Disruption of Alternative Splicing in the Amygdala of Pigs Exposed to Maternal Immune Activation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Experiments
2.2. RNA Sequence Mapping and Alternative Splicing Analysis
3. Results
4. Discussion
4.1. Differential Alternative Splicing Associated with Maternal Immune Association in Females
4.2. Differential Alternative Splicing Associated with Maternal Immune Association in Males
4.3. Functional Analysis of Alternatively Spliced Genes Associated with Maternal Immune Activation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lombardo, M.V.; Moon, H.M.; Su, J.; Palmer, T.D.; Courchesne, E.; Pramparo, T. Maternal immune activation dysregulation of the fetal brain transcriptome and relevance to the pathophysiology of autism spectrum disorder. Mol. Psychiatry 2018, 23, 1001–1013. [Google Scholar] [CrossRef] [Green Version]
- Antonson, A.M.; Lawson, M.A.; Caputo, M.P.; Matt, S.; Leyshon, B.J.; Johnson, R.W. Maternal viral infection causes global alterations in porcine fetal microglia. Proc. Natl. Acad. Sci. USA 2019, 116, 20190–20200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keever-Keigher, M.R.; Zhang, P.; Bolt, C.R.; Rymut, H.E.; Antonson, A.M.; Corbett, M.P.; Houser, A.K.; Hernandez, A.G.; Southey, B.R.; Rund, L.A.; et al. Interacting impact of maternal inflammatory response and stress on the amygdala transcriptome of pigs. G3 Genes|Genomes|Genetics 2021, 11, jkab113. [Google Scholar] [CrossRef]
- Makinson, R.; Lloyd, K.; Rayasam, A.; McKee, S.; Brown, A.; Barila, G.; Grissom, N.; George, R.; Marini, M.; Fabry, Z.; et al. Intrauterine inflammation induces sex-specific effects on neuroinflammation, white matter, and behavior. Brain Behav. Immun. 2017, 66, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Rymut, H.E.; Bolt, C.R.; Caputo, M.P.; Houser, A.K.; Antonson, A.M.; Zimmerman, J.D.; Villamil, M.B.; Southey, B.R.; Rund, L.A.; Johnson, R.W.; et al. Long-Lasting Impact of Maternal Immune Activation and Interaction with a Second Immune Challenge on Pig Behavior. Front. Vet. Sci. 2020, 7, 561151. [Google Scholar] [CrossRef] [PubMed]
- Zolkipli-Cunningham, Z.; Naviaux, J.C.; Nakayama, T.; Hirsch, C.M.; Monk, J.M.; Li, K.; Wang, L.; Le, T.P.; Meinardi, S.; Blake, D.R.; et al. Metabolic and behavioral features of acute hyperpurinergia and the maternal immune activation mouse model of autism spectrum disorder. PLoS ONE 2021, 16, e0248771. [Google Scholar] [CrossRef]
- Rymut, H.E.; Rund, L.A.; Bolt, C.R.; Villamil, M.B.; Bender, D.E.; Southey, B.R.; Johnson, R.W.; Rodriguez-Zas, S.L. Biochem-istry and Immune Biomarkers Indicate Interacting Effects of Pre- and Postnatal Stressors in Pigs across Sexes. Animals 2021, 11, 987. [Google Scholar] [CrossRef] [PubMed]
- Southey, B.R.; Bolt, C.R.; Rymut, H.E.; Keever, M.R.; Ulanov, A.V.; Li, Z.; Rund, L.A.; Johnson, R.W.; Rodriguez-Zas, S.L. Impact of Weaning and Maternal Immune Activation on the Metabolism of Pigs. Front. Mol. Biosci. 2021, 8, 660764. [Google Scholar] [CrossRef] [PubMed]
- Rymut, H.E.; Rund, L.A.; Bolt, C.R.; Villamil, M.B.; Southey, B.R.; Johnson, R.W.; Rodriguez-Zas, S.L. The Combined Effect of Weaning Stress and Immune Activation during Pig Gestation on Serum Cytokine and Analyte Concentrations. Animals 2021, 11, 2274. [Google Scholar] [CrossRef]
- Bayer, T.A.; Falkai, P.; Maier, W. Genetic and non-genetic vulnerability factors in schizophrenia: The basis of the “Two hit hypothesis”. J. Psychiatr. Res. 1999, 33, 543–548. [Google Scholar] [CrossRef]
- Wang, X.; Hagberg, H.; Nie, C.; Zhu, C.; Ikeda, T.; Mallard, C. Dual Role of Intrauterine Immune Challenge on Neonatal and Adult Brain Vulnerability to Hypoxia-Ischemia. J. Neuropathol. Exp. Neurol. 2007, 66, 552–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlezon, W.A.; Kim, W.; Missig, G.; Finger, B.C.; Landino, S.M.; Alexander, A.J.; Mokler, E.L.; Robbins, J.O.; Li, Y.; Bolshakov, V.Y.; et al. Maternal and early postnatal immune activation produce sex-specific effects on autism-like behaviors and neuroimmune function in mice. Sci. Rep. 2019, 9, 16928. [Google Scholar] [CrossRef] [PubMed]
- Haida, O.; Al Sagheer, T.; Balbous, A.; Francheteau, M.; Matas, E.; Soria, F.N.; Fernagut, P.O.; Jaber, M. Sex-dependent behavioral deficits and neuropathology in a maternal immune activation model of autism. Transl. Psychiatry 2019, 9, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, A.S.; Patterson, P.H. Maternal Infection and Schizophrenia: Implications for Prevention. Schizophr. Bull. 2011, 37, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Openshaw, R.L.; Kwon, J.; McColl, A.; Penninger, J.M.; Cavanagh, J.; Pratt, J.A.; Morris, B.J. JNK signalling mediates aspects of maternal immune activation: Importance of maternal genotype in relation to schizophrenia risk. J. Neuroinflammation 2019, 16, 18. [Google Scholar] [CrossRef]
