Bhatt, L.K. Gastrointestinal hormones in regulation of memory. Peptides 2018, 102, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Misiak, B.; Łoniewski, I.; Marlicz, W.; Frydecka, D.; Szulc, A.; Rudzki, L.; Samochowiec, J. The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 102, 109951. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, V.L.; Smith, M.R.B.; Hall, L.J.; Cleare, A.J.; Stone, J.M.; Young, A.H. Perturbations in Gut Microbiota Composition in Psychiatric Disorders: A Review and Meta-analysis. JAMA Psychiatry 2021, 78, 1343–1354, Erratum in JAMA Psychiatry 2021; Erratum in JAMA Psychiatry 2022, 79, 1241. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Ren, X.; Zhang, H.; Pandey, G.N. Effect of depression and suicidal behavior on neuropeptide Y (NPY) and its receptors in the adult human brain: A postmortem study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2022, 112, 110428. [Google Scholar] [CrossRef]
- Chen, Q.-C.; Zhang, Y. The Role of NPY in the Regulation of Bone Metabolism. Front. Endocrinol. 2022, 13, 833485. [Google Scholar] [CrossRef]
- Xie, W.; Han, Y.; Li, F.; Gu, X.; Su, D.; Yu, W.; Li, Z.; Xiao, J. Neuropeptide Y1 Receptor Antagonist Alters Gut Microbiota and Alleviates the Ovariectomy-Induced Osteoporosis in Rats. Calcif. Tissue Int. 2020, 106, 444–454. [Google Scholar] [CrossRef]
- Gu, X.-C.; Zhang, X.-B.; Hu, B.; Zi, Y.; Li, M. Neuropeptide Y accelerates post-fracture bone healing by promoting osteogenesis of mesenchymal stem cells. Neuropeptides 2016, 60, 61–66. [Google Scholar] [CrossRef]
- Tang, P.; Duan, C.; Wang, Z.; Wang, C.; Meng, G.; Lin, K.; Yang, Q.; Yuan, Z. NPY and CGRP Inhibitor Influence on ERK Pathway and Macrophage Aggregation during Fracture Healing. Cell Physiol. Biochem. 2017, 41, 1457–1467. [Google Scholar] [CrossRef]
- Baldock, P.A.; Lin, S.; Zhang, L.; Karl, T.; Shi, Y.; Driessler, F.; Zengin, A.; Hörmer, B.; Lee, N.J.; Wong, I.P.; et al. Neuropeptide y attenuates stress-induced bone loss through suppression of noradrenaline circuits. J. Bone Miner. Res. 2014, 29, 2238–2249. [Google Scholar] [CrossRef]
- Ng, J.S.; Chin, K.Y. Potential mechanisms linking psychological stress to bone health. Int. J. Med. Sci. 2021, 18, 604–614. [Google Scholar] [CrossRef]
- Bertani, D.E.; De Novellis, A.M.P.; Farina, R.; Latella, E.; Meloni, M.; Scala, C.; Valeo, L.; Galeazzi, G.M.; Ferrari, S. “Shedding Light on Light”: A Review on the Effects on Mental Health of Exposure to Optical Radiation. Int. J. Environ. Res. Public Health 2021, 18, 1670. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.B.; Ali, A.; Bilal, M.; Rashid, S.M.; Wani, A.B.; Bhat, R.R.; Rehman, M.U. Melatonin and Health: Insights of Melatonin Action, Biological Functions, and Associated Disorders. Cell Mol. Neurobiol. 2023, 43, 2437–2458. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S. Melatonin: An endogenous miraculous indolamine, fights against cancer progression. J. Cancer Res. Clin. Oncol. 2020, 146, 1893–1922. [Google Scholar] [CrossRef] [PubMed]
