CO2 Capture Using Amine-Based Solvents: Identification of Additives to Improve the Kinetics and Thermodynamics of CO2 Sorption at High-Pressure Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Amines
2.2. CO2 Sorption Tests: Experimental Equipment
2.2.1. Non-Stirred Reactor
2.2.2. Stirred Reactor
2.2.3. Experimental Setup
2.3. CO2 Sorption Testing Protocols
2.4. Data Processing
2.5. Corrosion Potential Testing Protocol
3. Results and Discussion
3.1. CO2 Sorption Using Non-Stirred Equipment
3.2. CO2 Sorption Using Stirred Equipment
3.3. Corrosion Potential Tests
4. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, H.; Awosusi, A.A.; Dagar, V.; Zhu, G.; Abbas, S. Unleashing the Asymmetric Effect of Natural Resources Abundance on Carbon Emissions in Regional Comprehensive Economic Partnership: What Role Do Economic Globalization and Disaggregating Energy Play? Resour. Policy 2023, 85, 103914. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; Davis, S.; Ciais, P. Monitoring Global Carbon Emissions in 2022. Nat. Rev. Earth Environ. 2023, 4, 205–206. [Google Scholar] [CrossRef]
- Mohan, C.; Robinson, J.; Vodwal, L.; Kumari, N. Sustainable Development Goals for Addressing Environmental Challenges. In Green Chemistry Approaches to Environmental Sustainability; Elsevier: Amsterdam, The Netherlands, 2024; pp. 357–374. [Google Scholar]
- Rahman, M.M.; Ahmed, R.; Mashud, A.H.M.; Malik, A.I.; Miah, S.; Abedin, M.Z. Consumption-Based CO2 Emissions on Sustainable Development Goals of SAARC Region. Sustainability 2022, 14, 1467. [Google Scholar] [CrossRef]
- Ekemezie, I.O.; Digitemie, W.N. Carbon Capture and Utilization (CCU): A Review of Emerging Applications and Challenges. Eng. Sci. Technol. J. 2024, 5, 949–961. [Google Scholar] [CrossRef]
- Abbas, Q.; HongXing, Y.; Ramzan, M.; Fatima, S. BRICS and the Climate Challenge: Navigating the Role of Factor Productivity and Institutional Quality in CO2 Emissions. Environ. Sci. Pollut. Res. 2023, 31, 4348–4364. [Google Scholar] [CrossRef]
- Leonzio, G.; Shah, N. Recent Advancements and Challenges in Carbon Capture, Utilization and Storage. Curr. Opin. Green Sustain. Chem. 2024, 46, 100895. [Google Scholar] [CrossRef]
- Liu, H.; Lu, H.; Hu, H. CO2 Capture and Mineral Storage: State of the Art and Future Challenges. Renew. Sustain. Energy Rev. 2024, 189, 113908. [Google Scholar] [CrossRef]
- Pradhan, R.P.; Nair, M.S.; Hall, J.H.; Bennett, S.E. Planetary Health Issues in the Developing World: Dynamics between Transportation Systems, Sustainable Economic Development, and CO2 Emissions. J. Clean. Prod. 2024, 449, 140842. [Google Scholar] [CrossRef]
- Yagmur Goren, A.; Erdemir, D.; Dincer, I. Comprehensive Review and Assessment of Carbon Capturing Methods and Technologies: An Environmental Research. Environ. Res. 2024, 240, 117503. [Google Scholar] [CrossRef]
- Ibigbami, O.A.; Onilearo, O.D.; Akinyeye, R.O. Post-combustion Capture and Other Carbon Capture and Sequestration (CCS) Technologies: A Review. Environ. Qual. Manag. 2024, 34, e22180. [Google Scholar] [CrossRef]
- Esiri, A.E.; Jambol, D.D.; Ozowe, C. Best Practices and Innovations in Carbon Capture and Storage (CCS) for Effective CO2 Storage. Int. J. Appl. Res. Soc. Sci. 2024, 6, 1227–1243. [Google Scholar] [CrossRef]