- Souza, D.F.; Wartchow, K.M.; Lunardi, P.S.; Brolese, G.; Tortorelli, L.S.; Batassini, C.; Biasibetti, R.; Gonçalves, C.-A. Changes in Astroglial Markers in a Maternal Immune Activation Model of Schizophrenia in Wistar Rats are Dependent on Sex. Front. Cell. Neurosci. 2015, 9, 489. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Zhang, Z.; Lin, W.; Yan, J.; Zhu, C.; Yin, D.; He, S.; Su, Y.; Xu, N.; Caldwell, R.W.; et al. Modulating microglia activation prevents maternal immune activation induced schizophrenia-relevant behavior phenotypes via arginase 1 in the dentate gyrus. Neuropsychopharmacology 2020, 45, 1896–1908. [Google Scholar] [CrossRef]
- Knuesel, I.; Chicha, L.; Britschgi, M.; Schobel, S.A.; Bodmer, M.; Hellings, J.A.; Toovey, S.; Prinssen, E.P. Maternal immune activation and abnormal brain development across CNS disorders. Nat. Rev. Neurol. 2014, 10, 643–660. [Google Scholar] [CrossRef] [PubMed]
- Garbett, K.A.; Hsiao, E.Y.; Kálmán, S.; Patterson, P.H.; Mirnics, K. Effects of maternal immune activation on gene expression patterns in the fetal brain. Transl. Psychiatry 2012, 2, e98. [Google Scholar] [CrossRef] [Green Version]
- Hui, C.W.; Vecchiarelli, H.A.; Gervais, É.; Luo, X.; Michaud, F.; Scheefhals, L.; Bisht, K.; Sharma, K.; Topolnik, L.; Tremblay, M.È. Sex Differences of Microglia and Synapses in the Hippocampal Dentate Gyrus of Adult Mouse Offspring Exposed to Maternal Immune Activation. Front. Cell. Neurosci. 2020, 14, 331. [Google Scholar] [CrossRef] [PubMed]
- Kalish, B.T.; Kim, E.; Finander, B.; Duffy, E.E.; Kim, H.; Gilman, C.K.; Yim, Y.S.; Tong, L.; Kaufman, R.J.; Griffith, E.C.; et al. Maternal immune activation in mice disrupts proteostasis in the fetal brain. Nat. Neurosci. 2021, 24, 204–213. [Google Scholar] [CrossRef]
- Ressler, K.J. Amygdala Activity, Fear, and Anxiety: Modulation by Stress. Biol. Psychiatry 2010, 67, 1117–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schumann, C.M.; Bauman, M.D.; Amaral, D.G. Abnormal structure or function of the amygdala is a common component of neurodevelopmental disorders. Neuropsychologia 2011, 49, 745–759. [Google Scholar] [CrossRef] [Green Version]
- Keever, M.R.; Zhang, P.; Bolt, C.R.; Antonson, A.M.; Rymut, H.E.; Caputo, M.P.; Houser, A.K.; Hernandez, A.G.; Southey, B.R.; Rund, L.A.; et al. Lasting and Sex-Dependent Impact of Maternal Immune Activation on Molecular Pathways of the Amygdala. Front. Neurosci. 2020, 14, 774. [Google Scholar] [CrossRef] [PubMed]
- Southey, B.R.; Zhang, P.; Keever, M.R.; Rymut, H.E.; Johnson, R.W.; Sweedler, J.V.; Rodriguez-Zas, S.L. Effects of maternal immune activation in porcine transcript isoforms of neuropeptide and receptor genes. J. Integr. Neurosci. 2021, 20, 21–31. [Google Scholar] [CrossRef]
- O’Loughlin, E.; Pakan, J.M.P.; Yilmazer-Hanke, D.; McDermott, K.W. Acute in utero exposure to lipopolysaccharide induces inflammation in the pre- and postnatal brain and alters the glial cytoarchitecture in the developing amygdala. J. Neuroinflammation 2017, 14, 212. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Missig, G.; Finger, B.C.; Landino, S.M.; Alexander, A.J.; Mokler, E.L.; Robbins, J.O.; Manasian, Y.; Kim, W.; Kim, K.-S.; et al. Maternal and Early Postnatal Immune Activation Produce Dissociable Effects on Neurotransmission in mPFC–Amygdala Circuits. J. Neurosci. 2018, 38, 3358–3372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Lee, J.-A.; Black, D.L. Neuronal regulation of alternative pre-mRNA splicing. Nat. Rev. Neurosci. 2007, 8, 819–831. [Google Scholar] [CrossRef]
- Zheng, S.; Black, D.L. Alternative pre-mRNA splicing in neurons: Growing up and extending its reach. Trends Genet. 2013, 29, 442–448. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Southey, B.R.; Rodriguez-Zas, S.L. Co-expression networks uncover regulation of splicing and transcription markers of disease. EPiC Ser. Comput. 2020, 70, 119–128. [Google Scholar]
- Zhang, P.; Southey, B.R.; Sweedler, J.V.; Pradhan, A.; Rodriguez-Zas, S.L. Enhanced Understanding of Molecular Interactions and Function Underlying Pain Processes through Networks of Transcript Isoforms, Genes, and Gene Families. Adv. Appl. Bioinform. Chem. 2021, 14, 49–69. [Google Scholar] [CrossRef] [PubMed]
- Voineagu, I.; Wang, X.C.; Johnston, P.; Lowe, J.K.; Tian, Y.; Horvath, S.; Mill, J.; Cantor, R.M.; Blencowe, B.J.; Geschwind, D.H. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011, 474, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, T.; Manabe, T. Aberrant regulation of alternative pre-mRNA splicing in schizophrenia. Neurochem. Int. 2010, 57, 691–704. [Google Scholar] [CrossRef] [PubMed]
