Fatty Acid Profiles in Managed Care Green and Kemp’s Ridley Turtles over Time
Abstract
:1. Introduction
2. Materials and Methods
3. Diet
4. Statistical Analysis
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seminoff, J.A.; Southwest Fisheries Science Center, US. Chelonia mydas. The IUCN Red List of Threatened Species. 2004. Available online: https://doi.org/10.2305/IUCN.UK.2004.RLTS.T4615A11037468.en (accessed on 22 September 2022).
- Wibbels, T.; Bevan, E. Lepidochelys kempii (errata version published in 2019). The IUCN Red List of Threatened Species. 2019. Available online: https://doi.org/10.2305/IUCN.UK.2019-2.RLTS.T11533A155057916.en (accessed on 22 September 2022).
- Erlacher-Reid, C.D.; Norton, T.M.; Thompson, R.; Reese, D.J.; Walsh, M.T.; Stamper, M.A. Intestinal and cloacal strictures in free-ranging and aquarium-maintained green sea turtles (Chelonia mydas). J. Zoo Wild. Med. 2013, 44, 408–429. [Google Scholar] [CrossRef] [PubMed]
- Innis, C.J.; Finn, S.; Kennedy, A.; Burgess, E.; Norton, T.; Manire, C.A.; Harms, C. A summary of sea turtles released from rescue and rehabilitation programs in the United States, with observations on re-encounters. Chel. Cons. Biol. 2019, 18, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Koutsos, E.A.; Minter, L.J.; Ange-van Heugten, K.D.; Mejia-Fava, J.C.; Harms, C.A. Blood fatty acid profiles of neritic juvenile wild green turtles (Chelonia mydas) and Kemp’s Ridleys (Lepidochelys kempii). J. Zoo Wild. Med. 2021, 52, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, K. Fatty acids as modulators of the immune response. Ann. Rev. Nutr. 2006, 26, 45–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, T.T.; Seminoff, J.A. Feeding Biology. In The Biology of Sea Turtles; CRC Press: Boca Raton, FL, USA, 2013; Volume III, pp. 211–248. [Google Scholar]
- Armstrong, J.M.; Metherel, A.H.; Stark, K.D. Direct microwave transesterification of fingertip prick blood samples for fatty acid determinations. Lipids 2008, 43, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Bailey-Hall, E.; Nelson, E.B.; Ryan, A.S. Validation of a rapid measure of blood pufa levels in humans. Lipids 2007, 43, 181–186. [Google Scholar] [CrossRef]
- Dass, K.; Koutsos, E.; Minter, L.J.; Ange-van Heugten, K. Analysis of fatty acid profiles for eastern box (Terrapene Carolina Carolina) and common snapping (Chelydra serpentine) turtles in wild and managed care environments. J. Zoo Wild. Med. 2020, 51, 478–484. [Google Scholar] [CrossRef]
- Dass, K.; Lewbert, G.A.; Muñoz-Pérez, J.P.; Yépez, M.I.; Loyola, A.; Chen, E.; Páez-Rosas, D. Whole blood fatty acid concentrations in the San Cristóbal Galápagos tortoise (Chelonoidis chathamensis). PeerJ 2021, 9, e11582. [Google Scholar] [CrossRef]
- Wood, J.; Minter, L.J.; Bibus, D.; Tollefson, T.; Ange-van Heugten, K. Assessment of the effects of storage temperature on fatty acid analysis using dried blood spot cards collected from managed southern white rhinoceroses (Ceratotherium simum simum): Implications for field collection and nutritional care. PeerJ 2022, 10, e12896. [Google Scholar] [CrossRef]