- Yong, W.; Ma, H.; Na, M.; Gao, T.; Zhang, Y.; Hao, L.; Yu, H.; Yang, H.; Deng, X. Roles of melatonin in the field of reproductive medicine. Biomed. Pharmacother 2021, 144, 112001. [Google Scholar] [CrossRef] [PubMed]
- Bumb, J.M.; Enning, F.; Mueller, J.K.; van der List, T.I.L.L.; Rohleder, C.; Findeisen, P.; Noelte, I.; Schwarz, E.; Leweke, F.M. Differential melatonin alterations in cerebrospinal fluid and serum of patients with major depressive disorder and bipolar disorder. Compr. Psychiatry 2016, 68, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Tonon, A.C.; Pilz, L.K.; Markus, R.P.; Hidalgo, M.P.; Elisabetsky, E. Melatonin and depression: A translational perspective from animal models to clinical studies. Front. Psychiatry 2021, 12, 638981. [Google Scholar] [CrossRef] [PubMed]
- Won, E.; Na, K.-S.; Kim, Y.-K. Associations between Melatonin, Neuroinflammation, and Brain Alterations in Depression. Int. J. Mol. Sci. 2022, 23, 305. [Google Scholar] [CrossRef] [PubMed]
- Dmitrzak-Weglarz, M.; Banach, E.; Bilska, K.; Narozna, B.; Szczepankiewicz, A.; Reszka, E.; Jablonska, E.; Kapelski, P.; Skibinska, M.; Pawlak, J. Molecular regulation of the melatonin biosynthesis pathway in unipolar and bipolar depression. Front. Pharmacol. 2021, 12, 666541. [Google Scholar] [CrossRef]
- Etain, B.; Dumaine, A.; Bellivier, F.; Pagan, C.; Francelle, L.; Goubran-Botros, H.; Moreno, S.; Deshommes, J.; Moustafa, K.; Le Dudal, K.; et al. Genetic and functional abnormalities of the melatonin biosynthesis pathway in patients with bipolar disorder. Hum. Mol. Genet. 2012, 21, 4030–4037. [Google Scholar] [CrossRef]
- Carta, M.; Preti, A.; Akiskal, H. Coping with the New Era: Noise and Light Pollution, Hperactivity and Steroid Hormones. Towards an Evolutionary View of Bipolar Disorders. CPEMH 2018, 14, 33–36. [Google Scholar] [CrossRef]
- Takaesu, Y. Circadian rhythm in bipolar disorder: A review of the literature. Psychiatry Clin. Neurosci. 2018, 72, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.R.; McClung, C.A. Circadian Rhythms in Mood Disorders. In Circadian Clock in Brain Health and Disease. Advances in Experimental Medicine and Biology; Engmann, O., Brancaccio, M., Eds.; Springer: Cham, Switzerland, 2021; Volume 1344. [Google Scholar] [CrossRef]
- Cho, J.H.; Bhutani, S.; Kim, C.H.; Irwin, M.R. Anti-inflammatory effects of melatonin: A systematic review and meta-analysis of clinical trials. Brain Behav. Immun. 2021, 93, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Alston, M.; Cain, S.W.; Rajaratnam, S.M. Advances of melatonin-based therapies in the treatment of disturbed sleep and mood. Sleep-Wake Neurobiol. Pharmacol. 2019, 253, 305–319. [Google Scholar]
- McGowan, N.M.; Kim, D.S.; Crespo, M.d.A.; Bisdounis, L.; Kyle, S.D.; Saunders, K.E.A. Hypnotic and Melatonin/Melatonin-Receptor Agonist Treatment in Bipolar Disorder: A Systematic Review and Meta-Analysis. CNS Drugs 2022, 36, 345–363. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.; Gu, X.; Zhu, G.; Li, M.; Ma, B.; Zi, Y. Melatonin Induces Osteoblastic Differentiation of Mesenchymal Stem Cells and Promotes Fracture Healing in a Rat Model of Femoral Fracture via Neuropeptide Y/Neuropeptide Y Receptor Y1 Signaling. Pharmacology 2018, 102, 272–280. [Google Scholar] [CrossRef]