- Barry, G.; Briggs, J.A.; Vanichkina, D.P.; Poth, E.M.; Beveridge, N.J.; Ratnu, V.S.; Nayler, S.P.; Nones, K.; Hu, J.; Bredy, T.W.; et al. The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol. Psychiatry 2014, 19, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Feng, Y.-Y.; Ramu, A.; Skidmore, Z.L.; Kunisaki, J.; Cotto, K.C.; Griffith, O.L.; Griffith, M. Regtools: Integrated analysis of genomic and transcriptomic data for discovery of mutations associated with aberrant splicing in cancer. Cancer Res. 2018, 78, 2285. [Google Scholar] [CrossRef]
- Li, Y.I.; Knowles, D.A.; Humphrey, J.; Barbeira, A.N.; Dickinson, S.P.; Im, H.K.; Pritchard, J.K. Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet. 2018, 50, 151–158. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44. [Google Scholar] [CrossRef]
- Martin, J.; Cooper, M.; Hamshere, M.L.; Pocklington, A.; Scherer, S.W.; Kent, L.; Gill, M.; Owen, M.J.; Williams, N.; O’Donovan, M.C.; et al. Biological Overlap of Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder: Evidence from Copy Number Variants. J. Am. Acad. Child Adolesc. Psychiatry 2014, 53, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Bassett, A.S.; Lowther, C.; Merico, D.; Costain, G.; Chow, E.W.C.; van Amelsvoort, T.; McDonald-McGinn, D.; Gur, R.E.; Swillen, A.; Bree, M.V.D.; et al. Rare Genome-Wide Copy Number Variation and Expression of Schizophrenia in 22q11.2 Deletion Syndrome. Am. J. Psychiatry 2017, 174, 1054–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aberg, K.; Saetre, P.; Jareborg, N.; Jazin, E. Human QKI, a potential regulator of mRNA expression of human oligodendrocyte-related genes involved in schizophrenia. Proc. Natl. Acad. Sci. USA 2006, 103, 7482–7487. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-F.; Chen, T.; Yan, A.F.; Xiao, J.; Xie, Y.-L.; Yuan, J.; Chen, P.; Wong, A.O.-L.; Zhang, Y.; Wong, N.-K. Poly(I:C) Challenge Alters Brain Expression of Oligodendroglia-Related Genes of Adult Progeny in a Mouse Model of Maternal Immune Activation. Front. Mol. Neurosci. 2020, 13, 115. [Google Scholar] [CrossRef]
- Farrelly, L.; Foecking, M.; Piontkewitz, Y.; Dicker, P.; English, J.; Wynne, K.; Cannon, M.; Cagney, G.; Cotter, D.R. Maternal Immune Activation Induces Changes in Myelin and Metabolic Proteins, Some of Which Can Be Prevented with Risperidone in Adolescence. Dev. Neurosci. 2015, 37, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Richetto, J.; Chesters, R.; Cattaneo, A.; Labouesse, M.A.; Gutierrez, A.M.C.; Wood, T.C.; Luoni, A.; Meyer, U.; Vernon, A.; Riva, M.A. Genome-Wide Transcriptional Profiling and Structural Magnetic Resonance Imaging in the Maternal Immune Activation Model of Neurodevelopmental Disorders. Cereb. Cortex 2016, 27, 3397–3413. [Google Scholar] [CrossRef]
- Fatemi, S.H.; Folsom, T.D.; Reutiman, T.J.; Abu-Odeh, D.; Mori, S.; Huang, H.; Oishi, K. Abnormal expression of myelination genes and alterations in white matter fractional anisotropy following prenatal viral influenza infection at E16 in mice. Schizophr. Res. 2009, 112, 46–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, N.F.; Gandal, M.; Estes, M.; Cameron, S.; Buth, J.; Parhami, S.; Ramaswami, G.; Murray, K.; Amaral, D.G.; van de Water, J.A.; et al. Alterations in retrotransposition, synaptic connectivity, and myelination implicated by transcriptomic changes fol-lowing maternal immune activation in non-human primates. Biol. Psychiatry 2020, 89, 896–910. [Google Scholar] [CrossRef]
- Strutz-Seebohm, N.; Seebohm, G.; Mack, A.F.; Wagner, H.-J.; Just, L.; Skutella, T.; Lang, U.E.; Henke, G.; Striegel, M.; Hollmann, M.; et al. Regulation of GluR1 abundance in murine hippocampal neurones by serum-and glucocorticoid-inducible kinase 3. J. Physiol. 2005, 565, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Hoeffer, C.A.; Klann, E. mTOR signaling: At the crossroads of plasticity, memory and disease. Trends Neurosci. 2010, 33, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Gipson, T.T.; Johnston, M.V. Plasticity and mTOR: Towards Restoration of Impaired Synaptic Plasticity in mTOR-Related Neurogenetic Disorders. Neural Plast. 2012. [Google Scholar] [CrossRef]
- Nardone, S.; Sams, D.S.; Zito, A.; Reuveni, E.; Elliott, E. Dysregulation of Cortical Neuron DNA Methylation Profile in Autism Spectrum Disorder. Cereb. Cortex 2017, 27, 5739–5754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, O.S.; Mccoy, S.Y.; Middleton, F.A.; Bialosuknia, S.; Zhang-James, Y.; Liu, L.; Tsuang, M.T.; Faraone, S.V.; Glatt, S.J. Transcriptomic analysis of postmortem brain identifies dysregulated splicing events in novel candidate genes for schizophrenia. Schizophr. Res. 2012, 142, 188–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelkey, K.A.; Barksdale, E.; Craig, M.T.; Yuan, X.Q.; Sukumaran, M.; Vargish, G.A.; Mitchell, R.M.; Wyeth, M.S.; Petralia, R.S.; Chittajallu, R.; et al. Pentraxins Coordinate Excitatory Synapse Maturation and Circuit Integration of Parvalbumin Interneurons. Neuron 2016, 90, 661. [Google Scholar] [CrossRef]