- Bukar, A.M.; Asif, M. Technology Readiness Level Assessment of Carbon Capture and Storage Technologies. Renew. Sustain. Energy Rev. 2024, 200, 114578. [Google Scholar] [CrossRef]
- Raganati, F.; Ammendola, P. CO2 Post-Combustion Capture: A Critical Review of Current Technologies and Future Directions. Energy Fuels 2024, 38, 13858–13905. [Google Scholar] [CrossRef]
- Ampomah, W.; Morgan, A.; Koranteng, D.O.; Nyamekye, W.I. CCUS Perspectives: Assessing Historical Contexts, Current Realities, and Future Prospects. Energies 2024, 17, 4248. [Google Scholar] [CrossRef]
- El Hadri, N.; Quang, D.V.; Goetheer, E.L.V.; Abu Zahra, M.R.M. Aqueous Amine Solution Characterization for Post-Combustion CO2 Capture Process. Appl. Energy 2017, 185, 1433–1449. [Google Scholar] [CrossRef]
- Madejski, P.; Chmiel, K.; Subramanian, N.; Kuś, T. Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies. Energies 2022, 15, 887. [Google Scholar] [CrossRef]
- Soo, X.Y.D.; Lee, J.J.C.; Wu, W.-Y.; Tao, L.; Wang, C.; Zhu, Q.; Bu, J. Advancements in CO2 Capture by Absorption and Adsorption: A Comprehensive Review. J. CO2 Util. 2024, 81, 102727. [Google Scholar] [CrossRef]
- Hekmatmehr, H.; Esmaeili, A.; Pourmahdi, M.; Atashrouz, S.; Abedi, A.; Ali Abuswer, M.; Nedeljkovic, D.; Latifi, M.; Farag, S.; Mohaddespour, A. Carbon Capture Technologies: A Review on Technology Readiness Level. Fuel 2024, 363, 130898. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, Y.; Wang, L.; Chen, J.; Lu, Y. Phase Change Solvents for Post-Combustion CO2 Capture: Principle, Advances, and Challenges. Appl. Energy 2019, 239, 876–897. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Z.; Pan, Z.; González-Arias, J.; Shang, L.; Wang, Y.; Zhang, Z. Advances in Life Cycle Assessment of Chemical Absorption-Based Carbon Capture Technologies. Sep. Purif. Technol. 2024, 346, 127252. [Google Scholar] [CrossRef]
- Bernhardsen, I.M.; Knuutila, H.K. A Review of Potential Amine Solvents for CO 2 Absorption Process: Absorption Capacity, Cyclic Capacity and PKa. Int. J. Greenh. Gas Control 2017, 61, 27–48. [Google Scholar] [CrossRef]
- Sibhat, M.; Zhu, Q.; Tsegay, G.; Yao, G.; Yin, G.; Zhou, Y.; Zhao, J. Enhancement Technologies of Ammonia-Based Carbon Capture: A Review of Developments and Challenges. Int. J. Greenh. Gas Control 2024, 136, 104196. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, J.; Qian, J.; Zhang, X.; Liu, Z. Review of Research Progress and Stability Studies of Amine-Based Biphasic Absorbents for CO2 Capture. J. Ind. Eng. Chem. 2024, 134, 28–50. [Google Scholar] [CrossRef]
- Du, J.; Yang, W.; Xu, L.; Bei, L.; Lei, S.; Li, W.; Liu, H.; Wang, B.; Sun, L. Review on Post-Combustion CO2 Capture by Amine Blended Solvents and Aqueous Ammonia. Chem. Eng. J. 2024, 488, 150954. [Google Scholar] [CrossRef]
- Faisal Elmobarak, W.; Almomani, F.; Tawalbeh, M.; Al-Othman, A.; Martis, R.; Rasool, K. Current Status of CO2 Capture with Ionic Liquids: Development and Progress. Fuel 2023, 344, 128102. [Google Scholar] [CrossRef]