- Bagherifard, A.; Hosseinzadeh, A.; Koosha, F.; Sheibani, M.; Karimi-Behnagh, A.; Reiter, R.J.; Mehrzadi, S. Melatonin and bone-related diseases: An updated mechanistic overview of current evidence and future prospects. Osteoporos Int. 2023, 34, 1677–1701. [Google Scholar] [CrossRef]
- Yardimci, A.; Ozdede, M.R.; Kelestimur, H. Agomelatine, A potential multi-target treatment alternative for insomnia, depression, and osteoporosis in postmenopausal women: A hypothetical model. Front. Psychiatry 2021, 12, 654616. [Google Scholar] [CrossRef]
- López-Muñoz, F.; Reiter, R.J.; Egea, J.; Romero, A. Editorial: Therapeutic Advances in Melatonin Research. Front. Pharmacol. 2022, 13, 947117. [Google Scholar] [CrossRef]
- Hafizi, S.; Lix, L.M.; Hans, D.; Bolton, J.M.; Leslie, W.D. Association of mental disorders and psychotropic medications with bone texture as measured with trabecular bone score. Bone 2022, 165, 116565. [Google Scholar] [CrossRef]
- Albolushi, T.; Bouhaimed, M.; Spencer, J. Lower Blood Vitamin D Levels Are Associated with Depressive Symptoms in a Population of Older Adults in Kuwait: A Cross-Sectional Study. Nutrients 2022, 14, 1548. [Google Scholar] [CrossRef]
- Berk, M.; Köhler-Forsberg, O.; Turner, M.; Penninx, B.W.J.H.; Wrobel, A.; Firth, J.; Loughman, A.; Reavley, N.J.; McGrath, J.J.; Momen, N.C.; et al. Comorbidity between major depressive disorder and physical diseases: A comprehensive review of epidemiology, mechanisms and management. World Psychiatry 2023, 22, 366–387. [Google Scholar] [CrossRef]
- Law, R.; Angela, C. Stress, the cortisol awakening response and cognitive function. Int. Rev. Neurobiol. 2020, 150, 187–217. [Google Scholar] [PubMed]
- Malhi, G.S.; Bassett, D.; Boyce, P.; Bryant, R.; Fitzgerald, P.B.; Fritz, K.; Hopwood, M.; Lyndon, B.; Mulder, R.; Murray, G.; et al. Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for mood disorders. Aust. N. Z. J. Psychiatry 2015, 49, 1087–1206. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, G.; Haddad, P.; Ferrier, I.; Aronson, J.; Barnes, T.; Cipriani, A.; Coghill, D.R.; Fazel, S.; Geddes, J.; Grunze, H.; et al. Evidence-based guidelines for treating bipolar disorder: Revised third edition recommendations from the British Association for Psychopharmacology. J. Psychopharmacol. 2016, 30, 495–553. [Google Scholar] [CrossRef] [PubMed]
- Yatham, L.N.; Kennedy, S.H.; Parikh, S.V.; Schaffer, A.; Bond, D.J.; Frey, B.N.; Sharma, V.; Goldstein, B.I.; Rej, S.; Beaulieu, S.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder. Bipolar Disord. 2018, 20, 97–170. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatry Association. Practice Guideline for the Treatment of Patients with Bipolar Disorder. Available online: http://psychiatryonline.org/pb/assets/raw/sitewide/practice_guidelines/guidelines/bipolar.pdf (accessed on 17 December 2019).