- Ripke, S.; Neale, B.M.; Corvin, A.; Walters, J.T.; Farh, K.H.; Holmans, P.A.; Lee, P.; Bulik-Sullivan, B.; Collier, D.A.; Huang, H.; et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421. [Google Scholar] [CrossRef] [Green Version]
- Ronemus, M.; Iossifov, I.; Levy, D.; Wigler, M. The role of de novo mutations in the genetics of autism spectrum disorders. Nat. Rev. Genet. 2014, 15, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.; Jahanshad, N.; Mufford, M.; Choi, K.W.; Lee, P.; Ramesar, R.; Smoller, J.W.; Thompson, P.; Stein, D.J.; Dalvie, S. Overlap in genetic risk for cross-disorder vulnerability to mental disorders and genetic risk for altered subcortical brain volumes. J. Affect. Disord. 2021, 282, 740–756. [Google Scholar] [CrossRef]
- Moskal, J.R.; Burgdorf, J.; Kroes, R.A.; Brudzynski, S.M.; Panksepp, J. A novel NMDA receptor glycine-site partial agonist, GLYX-13, has therapeutic potential for the treatment of autism. Neurosci. Biobehav. Rev. 2011, 35, 1982–1988. [Google Scholar] [CrossRef]
- Föcking, M.; Lopez, L.M.; English, J.A.; Dicker, P.; Wolff, A.; Brindley, E.; Wynne, K.; Cagney, G.; Cotter, D.R. Proteomic and genomic evidence implicates the postsynaptic density in schizophrenia. Mol. Psychiatry 2015, 20, 424–432. [Google Scholar] [CrossRef]
- Han, X.; Shao, W.; Liu, Z.; Fan, S.-H.; Yu, J.; Chen, J.; Qiao, R.; Zhou, J.; Xie, P. iTRAQ-based quantitative analysis of hippocampal postsynaptic density-associated proteins in a rat chronic mild stress model of depression. Neuroscience 2015, 298, 220–292. [Google Scholar] [CrossRef]
- Babenko, V.N.; Smagin, D.A.; Galyamina, A.G.; Kovalenko, I.L.; Kudryavtseva, N.N. Altered Slc25 family gene expression as markers of mitochondrial dysfunction in brain regions under experimental mixed anxiety/depression-like disorder. BMC Neurosci. 2018, 19, 79. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.-T.; Hsueh, Y.-P. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation. Nat. Commun. 2016, 7, 11020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.Z.Q.; Steer, E.; Otero, P.A.; Bateman, N.W.; Cheng, M.H.; Scott, A.L.; Wu, C.; Bahar, I.; Shih, Y.-T.; Hsueh, Y.-P.; et al. PINK1 Interacts with VCP/p97 and Activates PKA to Promote NSFL1C/p47 Phosphorylation and Dendritic Arborization in Neurons. eNeuro 2018, 5, 0466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szegő, É.M.; Janáky, T.; Szabó, Z.; Csorba, A.; Kompagne, H.; Müller, G.; Lévay, G.; Simor, A.; Juhász, G.; Kékesi, K.A. A mouse model of anxiety molecularly characterized by altered protein networks in the brain proteome. Eur. Neuropsychopharmacol. 2010, 20, 96–111. [Google Scholar] [CrossRef] [PubMed]
- Bingol, B.; Tea, J.S.; Phu, L.; Reichelt, M.; Bakalarski, C.E.; Song, Q.H.; Foreman, O.; Kirkpatrick, D.S.; Sheng, M.G. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nat. Cell Biol. 2014, 510, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Abou-Sleiman, P.M.; Muqit, M.K.; Wood, N.W. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat. Rev. Neurosci. 2006, 7, 207–219. [Google Scholar] [CrossRef]
- Malkova, N.V.; Yu, C.Z.; Hsiao, E.Y.; Moore, M.J.; Patterson, P.H. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav. Immun. 2012, 26, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Cieślik, M.; Gąssowska-Dobrowolska, M.; Jęśko, H.; Czapski, G.A.; Wilkaniec, A.; Zawadzka, A.; Dominiak, A.; Polowy, R.; Filipkowski, R.K.; Boguszewski, P.M.; et al. Maternal Immune Activation Induces Neuroinflammation and Cortical Synaptic Deficits in the Adolescent Rat Offspring. Int. J. Mol. Sci. 2020, 21, 4097. [Google Scholar] [CrossRef]
- Wan, L.; Liu, D.; Xiao, W.-B.; Zhang, B.-X.; Yan, X.-X.; Luo, Z.-H.; Xiao, B. Association of SHANK Family with Neuropsychi-atric Disorders: An Update on Genetic and Animal Model Discoveries. Cell. Mol. Neurobiol. 2021, 1–21. [Google Scholar] [CrossRef]
- Rhoades, R.; Jackson, F.; Teng, S. Discovery of rare variants implicated in schizophrenia using next-generation sequencing. J. Transl. Genet. Genom. 2019, 3, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Amodeo, D.A.; Lai, C.-Y.; Hassan, O.; Mukamel, E.A.; Behrens, M.M.; Powell, S.B. Maternal immune activation impairs cognitive flexibility and alters transcription in frontal cortex. Neurobiol. Dis. 2019, 125, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Legido, A.; Jethva, R.; Goldenthal, M.J. Mitochondrial Dysfunction in Autism. Semin. Pediatr. Neurol. 2013, 20, 163–175. [Google Scholar] [CrossRef]