- Wood, J.; Minter, L.J.; Bibus, D.; Stoskopf, M.; Fellner, V.; Ange-van Heugten, K. Comparison of African savanna elephant (Loxodonta africana) fatty acid profiles in whole blood, whole blood dried on blood spot cards, serum, and plasma. PeerJ 2021, 9, e12650. [Google Scholar] [CrossRef]
- Dannemiller, N.G.; Christiansen, E.F.; Harms, C.A.; Minter, L.J.; Ange-van Heugten, K.D. Comparison of whole blood fatty acid profiles between lionfish (Pterois spp.) in wild and managed care environments. J. Zool. Bot. Gard. 2022, 3, 357–365. [Google Scholar] [CrossRef]
- Witt, M.L.; Minter, L.J.; Tollefson, T.N.; Ridgley, F.; Treiber, K.; Smith, D.; Bibus, D.; Scott, H.; Ange-van Heugten, K. Analysis of circulating fatty acid profiles in free-ranging and managed care marine toads (Rhinella marina) with a comparison of whole-blood vial and whole-blood dried blood spot card analyses. J. Zool. Bot. Gard. 2022, 3, 300–315. [Google Scholar] [CrossRef]
- Atland, P.D.; Brace, K.C. Red cell life span in the turtle and toad. Am. J. Physi. Cont. 1962, 203, 1188–1190. [Google Scholar] [CrossRef] [Green Version]
- Fenton, J.I.; Gurzell, E.A.; Davidson, E.A.; Harris, W.S. Red blood cell PUFAs reflect the phospholipid PUFA composition of major organs. Prostaglandins Leukot. Essent. Fat. Acids 2016, 112, 12–23. [Google Scholar] [CrossRef]
- Shemin, D.; Rittenberg, D. The life span of the human red blood cell. J. Biol. Chem. 1946, 166, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Manire, C.A.; Norton, T.M.; Stacy, B.A.; Innis, C.J.; Harms, C.A.; Hoopes, L.A.; Koutsos, E.A. Nutrition. In Sea Turtle Health & Rehabilitation; J. Ross Publishing: Plantation, FL, USA, 2017; pp. 63–96. [Google Scholar]
- Nutrient Requirements of Fish. In N.R.C.; National Academies Press: Washington, DC, USA, 1993; p. 128. [Google Scholar]
- Nutrient Requirements of Fish and Shrimp. In N.R.C.; National Academies Press: Washington, DC, USA, 2011; p. 392. [Google Scholar]
- Essential Fatty Acids; Linus Pauling Institute. In Micronutrient Information Center; Jump, D.P., Ed.; Oregon State University: Corvallis, OR, USA, 2022; Available online: https://lpi.oregonstate.edu/mic/other-nutrients/essential-fatty-acids#reference36 (accessed on 22 September 2022).
- Cartland-Shaw, L.K.; Cree, A.; Skeaff, C.M.; Grimmond, N.M.G. Differences in dietary and plasma fatty ACIS between wild and captive populations of a rare reptile, the tuatara (Sphenodon punctatus). J. Comp. Phys. B Biol. Syst. Env. Phys. 1998, 168, 569–580. [Google Scholar] [CrossRef]
- Clauss, M.; Grum, C.; Hatt, J. Fatty acid status of captive wild animal; a review. Zool. Garten. 2007, 76, 382–401. [Google Scholar] [CrossRef]
- Joseph, J.D.; Ackman, R.G.; Seaborn, G.T. Effect of diet on depot fatty acid composition in the green turtle Chelonia Mydas. Comp. Biol. Phys. Part B Comp. Biol. 1985, 80, 15–22. [Google Scholar] [CrossRef]