- Morlet, E.; Costemale-Lacoste, J.-F.; Poulet, E.; McMahon, K.; Hoertel, N.; Limosin, F.; Adès, J.; Alezrah, C.; Amado, I.; Amar, G.; et al. Psychiatric and physical outcomes of long-term use of lithium in older adults with bipolar disorder and major depressive disorder: A cross-sectional multicenter study. J. Affect. Disord. 2019, 259, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Rybakowski, J. Lithium treatment—The state of the art for 2020. Psychiatr. Pol. 2020, 54, 1047–1066. [Google Scholar] [CrossRef]
- Ghanaatfar, F.; Ghanaatfar, A.; Isapour, P.; Farokhi, N.; Bozorgniahosseini, S.; Javadi, M.; Gholami, M.; Ulloa, L.; Coleman-Fuller, N.; Motaghinejad, M. Is lithium neuroprotective? An updated mechanistic illustrated review. Fundam Clin. Pharmacol. 2023, 37, 4–30. [Google Scholar] [CrossRef]
- Clément-Lacroix, P.; Ai, M.; Morvan, F.; Roman-Roman, S.; Vayssière, B.; Belleville, C.; Estrera, K.; Warman, M.L.; Baron, R.; Rawadi, G. Lrp5-Independent Activation of Wnt Signaling by Lithium Chloride Increases Bone Formation and Bone Mass in Mice. Proc. Natl. Acad. Sci. USA 2005, 102, 17406–17411. Available online: http://www.jstor.org/stable/4152491 (accessed on 6 August 2023). [CrossRef] [PubMed]
- Arioka, M.; Takahashi-Yanaga, F.; Sasaki, M.; Yoshihara, T.; Morimoto, S.; Hirata, M.; Mori, Y.; Sasaguri, T. Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis. Biochem. Pharmacol. 2014, 90, 397–405. [Google Scholar] [CrossRef]
- Chen, Y.; Whetstone, H.C.; Lin, A.C.; Nadesan, P.; Wei, Q.; Poon, R.; A Alman, B. Beta-catenin signaling plays a disparate role in different phases of fracture repair: Implications for therapy to improve bone healing. PLoS Med. 2007, 4, e249. [Google Scholar] [CrossRef]
- Vachhani, K.; Whyne, C.; Wang, Y.; Burns, D.M.; Nam, D. Low-dose lithium regimen enhances endochondral fracture healing in osteoporotic rodent bone. J. Orthop. Res. 2018, 36, 1783–1789. [Google Scholar] [CrossRef]
- Østergaard, S.D.; Köhler-Forsberg, O.; Rohde, C.; Nierenberg, A. The potentially protective effect of lithium on the risk of osteoporosis: A nationwide study of 22,912 patients with bipolar disorder. Eur. Psychiatry 2022, 65 (Suppl. S1), S161. [Google Scholar] [CrossRef]
- Lassas, A.; Norrback, K.-F.; Adolfsson, R.; Maripuu, M. Bipolar Disorder and Bone Mineral Density Z-Scores in Relation to Clinical Characteristics and Lithium Medication. J. Clin. Med. 2022, 11, 7158. [Google Scholar] [CrossRef] [PubMed]
- Marasine, N.R.; Sankhi, S.; Lamichhane, R.; Marasini, N.R.; Dangi, N.B. Use of Antidepressants among Patients Diagnosed with Depression: A Scoping Review. Biomed. Res. Int. 2021, 2021, 6699028. [Google Scholar] [CrossRef]
- Kadakia, A.; Dembek, C.; Heller, V.; Singh, R.; Uyei, J.; Hagi, K.; Nosaka, T.; Loebel, A. Efficacy and tolerability of atypical antipsychotics for acute bipolar depression: A network meta-analysis. BMC Psychiatry 2021, 21, 249. [Google Scholar] [CrossRef]
- Hodge, J.M.; Wang, Y.; Berk, M.; Collier, F.M.; Fernandes, T.J.; Constable, M.J.; Pasco, J.A.; Dodd, S.; Nicholson, G.C.; Kennedy, R.L.; et al. Selective Serotonin Reuptake Inhibitors Inhibit Human Osteoclast and Osteoblast Formation and Function. Biol. Psychiatry 2013, 74, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Weerasinghe, D.K.; Hodge, J.M.; Pasco, J.A.; Samarasinghe, R.M.; Azimi Manavi, B.; Williams, L.J. Antipsychoticinduced bone loss: The role of dopamine, serotonin and adrenergic receptor signalling. Front. Cell Dev. Biol. 2023, 11, 1184550. [Google Scholar] [CrossRef]