- Yang, J.; Long, Y.; Xu, D.-M.; Zhu, B.-L.; Deng, X.-J.; Yan, Z.; Sun, F.; Chen, G.-J. Age- and Nicotine-Associated Gene Expression Changes in the Hippocampus of APP/PS1 Mice. J. Mol. Neurosci. 2019, 69, 608–622. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Zhou, F.; Feng, R.; Wang, F.; Zhang, S.; Li, J.; Li, Q.; Wang, Y.; Xie, J.; et al. ATP11B deficiency leads to impairment of hippocampal synaptic plasticity. J. Mol. Cell Biol. 2019, 11, 688–702. [Google Scholar] [CrossRef]
- Emili, M.; Guidi, S.; Uguagliati, B.; Giacomini, A.; Bartesaghi, R.; Stagni, F. Treatment with the flavonoid 7,8-Dihydroxyflavone: A promising strategy for a constellation of body and brain disorders. Crit. Rev. Food Sci. Nutr. 2020, 10, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Zhao, D.; Hrabovsky, A.; Pedrosa, E.; Zheng, D.; Lachman, H.M. Heat Shock Alters the Expression of Schizophrenia and Autism Candidate Genes in an Induced Pluripotent Stem Cell Model of the Human Telencephalon. PLoS ONE 2014, 9, e94968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.; Tian, Y.; Chen, Y.; Wei, Q.; Chen, F.; Cao, B.; Wu, Y.; Zhao, B.; Chen, X.; Xie, C.; et al. Identification of TYW3/CRYZ and FGD4 as susceptibility genes for amyotrophic lateral sclerosis. Neurol. Genet. 2019, 5, e375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.-S.; Cheng, W.-C.; Chen, C.-Y.; Wu, M.-C.; Wang, Y.-C.; Tseng, Y.-H.; Chuang, T.-J.; Shen, C.-K.J. Transcriptomopathies of pre- and post-symptomatic frontotemporal dementia-like mice with TDP-43 depletion in forebrain neurons. Acta Neuropathol. Commun. 2019, 7, 50. [Google Scholar] [CrossRef]
- Ide, M.; Lewis, D.A. Altered Cortical CDC42 Signaling Pathways in Schizophrenia: Implications for Dendritic Spine Deficits. Biol. Psychiatry 2010, 68, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazdani, A.; Mendez-Giraldez, R.; Yazdani, A.; Kosorok, M.R.; Roussos, P. Differential gene regulatory pattern in the human brain from schizophrenia using transcriptomic-causal network. BMC Bioinform. 2020, 21, 469. [Google Scholar] [CrossRef]
- Gardiner, E.J.; Cairns, M.J.; Liu, B.; Beveridge, N.J.; Carr, V.; Kelly, B.; Scott, R.J.; Tooney, P.A.; Bank, A.S.R. Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells. J. Psychiatr. Res. 2013, 47, 425–437. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, J.-H.; Song, G.G. Pathway analysis of a genome-wide association study in schizophrenia. Gene 2013, 525, 107–115. [Google Scholar] [CrossRef]
- Okaty, B.W.; Miller, M.N.; Sugino, K.; Hempel, C.M.; Nelson, S.B. Transcriptional and Electrophysiological Maturation of Neocortical Fast-Spiking GABAergic Interneurons. J. Neurosci. 2009, 29, 7040–7052. [Google Scholar] [CrossRef] [Green Version]
- Garbett, K.; Ebert, P.J.; Mitchell, A.; Lintas, C.; Manzi, B.; Mirnics, K.; Persico, A.M. Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol. Dis. 2008, 30, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Vrijenhoek, T.; Buizer-Voskamp, J.E.; van der Stelt, I.; Strengman, E.; Sabatti, C.; van Kessel, A.G.; Brunner, H.G.; Ophoff, R.A.; Veltman, J.A. Recurrent CNVs Disrupt Three Candidate Genes in Schizophrenia Patients. Am. J. Hum. Genet. 2008, 83, 504–510. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zeng, Z.; Li, T.; Liu, J.; Li, J.; Li, Y.; Zhao, Q.; Wei, Z.; Wang, Y.; Li, B.; et al. Common SNPs in Myelin Transcription Factor 1-Like (MYT1L): Association with Major Depressive Disorder in the Chinese Han Population. PLoS ONE 2010, 5, e13662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagus, M.; Gass, N.; Saharinen, J.; Saarela, J.; Porkka-Heiskanen, T.; Paunio, T. Gene expression patterns in a rodent model for depression. Eur. J. Neurosci. 2010, 31, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, R.; Jaffe, A.E.; Hyde, T.M.; Kleinman, J.E.; Weinberger, D.R. Prenatal Expression Patterns of Genes Associated with Neuropsychiatric Disorders. Am. J. Psychiatry 2014, 171, 758–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takase, K.; Ohtsuki, T.; Migita, O.; Toru, M.; Inada, T.; Yamakawa-Kobayashi, K.; Arinami, T. Association of ZNF74 gene genotypes with age-at-onset of schizophrenia. Schizophr. Res. 2001, 52, 161–165. [Google Scholar] [CrossRef]
- Shifman, S.; Levit, A.; Chen, M.-L.; Chen, C.-H.; Bronstein, M.; Weizman, A.; Yakir, B.; Navon, R.; Darvasi, A. A complete genetic association scan of the 22q11 deletion region and functional evidence reveal an association between DGCR2 and schizophrenia. Qual. Life Res. 2006, 120, 160–170. [Google Scholar] [CrossRef]
- Horowitz, A.; Shifman, S.; Rivlin, N.; Pisanté, A.; Darvasi, A. A survey of the 22q11 microdeletion in a large cohort of schizophrenia patients. Schizophr. Res. 2005, 73, 263–267. [Google Scholar] [CrossRef]
- Sibille, E.; Wang, Y.J.; Joeyen-Waldorf, J.; Gaiteri, C.; Surget, A.; Oh, S.; Belzung, C.; Tseng, G.C.; Lewis, D.A. A Molecular Signature of Depression in the Amygdala. Am. J. Psychiatry 2009, 166, 1011–1024. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Lu, W.; Du, K.X.; Wang, J.-H. microRNA and mRNA profiles in the amygdala are relevant to fear memory induced by physical or psychological stress. J. Neurophysiol. 2019, 122, 1002–1022. [Google Scholar] [CrossRef]