- Svendsen, H.F.; Hessen, E.T.; Mejdell, T. Carbon Dioxide Capture by Absorption, Challenges and Possibilities. Chem. Eng. J. 2011, 171, 718–724. [Google Scholar] [CrossRef]
- Ochedi, F.O.; Yu, J.; Yu, H.; Liu, Y.; Hussain, A. Carbon Dioxide Capture Using Liquid Absorption Methods: A Review. Environ. Chem. Lett. 2021, 19, 77–109. [Google Scholar] [CrossRef]
- Huang, Z.; Jin, X.; Zhao, X.; Meng, F.; Yin, A. Industrial Test of Post Combustion CO2 Capture by Reactive Absorption with Two New Solvents in Natural Gas Power Plant. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2024; Volume 520, p. 02024. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, J.; Mumford, K.; Stevens, G.W.; Fei, W.; Wang, Y. Recent Advances in Carbon Dioxide Capture and Utilization with Amines and Ionic Liquids. Green Chem. Eng. 2020, 1, 16–32. [Google Scholar] [CrossRef]
- Ye, Q.; Zhu, L.; Wang, X.; Lu, Y. On the Mechanisms of CO2 Absorption and Desorption with Phase Transitional Solvents. Int. J. Greenh. Gas Control 2017, 56, 278–288. [Google Scholar] [CrossRef]
- Sadeghalvad, B.; Ebrahimi, H.; Khorshidi, N.; Azadmehr, A. CO2 Capture by Absorption. In Emerging Carbon Capture Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 33–61. [Google Scholar]
- Zhao, Y.; Xiang, S.; Du, J.; Meng, Q.; Chen, J.; Gao, M.; Xing, B.; Liu, Q.; Zhang, L. Computer-Aided Amine Solvent Design for Carbon Capture Based on Desorption Thermodynamic and Reaction Kinetic Models. Sep. Purif. Technol. 2025, 360, 130984. [Google Scholar] [CrossRef]
- Loachamin, D.; Casierra, J.; Calva, V.; Palma-Cando, A.; Ávila, E.E.; Ricaurte, M. Amine-Based Solvents and Additives to Improve the CO2 Capture Processes: A Review. ChemEngineering 2024, 8, 129. [Google Scholar] [CrossRef]
- Isdahl, O.M.; Shamshiri, S. Pilot-Scale Demonstration of New Compact CO2-Capture Technology at Elevated Pressures, and Design of Large-Scale Demonstration. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 8 May 2024. [Google Scholar]
- Fu, L.; Ren, Z.; Si, W.; Ma, Q.; Huang, W.; Liao, K.; Huang, Z.; Wang, Y.; Li, J.; Xu, P. Research Progress on CO2 Capture and Utilization Technology. J. CO2 Util. 2022, 66, 102260. [Google Scholar] [CrossRef]
- Yao, X.; Yuan, X.; Yu, S.; Lei, M. Economic Feasibility Analysis of Carbon Capture Technology in Steelworks Based on System Dynamics. J. Clean. Prod. 2021, 322, 129046. [Google Scholar] [CrossRef]
- Villarroel, J.A.; Palma-Cando, A.; Viloria, A.; Ricaurte, M. Kinetic and Thermodynamic Analysis of High-Pressure CO2 Capture Using Ethylenediamine: Experimental Study and Modeling. Energies 2021, 14, 6822. [Google Scholar] [CrossRef]
- Alalaiwat, D.; Khan, E. Post-Combustion Carbon Capture Process Modeling, Simulation, and Assessment of Synergistic Effect of Solvents. Int. J. Greenh. Gas Control 2024, 135, 104145. [Google Scholar] [CrossRef]
- Parr Instruments Co. Series 4790 Pressure Vessel Systems, 25–100 mL. Available online: https://www.parrinst.com/products/non-stirred-pressure-vessels/series-4790/ (accessed on 22 September 2024).
- Parr Instruments Co. Series 5100 Glass Reactors, 160–1500 mL. 2024. Available online: https://www.parrinst.com/products/stirred-reactors/series-5100-glass-reactors/ (accessed on 22 September 2024).