- Samee, S.M.; Mantieghi, N.; Estevez, A. Zebrafish as a model to screen the potential fatty acids in reproduction. Zebrafish 2019, 16, 47–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Nutrition Board (FNB); Institute of Medicine. Dietary Fats: Total Fat and Fatty Acids. In Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academies Press: Washington, DC, USA, 2002; pp. 422–541. [Google Scholar]
- Morris, J.G. Do cats need arachidonic acid in the diet for reproduction? J. Anim. Physiol. Anim. Nutr. 2004, 88, 131–137. [Google Scholar] [CrossRef]
- Asadpour, Y.A. Squid (Loligo loligo): The new source to extract omega-3 and omega-6 rich marine oils. Ir. J. Fish. Sci. 2016, 15, 100–107. [Google Scholar]
- Parker, D.; Dutton, P.H.; Balazs, G.H. Oceanic diet and distribution of haplotypes for the green turtle, Chelonia mydas, in the central North Pacific. Pac. Sci. 2011, 64, 419–431. [Google Scholar] [CrossRef] [Green Version]
- Arthur, K.E.; Limpus, C.J.; Whittier, J.M. Baseline blood biochemistry of Australian green turtles (Chelonia mydas) and effects of exposure to the toxic cyanobacterium Lyngbya Majuscula. Aust. J. Zool. 2008, 56, 23–32. [Google Scholar] [CrossRef]
- Salmon, M.; Jones, T.T.; Horch, K.W. Ontogeny of diving and feeding behavior in juvenile sea turtles: Leatherback sea turtles (Dermochelys coriacea) and green sea turtles (Chelonia mydas) in the Florida current. J. Herp. 2004, 38, 36–43. [Google Scholar] [CrossRef]
- Reich, K.J.; Bjornal, K.A.; Bolten, A.B. The ‘lost years’ of green turtles: Using stable isotopes to study cryptic life stages. Biol. Lett. 2007, 3, 712–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyle, M.C.; Limpus, C.J. The stomach contents of post-hatchling green and loggerhead sea turtles in the southwest Pacific: An insight into habitat association. Mar. Biol. 2008, 155, 233–241. [Google Scholar] [CrossRef]
- Burke, V.J.; Morreale, S.J.; Standora, E.A. Diet of the Kemp’s ridley sea turtle, Lepidochelys kempii, in New York waters. Fish. Bull. 1994, 92, 26–32. [Google Scholar]
- Seney, E.E.; Musick, J.A. Diet analysis of Kemp’s ridley sea turtles (Lepidochelys kempii) in Virginia. Chel. Cons. Biol. 2005, 4, 864–871. [Google Scholar]
- Servis, J.A.; Lovewell, G.; Tucker, A.D. Diet analysis of subadult Kemp’s ridley (Lepidochelys kempii) turtles from West-Central Florida. Chel. Cons. Biol. 2015, 14, 173–181. [Google Scholar] [CrossRef]
- Shaver, D.J. Feeding ecology of wild and head-started Kemp’s ridley sea turtles in South Texas waters. J. Herp. 1991, 25, 327–334. [Google Scholar] [CrossRef]
- Volpe, J.J.; Vagelos, P.R. Mechanisms and regulation of biosynthesis of saturated fatty acids. Phys. Rev. 1976, 56, 339–417. [Google Scholar] [CrossRef] [PubMed]
- Perry, G.J.; Volkman, J.P.; Johns, R.B.; Bavor, H.J. Fatty acids of bacterial origin in contemporary marine sediments. Geo. Cos. Acta 1979, 43, 1715–1725. [Google Scholar] [CrossRef]