- Thacker, S.; Sefyi, M.; Eng, C. Alternative splicing landscape of the neural transcriptome in a cytoplasmic-predominant Pten expression murine model of autism-like Behavior. Transl. Psychiatry 2020, 10, 380. [Google Scholar] [CrossRef]
- Hao, L.Y.; Hao, X.Q.; Li, S.H.; Li, X.H. Prenatal exposure to lipopolysaccharide results in cognitive deficits in age-increasing offspring rats. Neuroscience 2010, 166, 763–770. [Google Scholar] [CrossRef]
- Samuelsson, A.-M.; Jennische, E.; Hansson, H.-A.; Holmäng, A. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABAA dysregulation and impaired spatial learning. Am. J. Physiol. Integr. Comp. Physiol. 2006, 290, R1345–R1356. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Won, H.; Im, J.; Lee, H.; Park, J.; Lee, S.; Kim, Y.-O.; Kim, H.-K.; Kwon, J.-T. Effects of Panax ginseng C.A. Meyer extract on the offspring of adult mice with maternal immune activation. Mol. Med. Rep. 2018, 18, 3834–3842. [Google Scholar] [CrossRef] [Green Version]
- Paukszto, L.; Mikolajczyk, A.; Szeszko, K.; Smolinska, N.; Jastrzębski, J.P.; Kaminski, T. Transcription analysis of the response of the porcine adrenal cortex to a single subclinical dose of lipopolysaccharide from Salmonella Enteritidis. Int. J. Biol. Macromol. 2019, 141, 1228–1245. [Google Scholar] [CrossRef]
- Zhao, X.; Mohammed, R.; Tran, H.; Erickson, M.; Kentner, A.C. Poly (I:C)-induced maternal immune activation modifies ventral hippocampal regulation of stress reactivity: Prevention by environmental enrichment. Brain Behav. Immun. 2021, 95, 203–215. [Google Scholar] [CrossRef]
- Fukumoto, K.; Tamada, K.; Toya, T.; Nishino, T.; Yanagawa, Y.; Takumi, T. Identification of genes regulating GABAergic interneuron maturation. Neurosci. Res. 2018, 134, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Jang, D.G.; Sim, H.J.; Song, E.K.; Kwon, T.; Park, T.J. Extracellular matrixes and neuroinflammation. BMB Rep. 2020, 53, 491–499. [Google Scholar] [CrossRef]
- Dannlowski, U.; Kugel, H.; Grotegerd, D.; Redlich, R.; Suchy, J.; Opel, N.; Suslow, T.; Konrad, C.; Ohrmann, P.; Bauer, J.; et al. NCAN Cross-Disorder Risk Variant Is Associated with Limbic Gray Matter Deficits in Healthy Subjects and Major Depression. Neuropsychopharmacology 2015, 40, 2510–2516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.-H.; Brakebusch, C.; Matthies, H.; Oohashi, T.; Hirsch, E.; Moser, M.; Krug, M.; Seidenbecher, C.I.; Boeckers, T.M.; Rauch, U.; et al. Neurocan Is Dispensable for Brain Development. Mol. Cell. Biol. 2001, 21, 4460–4469. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Shi, S.-L. The roles of hnRNP A2 / B1 in RNA biology and disease. Wiley Interdiscip. Rev. RNA 2021, 12, e1612. [Google Scholar] [CrossRef] [PubMed]
- Park, D.I. Chapter Three—Genomics, transcriptomics, proteomics and big data analysis in the discovery of new diagnostic markers and targets for therapy development. Prog. Mol. Bio. Translat. Sci. 2020, 173, 61–90. [Google Scholar]
- Szymanski, M.; Wang, R.; Bassett, S.S.; Avramopoulos, D. Alzheimer’s risk variants in the clusterin gene are associated with alternative splicing. Transl. Psychiatry 2011, 1, e18. [Google Scholar] [CrossRef] [PubMed]
- Soreq, L.; Guffanti, A.; Salomonis, N.; Simchovitz, A.; Israel, Z.; Bergman, H.; Soreq, H. Long Non-Coding RNA and Alternative Splicing Modulations in Parkinson’s Leukocytes Identified by RNA Sequencing. PLoS Comput. Biol. 2014, 10, e1003517. [Google Scholar] [CrossRef]
- Volk, D.W. Role of microglia disturbances and immune-related marker abnormalities in cortical circuitry dysfunction in schizophrenia. Neurobiol. Dis. 2017, 99, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.W.; Gottesman, R.F.; Clark, J.M.; Hernaez, R.; Chang, Y.; Kim, C.; Ha, K.H.; Guallar, E.; Lazo, M. Nonalcoholic fatty liver disease is associated with cognitive function in adults. Neurology 2016, 86, 1136–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, G.; Zelber-Sagi, S.; Preis, S.R.; Beiser, A.S.; DeCarli, C.; Speliotes, E.K.; Satizabal, C.L.; Vasan, R.S.; Seshadri, S. Association of Nonalcoholic Fatty Liver Disease with Lower Brain Volume in Healthy Middle-aged Adults in the Framingham Study. JAMA Neurol. 2018, 75, 97–104. [Google Scholar] [CrossRef] [PubMed]
- He, K.W.; Nie, L.L.; Zhou, Q.; Rahman, S.U.; Liu, J.J.; Yang, X.F.; Li, S.P. Proteomic Profiles of the Early Mitochondrial Changes in APP/PS1 and ApoE4 Transgenic Mice Models of Alzheimer’s Disease. J. Proteome Res. 2019, 18, 2632–2642. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liang, X.; Ren, Z.; Li, Y.; Yang, X. Systematic search for schizophrenia pathways sensitive to perturbation by immune activation. bioRxiv 2019, 730655. [Google Scholar] [CrossRef]