- Mostoufi, N.; Constantinides, A. Applied Numerical Methods for Chemical Engineers, 1st ed.; Academic Press: London, UK, 2023; ISBN 9780128229613. [Google Scholar]
- Guo, Y.; Wei, L.; Wen, Z.; Qi, C.; Jiang, H. Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Phys.-Chim. Sin. 2024, 40, 2307004. [Google Scholar] [CrossRef]
- Lv, B.; Guo, B.; Zhou, Z.; Jing, G. Mechanisms of CO2 Capture into Monoethanolamine Solution with Different CO2 Loading during the Absorption/Desorption Processes. Environ. Sci. Technol. 2015, 49, 10728–10735. [Google Scholar] [CrossRef]
- Nakao, S.; Yogo, K.; Goto, K.; Kai, T.; Yamada, H. Advanced CO2 Capture Technologies; SpringerBriefs in Energy; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-18857-3. [Google Scholar]
- Cieslarova, Z.; dos Santos, V.B.; do Lago, C.L. Both Carbamates and Monoalkyl Carbonates Are Involved in Carbon Dioxide Capture by Alkanolamines. Int. J. Greenh. Gas Control 2018, 76, 142–149. [Google Scholar] [CrossRef]
- Santos, S.; Gomes, J.; Bordado, J. Scale-Up Effects of CO2 Capture by Methyldiethanolamine (MDEA) Solutions in Terms of Loading Capacity. Technologies 2016, 4, 19. [Google Scholar] [CrossRef]
- Khoshraftar, Z.; Ghaemi, A.; Mohseni Sigaroodi, A.H. The Effect of Solid Adsorbents in Triethanolamine (TEA) Solution for Enhanced CO2 Absorption Rate. Res. Chem. Intermed. 2021, 47, 4349–4368. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, K.; Liang, Z.; Yang, Z.; Rongwong, W.; Na, Y. Experimental Studies of Regeneration Heat Duty for CO2 Desorption from Aqueous DETA Solution in a Randomly Packed Column. Energy Procedia 2014, 63, 1497–1503. [Google Scholar] [CrossRef]
- Kim, Y.E.; Moon, S.J.; Yoon, Y.I.; Jeong, S.K.; Park, K.T.; Bae, S.T.; Nam, S.C. Heat of Absorption and Absorption Capacity of CO2 in Aqueous Solutions of Amine Containing Multiple Amino Groups. Sep. Purif. Technol. 2014, 122, 112–118. [Google Scholar] [CrossRef]
- Raznahan, M.M.; Riahi, S.; Mousavi, S.H. A Simple, Robust and Efficient Structural Model to Predict CO2 Absorption for Different Amine Solutions: Concern to Design New Amine Compounds. J. Environ. Chem. Eng. 2020, 8, 104572. [Google Scholar] [CrossRef]
- Khaled, F.; Hamad, E.; Traver, M.; Kalamaras, C. Amine-Based CO2 Capture on-Board of Marine Ships: A Comparison between MEA and MDEA/PZ Aqueous Solvents. Int. J. Greenh. Gas Control 2024, 135, 104168. [Google Scholar] [CrossRef]
- Jiang, K.; Li, K.; Yu, H.; Feron, P.H.M. Piperazine-Promoted Aqueous-Ammonia-Based CO2 Capture: Process Optimisation and Modification. Chem. Eng. J. 2018, 347, 334–342. [Google Scholar] [CrossRef]
- Li, L.; Conway, W.; Puxty, G.; Burns, R.; Clifford, S.; Maeder, M.; Yu, H. The Effect of Piperazine (PZ) on CO2 Absorption Kinetics into Aqueous Ammonia Solutions at 25.0 °C. Int. J. Greenh. Gas Control 2015, 36, 135–143. [Google Scholar] [CrossRef]
- Li, S.; Li, H.; Yu, Y.; Chen, J. Simulation and Performance Comparison for CO2 Capture by Aqueous Solvents of N-(2-Hydroxyethyl) Piperazine and Another Five Single Amines. Processes 2021, 9, 2184. [Google Scholar] [CrossRef]
- Fleury, E.; Kittel, J.; Vuillemin, B.; Oltra, R.; Ropital, F. Corrosion in Amine Solvents Used for the Removal of Acid Gases. In Proceedings of the Eurocorr 2008, Edimburgh, UK, 7–11 September 2008. [Google Scholar]
- Gunasekaran, P.; Veawab, A.; Aroonwilas, A. Corrosivity of Amine-Based Absorbents for CO2 Capture. Energy Procedia 2017, 114, 2047–2054. [Google Scholar] [CrossRef]
Amine | Abbreviation | CAS Number | Molecule Structure | Purity (%) |
---|---|---|---|---|