- Raffin, M.; Bonnot, O.; Giannitelli, M.; Xavier, J.; Bodeau, N.; Bibrac, B.; Leban, M.; Fautrel, B.; Menard, M.L.; Consoli, A.; et al. Hormonal Risk Factors for Osteoporosis: Different Profile among Antipsychotics. J. Child. Adolesc. Psychopharmacol. 2018, 28, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C. Prolactin-Raising and Prolactin-Sparing Antipsychotic Drugs and the Risk of Fracture and Fragility Fracture in Patients With Schizophrenia, Dementia, and Other Disorders. J. Clin. Psychiatry 2023, 84, 23f14790. [Google Scholar] [CrossRef] [PubMed]
- Chandra, P.; Roy, S.; Kumari, A.; Agarwal, R.; Singh, A.; Sharan, S. Role of Selective Serotonin Reuptake Inhibitors in Prognosis Dental Implants: A Retrospective Study. J. Pharm. Bioallied Sci. 2021, 13 (Suppl. S1), S92–S96. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, A.S. Antidepressant medications and bone loss: An insight for researchers and clinicians. Der Pharm. Lett. 2014, 6, 422–433. [Google Scholar]
- Schweiger, J.U.; Schweiger, U.; Hüppe, M.; Kahl, K.G.; Greggersen, W.; Jauch-Chara, K.; Fassbinder, E. The Use of Antidepressive Agents and Bone Mineral Density in Women: A Meta-Analysis. Int. J. Environ. Res. Public Health 2018, 15, 1373. [Google Scholar] [CrossRef]
- Mehta, K.; Mohebbi, M.; Pasco, J.A.; Williams, L.J.; Walder, K.; Ng, B.L.; Gupta, V.B. Impact of Mood Disorder History and Bone Health on Cognitive Function Among Men Without Dementia. J. Alzheimer’s Dis. 2023, 96, 381–393. [Google Scholar] [CrossRef]
Class of Psychoactive Drug | Psychoactive Drug | Effects on Bone Tissue |
---|---|---|
Mood stabilizers | Lithium |
|
Valproate and Lamotrigine |
| |
APs | First generation APs | Are associated with:
|
Second generation APs |
| |
ADs | SSRI and Tricyclic ADs | Are associated with:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Novellis, A.M.P.; Ferrazzi, G.; Galeazzi, G.M.; Marchi, M.; Meloni, M.; Pingani, L.; Ferrari, S. Bone Health in Mood Disorders: A Narrative Review about Clinical and Biological Connections. Psychiatry Int. 2024, 5, 74-88. https://doi.org/10.3390/psychiatryint5010006
De Novellis AMP, Ferrazzi G, Galeazzi GM, Marchi M, Meloni M, Pingani L, Ferrari S. Bone Health in Mood Disorders: A Narrative Review about Clinical and Biological Connections. Psychiatry International. 2024; 5(1):74-88. https://doi.org/10.3390/psychiatryint5010006
Chicago/Turabian StyleDe Novellis, Antonella Maria Pia, Giulia Ferrazzi, Gian Maria Galeazzi, Mattia Marchi, Matteo Meloni, Luca Pingani, and Silvia Ferrari. 2024. "Bone Health in Mood Disorders: A Narrative Review about Clinical and Biological Connections" Psychiatry International 5, no. 1: 74-88. https://doi.org/10.3390/psychiatryint5010006
APA StyleDe Novellis, A. M. P., Ferrazzi, G., Galeazzi, G. M., Marchi, M., Meloni, M., Pingani, L., & Ferrari, S. (2024). Bone Health in Mood Disorders: A Narrative Review about Clinical and Biological Connections. Psychiatry International, 5(1), 74-88. https://doi.org/10.3390/psychiatryint5010006