- Kong, W.; Mou, X.; Zhang, N.; Zeng, W.; Li, S.; Yang, Y. The Construction of Common and Specific Significance Subnetworks of Alzheimer’s Disease from Multiple Brain Regions. BioMed Res. Int. 2015, 2015, 394260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosker, K.E.; Segal, R.A. Neuronal Signaling through Endocytosis. Cold Spring Harb. Perspect. Biol. 2014, 6, a020669. [Google Scholar] [CrossRef] [PubMed]
- Richetto, J.; Scarborough, J.; Arban, R.; Dorner-Ciossek, C.; Rosenbrock, H.; Meyer, U. F21. The Phosphodiesterase-9 Inhibitor Bi 409306 Attenuates Social Interaction and Dopaminer-Gic Deficits in Adult Offspring of Poly(I:C)-Based Maternal Immune Activation Neurodevelop-Mental Mouse Model. Schizophr. Bull. 2019, 45, S262. [Google Scholar] [CrossRef]
- McGuire, J.L.; Hammond, J.H.; Yates, S.D.; Chen, D.Q.; Haroutunian, V.; Meador-Woodruff, J.H.; McCullumsmith, R.E. Altered serine/threonine kinase activity in schizophrenia. Brain Res. 2014, 1568, 42–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blakely, R.D.; DeFelice, L.J.; Galli, A. Biogenic Amine Neurotransmitter Transporters: Just When You Thought You Knew them. Physiology 2005, 20, 225–231. [Google Scholar] [CrossRef]
- Straley, M.E.; van Oeffelen, W.; Theze, S.; Sullivan, A.; Mahony, S.O.; Cryan, J.F.; O’Keeffe, G.W. Distinct alterations in motor & reward seeking behavior are dependent on the gestational age of exposure to LPS-induced maternal immune activation. Brain Behav. Immun. 2017, 63, 21–34. [Google Scholar] [CrossRef]
- Luchicchi, A.; Lecca, S.; Melis, M.; de Felice, M.; Cadeddu, F.; Frau, R.; Muntoni, A.L.; Fadda, P.; Devoto, P.; Pistis, M. Maternal Immune Activation Disrupts Dopamine System in the Offspring. Int. J. Neuropsychopharmacol. 2016, 19, pyw007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleckenstein, A.E.; Volz, T.J.; Riddle, E.L.; Gibb, J.W.; Hanson, G.R. New Insights into the Mechanism of Action of Amphetamines. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 681–698. [Google Scholar] [CrossRef]
- Wen, Y.; Alshikho, M.J.; Herbert, M.R. Pathway Network Analyses for Autism Reveal Multisystem Involvement, Major Overlaps with Other Diseases and Convergence upon MAPK and Calcium Signaling. PLoS ONE 2016, 11, e0153329. [Google Scholar] [CrossRef]
- Palmieri, L.; Papaleo, V.; Porcelli, V.; Scarcia, P.; Gaita, L.; Sacco, R.; Hager, J.; Rousseau, F.; Curatolo, P.; Manzi, B.; et al. Altered calcium homeostasis in autism-spectrum disorders: Evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol. Psychiatry 2010, 15, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Naviaux, R.K.; Zolkipli, Z.; Wang, L.; Nakayama, T.; Naviaux, J.C.; Le, T.P.; Schuchbauer, M.A.; Rogac, M.; Tang, Q.; Dugan, L.L.; et al. Antipurinergic Therapy Corrects the Autism-Like Features in the Poly(IC) Mouse Model. PLoS ONE 2013, 8, e57380. [Google Scholar] [CrossRef]
- Naviaux, J.C.; Schuchbauer, M.A.; Li, K.; Wang, L.; Risbrough, V.B.; Powell, S.B.; Naviaux, R.K. Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy. Transl. Psychiatry 2014, 4, e400. [Google Scholar] [CrossRef] [PubMed]
- McColl, E.R.; Piquette-Miller, M. Poly(I:C) alters placental and fetal brain amino acid transport in a rat model of maternal immune activation. Am. J. Reprod. Immunol. 2019, 81, e13115. [Google Scholar] [CrossRef] [PubMed]
- Mueller, F.S.; Scarborough, J.; Schalbetter, S.M.; Richetto, J.; Kim, E.; Couch, A.; Yee, Y.; Lerch, J.P.; Vernon, A.C.; Weber-Stadlbauer, U.; et al. Behavioral, neuroanatomical, and molecular correlates of resilience and susceptibility to maternal immune activation. Mol. Psychiatry 2021, 26, 396–410. [Google Scholar] [CrossRef]
Gene Symbol | Extreme <0 ∆PSI 1 | Extreme >0 ∆PSI 2 | Isoform Count 3 | p-Value | FDR-Adjusted p-Value |
---|---|---|---|---|---|
Nursed | |||||
NSFL1C | −0.116 | 0.021 | 9 | 3.02 × 10−15 | 1.02 × 10−10 |
PDK2 | −0.036 | 0.041 | 7 | 1.94 × 10−14 | 3.27 × 10−10 |
USP30 | −0.147 | 0.102 | 6 | 2.09 × 10−10 | 2.35 × 10−6 |
MAG | −0.019 | 0.010 | 4 | 4.48 × 10−8 | 2.15 × 10−4 |
NPTXR | −0.024 | 0.031 | 3 | 1.14 × 10−7 | 4.78 × 10−4 |
TAF1D | −0.037 | 0.028 | 18 | 1.68 × 10−7 | 6.27 × 10−4 |
SLC25A11 | −0.018 | 0.018 | 3 | 2.14 × 10−7 | 6.91 × 10−4 |
ZNF513 | −0.017 | 0.012 | 4 | 2.26 × 10−7 | 6.91 × 10−4 |
RIMS1 | −0.025 | 0.030 | 17 | 3.31 × 10−7 | 9.27 × 10−4 |
PRKAR1B | −0.053 | 0.096 | 3 | 3.71 × 10−7 | 9.60 × 10−4 |
Weaned | |||||
RPL28 | −0.017 | 0.025 | 7 | 9.96 × 10−10 | 7.07 × 10−6 |
TYW3 | −0.027 | 0.031 | 14 | 1.96 × 10−9 | 1.16 × 10−5 |
ADAP1 | −0.009 | 0.007 | 6 | 5.26 × 10−9 | 2.02 × 10−5 |
ATP5H | −0.029 | 0.024 | 5 | 1.14 × 10−8 | 3.66 × 10−5 |
ZNF316 | −0.224 | 0.081 | 6 | 1.29 × 10−8 | 3.83 × 10−5 |