- McCulloch, S.D.; Karoly, E.D.; Mitchell, M.W.; Evans, A.M.; Goodman, K. Stability of metabolite profiles using dried blood spot cards. Metabolon. 2021. 1–5. Available online: https://www.metabolon.com/wp-content/uploads/2022/01/Metabolon-Stability-of-metabolite-profiles-using-dried-blood-spot-cards.pdf (accessed on 28 October 2022).
Green Turtles (2017) | Kemp’s Ridleys (2017) | |||
---|---|---|---|---|
Median | Range | Median | Range | |
Weight (kg) | 3.6 | 2.7–5.1 | 3.8 | 3.0–29.8 |
SCL-N (cm) 1 | 32.6 | 28.1–33.6 | 30.2 | 27.0–53.2 |
Days in Captivity Prior to Sampling | 147 | 91–462 | 943 | 104–3862 |
Green turtles (2021) | Kemp’s ridleys (2021) | |||
Median | Range | Median | Range | |
Weight (kg) | 7.7 | 3.2–12.4 | 10.2 | 5.7–25.0 |
SCL-N (cm) 1 | 38.5 | 27.2–42.7 | 38.8 | 31.9–54.5 |
Days in Captivity Prior to Sampling | 304 | 73–428 | 339 | 108–1164 |
Rehab Sea Turtle Fatty Acid Profiles by Species | p-Value # by Species in Rehab | Published Wild Sea Turtle Fatty Acid Profiles by Species | ||||
---|---|---|---|---|---|---|
Individual Fatty Acids * | ||||||
Number | Common Name | GST (n = 14) | KR (n = 10) | GST (n = 9) | KR (n = 8) | |
14:0 | Myristic acid | 8.3 ± 0.58 | 10.1 ± 0.69 | 0.0674 | 4.22 ± 0.50 | 4.98 ± 0.41 |
14:1 | Myristoleic acid | 0.6 ± 0.14 | 1.0 ± 0.17 | 0.1569 | ND | ND |
15:0 | Pentadecylic acid | 0.5 ± 0.03 | 0.6 ± 0.04 | 0.3365 | ND | ND |
16:0 | Palmitic acid | 18.5 ± 0.69 | 21.1 ± 0.82 | 0.0244 | 17.4 ± 0.59 | 16.9 ± 0.37 |
16:1n7 | Palmitoleic acid | 15.5 ± 0.66 | 18.3 ± 0.78 | 0.0132 | 5.4 ± 0.46 | 12.0 ± 0.56 |
17:0 | Margaric acid | ND | ND | - | 0.4 ± 0.12 | 0.9 ± 0.06 |
17:1n7 | Heptadecenoic acid | ND | ND | - | 0.8 ± 0.20 | 2.6 ± 0.25 |
18:0 | Stearic acid | 5.3 ± 0.32 | 4.9 ± 0.37 | 0.4775 | 10.9 ± 0.25 | 8.5 ± 0.37 |
18:1n7 | Vaccenic acid | 2.9 ± 0.19 | 2.8 ± 0.22 | 0.9436 | 2.2 ± 0.69 | 3.8 ± 0.54 |
18:1n9 | Oleic acid | 17.6 ± 1.17 | 18.9 ± 1.39 | 0.4832 | 28.3 ± 1.24 | 23.6 ± 0.73 |
18:2n6 | Linoleic acid | 2.9 ± 0.34 | 1.8 ± 0.40 | 0.0532 | 4.9 ± 0.51 | 3.2 ± 0.14 |
18:3n6 | γ-Linoleic acid | 0.2 ± 0.02 | 0.2 ± 0.02 | 0.3314 | 0.1 ± 0.03 | 0.1 ± 0.01 |
18:3n3 | α-Linolenic acid | 0.9 ± 0.10 | 0.4 ± 0.11 | 0.0024 | 1.5 ± 0.47 | 0.6 ± 0.06 |
18:4n3 | Stearidonic acid | 0.3 ± 0.03 | 0.2 ± 0.03 | 0.0054 | NR | NR |
20:0 | Arachidic acid | 0.2 ± 0.02 | 0.2 ± 0.02 | 0.7543 | 0.1 ± 0.03 | 0.2 ± 0.03 |
20:1n7 | Paullinic acid | 7.1 ± 0.46 | 4.0 ± 0.55 | 0.0003 | 0.5 ± 0.11 | 0.6 ± 0.04 |
20:1n9 | Gondoic acid | ND | ND | - | 0.06 ± 0.02 | 0.1 ± 0.02 |
20:2n6 | Eicosadienoic acid | 0.1 ± 0.01 | 0.2 ± 0.02 | 0.0189 | 0.1 ± 0.04 | 0.4 ± 0.02 |
20:3n3 | Eicosatrienoic acid | 0.02 ± 0.01 | 0.16 ± 0.02 | <0.0001 | 0.1 ± 0.02 | 0.1 ± 0.02 |
20:3n9 | Mead acid | 0.01 ± 0.006 | 0.04 ± 0.007 | 0.0020 | 0.5 ± 0.26 | 0.0 ± 0.02 |
20:3n6 | Dihomo-γ-Linoleic acid | 0.13 ± 0.008 | 0.09 ± 0.010 | 0.0055 | 0.6 ± 0.06 | 0.4 ± 0.02 |