Methyldiethanolamine | MDEA | 105-59-9 | >99 | |
Triethanolamine | TEA | 102-71-6 | >99 | |
Diethylenetriamine | DETA | 111-40-0 | >99 | |
Monoethanolamine | MEA | 141-43-5 | >98 | |
Piperazine * | PZ | 110-85-0 | >99 |
Solution | dn/dt (mmol/min) | t10 (min) | t25 (min) | t50 (min) | t90 (min) |
---|---|---|---|---|---|
MDEA | 0.41 | 4.50 | 36.17 | 123.83 | 557.70 |
DETA | 0.34 | 2.17 | 53.17 | 217.50 | 842.83 |
TEA | 0.37 | 2.17 | 20.17 | 63.50 | 293.17 |
MEA | 0.55 | 0.17 | 17.50 | 84.50 | 541.17 |
MDEA + PZ | 0.33 | 4.50 | 36.17 | 123.83 | 557.50 |
DETA + PZ | 0.18 | 21.83 | 89.83 | 334.83 | 1043.83 |
TE + PZ | 0.35 | 3.50 | 26.17 | 83.17 | 399.83 |
MEA + PZ | 0.26 | 3.17 | 36.50 | 147.17 | 691.17 |
Pure water | 0.13 | 0.08 | 0.50 | 31.50 | 140.50 |
Solution | Amine | CO2 Removed (mmol) | CO2 Loading (mmol/mmol Amine) | |
---|---|---|---|---|
(mmol) | This Study | Referential Data | ||
MDEA | 104.53 | 93.859 | 0.898 | (0.90–1.00) [47] |
TEA | 90.41 | 69.994 | 0.774 | (0.57–1.18) [48] |
DETA | 111.08 | 102.188 | 0.920 | (0.66–1.03) [49] |
MEA | 198.88 | 92.489 | 0.465 | (0.23–0.56) [31,50,51] |
MDEA + PZ | 122.61 | 92.631 | 0.756 | (0.19–0.49) * [39,52] |
TEA + PZ | 109.98 | 75.450 | 0.686 | - |
DETA + PZ | 127.71 | 80.921 | 0.634 | - |
MEA + PZ | 216.51 | 85.278 | 0.394 | - |
Pure water | - | 22.023 | 0.013 | 0.0128 [38] |
Solution | dn/dt (mmol/min) | t10 (min) | t25 (min) | t50 (min) | t90 (min) |
---|---|---|---|---|---|
MDEA | 2.33 | 10.83 | 52.50 | 145.83 | 468.17 |
DETA | 1.05 | 0.50 | 7.83 | 130.5 | 514.69 |
MEA | 1.46 | 3.17 | 45.83 | 174.17 | 514.61 |
MDEA + PZ | 1.65 | 4.50 | 60.50 | 193.83 | 658.17 |
DETA + PZ | 1.63 | 0.50 | 6.17 | 30.50 | 543.81 |
MEA + PZ | 2.59 | 0.17 | 3.83 | 40.83 | 404.50 |
Solution | Amine | CO2 Removed (mmol) | CO2 Loading (mmol/mmol Amine) | |
---|---|---|---|---|
(mmol) | This Study | Referential Data | ||
MDEA | 871.08 | 686.700 | 0.788 | (0.9–1.0) [47] |
DETA | 925.66 | 467.644 | 0.505 | (0.66–1.03) [49] |
MEA | 1657.33 | 571.037 | 0.345 | (0.232–0.56) [31,50,51] |
MDEA + PZ | 1021.71 | 685.979 | 0.671 | (0.19–0.49) * [39,52] |
DETA + PZ | 1064.25 | 645.423 | 0.606 | - |
MEA + PZ | 1804.24. | 621.952 | 0.345 | - |
Solution | Initial Mass (g) | Final Mass (g) | Corrosion Rate × 103 (g/month) |
---|---|---|---|
DETA | 4.051 | 4.035 | 4.00 |
MEA | 3.929 | 3.920 | 2.25 |
MDEA + PZ | 4.173 | 4.150 | 5.75 |
DETA + PZ | 4.195 | 4.184 | 2.75 |
MEA + PZ | 3.910 | 3.858 | 13.00 |
Environmental | 3.868 | 3.862 | 1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calva, V.; Játiva, N.; Ricaurte, M. CO2 Capture Using Amine-Based Solvents: Identification of Additives to Improve the Kinetics and Thermodynamics of CO2 Sorption at High-Pressure Conditions. Gases 2025, 5, 4. https://doi.org/10.3390/gases5010004
Calva V, Játiva N, Ricaurte M. CO2 Capture Using Amine-Based Solvents: Identification of Additives to Improve the Kinetics and Thermodynamics of CO2 Sorption at High-Pressure Conditions. Gases. 2025; 5(1):4. https://doi.org/10.3390/gases5010004
Chicago/Turabian StyleCalva, Verónica, Nelson Játiva, and Marvin Ricaurte. 2025. "CO2 Capture Using Amine-Based Solvents: Identification of Additives to Improve the Kinetics and Thermodynamics of CO2 Sorption at High-Pressure Conditions" Gases 5, no. 1: 4. https://doi.org/10.3390/gases5010004
APA StyleCalva, V., Játiva, N., & Ricaurte, M. (2025). CO2 Capture Using Amine-Based Solvents: Identification of Additives to Improve the Kinetics and Thermodynamics of CO2 Sorption at High-Pressure Conditions. Gases, 5(1), 4. https://doi.org/10.3390/gases5010004