SHANK1 | −0.056 | 0.110 | 4 | 2.14 × 10−8 | 5.85 × 10−5 |
ACP6 | −0.017 | 0.017 | 2 | 2.52 × 10−8 | 6.40 × 10−5 |
ABLIM3 | −0.042 | 0.092 | 7 | 3.49 × 10−8 | 8.26 × 10−5 |
KCTD2 | −0.005 | 0.010 | 3 | 3.87 × 10−8 | 8.58 × 10−5 |
HEG1 | −0.121 | 0.115 | 5 | 5.86 × 10−8 | 1.18 × 10−4 |
CXCL14 | −0.032 | 0.032 | 3 | 5.97 × 10−8 | 1.18 × 10−4 |
NAGK | −0.024 | 0.036 | 4 | 2.78 × 10−7 | 4.79 × 10−4 |
FAM213A | −0.008 | 0.015 | 3 | 2.84 × 10−7 | 4.79 × 10−4 |
TM7SF2 | −0.006 | 0.010 | 11 | 4.03 × 10−7 | 6.22 × 10−4 |
VRK3 | −0.027 | 0.048 | 7 | 4.79 × 10−7 | 7.08 × 10−4 |
ATP11B | −0.035 | 0.054 | 3 | 5.01 × 10−7 | 7.11 × 10−4 |
MEGF8 | −0.087 | 0.053 | 3 | 7.10 × 10−7 | 8.99 × 10−4 |
Gene Symbol | Extreme <0 ∆PSI 1 | Extreme >0 ∆PSI 2 | Isoform Count 3 | p-Value | FDR-Adjusted p-Value |
---|---|---|---|---|---|
Nursed | |||||
KCNA6 | −0.052 | 0.068 | 11 | 1.34 × 10−11 | 4.65 × 10−7 |
GPBP1 | −0.015 | 0.019 | 3 | 4.18 × 10−10 | 7.24 × 10−6 |
SEPT7 | −0.315 | 0.305 | 3 | 1.22 × 10−9 | 1.41 × 10−5 |
ZNF672 | −0.114 | 0.067 | 12 | 1.78 × 10−9 | 1.54 × 10−5 |
CNP | −0.005 | 0.005 | 6 | 1.18 × 10−8 | 7.30 × 10−5 |
GFAP | −0.008 | 0.017 | 6 | 1.26 × 10−8 | 7.30 × 10−5 |
ZNF74, DGCR2 | −0.019 | 0.016 | 12 | 5.79 × 10−8 | 2.87 × 10−4 |
MYT1L | −0.027 | 0.053 | 11 | 1.62 × 10−7 | 7.01 × 10−4 |
Weaned | |||||
ARL4D | −0.042 | 0.279 | 10 | 1.11 × 10−10 | 2.01 × 10−6 |
HNRNPA2B1 | −0.040 | 0.053 | 6 | 2.63 × 10−10 | 2.01 × 10−6 |
PDK2 | −0.041 | 0.045 | 7 | 2.72 × 10−10 | 2.01 × 10−6 |
CDC42 | −0.055 | 0.037 | 4 | 3.29 × 10−10 | 2.03 × 10−6 |
HOPX | −0.087 | 0.108 | 12 | 4.33 × 10−10 | 2.29 × 10−6 |
POLR2E | −0.016 | 0.016 | 2 | 3.35 × 10−8 | 1.38 × 10−4 |
NCAN | −0.006 | 0.007 | 6 | 4.56 × 10−8 | 1.69 × 10−4 |
TCF25 | −0.009 | 0.008 | 7 | 5.50 × 10−8 | 1.85 × 10−4 |
BBIP1 | −0.022 | 0.013 | 15 | 6.68 × 10−8 | 1.90 × 10−4 |
CLU | −0.042 | 0.044 | 5 | 7.31 × 10−8 | 1.93 × 10−4 |
DRC7 | −0.063 | 0.031 | 7 | 9.55 × 10−8 | 2.30 × 10−4 |
MSRA | −0.013 | 0.023 | 23 | 1.19 × 10−7 | 2.52 × 10−4 |
SEC61A2 | −0.018 | 0.017 | 6 | 1.23 × 10−7 | 2.52 × 10−4 |
LAMTOR4 | −0.015 | 0.009 | 8 | 1.47 × 10−7 | 2.73 × 10−4 |
BLOC1S1 | −0.006 | 0.006 | 5 | 2.00 × 10−7 | 3.41 × 10−4 |
AMDHD1, SNRPF | −0.048 | 0.037 | 4 | 2.02 × 10−7 | 3.41 × 10−4 |
FAM213B | −0.027 | 0.016 | 8 | 3.72 × 10−7 | 5.99 × 10−4 |
NEFM | −0.097 | 0.132 | 13 | 5.81 × 10−7 | 8.97 × 10−4 |
Groups Compared | Gene Symbols Shared between Groups Compared 1 |
---|---|
Female weaned and nursed (9 genes) | LOC110261221, MAG, MAPK10, MARCKSL1, SPTAN1, TAF1D, TMEM9, TTYH1, TYW3 |
Male weaned and nursed (7 genes) | FAM13B, GIGYF2, KHK, KIAA0513, LZIC, SLC2A11, SYT17 |
Nursed females and males (3 genes) | EEF2, MIGA1, RIMS1 |
Weaned females and males (13 genes) | ABCA3, ACAP3, ATP5H, LOC100626407, LOC110261384, MAG, NEFM, PRKCZ, PTEN, SHANK1, SLC2A11, SMARCA2, WDR34 |
Group and Path ID 1 | KEGG Pathway Name | Size 2 | Enrichment Fold 3 | p-Value |
---|---|---|---|---|
Nursed Females | ||||
ssc04932 | Non-alcoholic fatty liver disease (NAFLD) | 4 | 5.15 | 0.039 |
ssc04666 | Fc gamma R-mediated phagocytosis | 3 | 7.53 | 0.056 |
ssc04144 | Endocytosis | 4 | 3.51 | 0.097 |
Nursed Males | ||||
ssc04022 | cGMP-PKG signaling pathway | 6 | 5.02 | 0.006 |
ssc04728 | Dopaminergic synapse | 5 | 5.60 | 0.011 |
ssc05031 | Amphetamine addiction | 4 | 8.26 | 0.012 |
ssc03010 | Ribosome | 5 | 4.65 | 0.021 |
ssc04020 | Calcium signaling pathway | 5 | 3.71 | 0.042 |
Weaned Males | ||||
ssc01100 | Metabolic pathways | 22 | 2.11 | 0.075 |
ssc05416 | Viral myocarditis | 5 | 8.96 | 0.103 |
ssc05332 | Graft-versus-host disease | 4 | 13.07 | 0.103 |
ssc05330 | Allograft rejection | 4 | 12.01 | 0.103 |
ssc04144 | Endocytosis | 8 | 3.78 | 0.103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Southey, B.R.; Keever-Keigher, M.R.; Rymut, H.E.; Rund, L.A.; Johnson, R.W.; Rodriguez-Zas, S.L. Disruption of Alternative Splicing in the Amygdala of Pigs Exposed to Maternal Immune Activation. Immuno 2021, 1, 499-517. https://doi.org/10.3390/immuno1040035
Southey BR, Keever-Keigher MR, Rymut HE, Rund LA, Johnson RW, Rodriguez-Zas SL. Disruption of Alternative Splicing in the Amygdala of Pigs Exposed to Maternal Immune Activation. Immuno. 2021; 1(4):499-517. https://doi.org/10.3390/immuno1040035
Chicago/Turabian StyleSouthey, Bruce R., Marissa R. Keever-Keigher, Haley E. Rymut, Laurie A. Rund, Rodney W. Johnson, and Sandra L. Rodriguez-Zas. 2021. "Disruption of Alternative Splicing in the Amygdala of Pigs Exposed to Maternal Immune Activation" Immuno 1, no. 4: 499-517. https://doi.org/10.3390/immuno1040035
APA StyleSouthey, B. R., Keever-Keigher, M. R., Rymut, H. E., Rund, L. A., Johnson, R. W., & Rodriguez-Zas, S. L. (2021). Disruption of Alternative Splicing in the Amygdala of Pigs Exposed to Maternal Immune Activation. Immuno, 1(4), 499-517. https://doi.org/10.3390/immuno1040035