20:4n6 | Arachidonic acid | 1.3 ± 0.25 | 2.3 ± 0.29 | 0.0171 | 12.8 ± 1.42 | 11.7 ± 0.50 |
20:4n3 | Eicosatetraenoic acid | 0.3 ±0.03 | 0.2 ± 0.03 | 0.2237 | 0.1 ± 0.03 | 0.1 ± 0.02 |
20:5n3 | Eicosapentaenoic acid | 6.9 ± 0.44 | 5.1 ± 0.52 | 0.0155 | 2.1 ± 0.14 | 4.0 ± 0.31 |
22:0 | Behenic acid | 0.1 ± 0.02 | 0.1 ± 0.02 | 0.4783 | 0.1 ± 0.01 | 0.2 ± 0.02 |
22:1n9 | Erucic acid | 4.0 ± 0.40 | 1.8 ± 0.47 | 0.0016 | 0.1 ± 0.02 | 0.0 ± 0.01 |
22:4n6 | Adrenic acid | 0.1 ± 0.03 | 0.2 ± 0.03 | 0.0570 | 2.1 ± 0.22 | 1.5 ± 0.07 |
22:5n6 | n6-Docosapentaenoic acid | 0.15 ± 0.04 | 0.17 ± 0.05 | 0.6935 | 0.8 ± 0.29 | 0.3 ± 0.02 |
22:5n3 | n3-Docosapentaenoic acid | 0.9 ± 0.06 | 0.5 ± 0.07 | 0.0005 | 1.9 ± 0.20 | 1.1 ± 0.07 |
22:6n3 | Docosahexanoic acid | 4.7 ± 0.40 | 4.4 ± 0.47 | 0.6854 | 1.7 ± 0.42 | 1.7 ± 0.11 |
24:0 | Lignoceric acid | 0.04 ± 0.009 | 0.03 ± 0.010 | 0.5774 | 0.0 ± 0.01 | 0.1 ± 0.01 |
24:1 | Nervonic acid | 0.4 ± 0.05 | 0.3 ± 0.06 | 0.0813 | NR | NR |
Fatty Acid Groups | ||||||
Highly Unsaturated Fatty Acids (HUFA) | 14.5 ± 0.71 | 13.2 ± 0.84 | 0.2847 | NR | NR | |
Monoenes | 48.2 ± 0.91 | 47.1 ± 1.08 | 0.4288 | NR | NR | |
Total n 6 fatty acid | 4.9 ± 0.46 | 4.9 ± 0.55 | 0.9801 | 21.4 ± 1.75 | 17.6 ± 0.63 | |
Total n 3 fatty acids | 13.9 ± 0.71 | 11.0 ± 0.85 | 0.0147 | 7.4 ± 0.67 | 7.6 ± 0.53 | |
n-3: n-6 Fatty acid ratio | 0.4 ± 0.08 | 0.6 ± 0.09 | 0.1619 | 0.38 | 0.44 | |
Poly Unsaturated Fatty Acids (PUFA) | 18.8 ± 0.73 | 15.9 ± 0.87 | 0.0187 | NR | NR | |
Saturates | 33.0 ± 0.84 | 37.0 ± 0.99 | 0.0056 | 33.2 ± 0.64 | 31.5 ± 1.78 |
Green Sea Turtle (GST) DATA | Kemp’s Ridley (KR) DATA | |||||
---|---|---|---|---|---|---|
Individual Fatty Acids * | ||||||
Fatty Acid | Common Name | GST New (n = 7) | GST Old (n = 7) | KR New (n = 5) | KR Old (n = 5) | Time Main Effect p-Values # |
14:0 | Myristic acid | 8.7 ± 0.82 | 8.0 ± 0.82 | 10.4 ± 0.97 | 9.7 ± 0.97 | 0.4480 |
14:1 | Myristoleic acid | 0.39 ± 0.202 | 0.93 ± 0.202 | 1.15 ± 0.239 | 0.82 ± 0.239 | 0.6174 |
15:0 | Pentadecylic acid | 0.41 ± 0.046 | 0.64 ± 0.046 | 0.51 ± 0.054 | 0.64 ± 0.054 | 0.0020 |
16:0 | Palmitic acid | 18.7 ± 0.98 | 18.4 ± 0.98 | 22.2 ± 1.15 | 20.1 ± 1.15 | 0.3011 |
16:1n7 | Palmitoleic acid | 14.5 ± 0.93 | 16.5 ± 0.93 | 18.9 ± 1.10 | 17.7 ± 1.10 | 0.6986 |
18:0 | Stearic acid | 5.1 ± 0.45 | 5.4 ± 0.45 | 4.8 ± 0.53 | 5.0 ± 0.53 | 0.6695 |
18:1n7 | Vaccenic acid | 2.3 ± 0.26 | 3.4 ± 0.26 | 2.1 ± 0.31 | 3.6 ± 0.31 | 0.0002 |
18:1n9 | Oleic acid | 19.1 ± 1.66 | 16.2 ± 1.66 | 18.2 ± 1.97 | 19.7 ± 1.97 | 0.7041 |
18:2n6 | Linoleic acid | 2.8 ± 0.47 | 3.0 ± 0.47 | 1.4 ± 0.56 | 2.2 ± 0.56 | 0.3762 |
18:3n6 | γ-Linoleic acid | 0.18 ± 0.025 | 0.20 ± 0.025 | 0.16 ± 0.030 | 0.16 ± 0.030 | 0.6966 |
18:3n3 | α-Linolenic acid | 0.91 ± 0.136 | 0.81 ± 0.136 | 0.41 ± 0.161 | 0.28 ± 0.161 | 0.4577 |
18:4n3 | Stearidonic acid | 0.33 ± 0.037 | 0.29 ± 0.037 | 0.13 ± 0.044 | 0.23 ± 0.044 | 0.4914 |
20:0 | Arachidic acid | 0.19 ± 0.021 | 0.22 ± 0.021 | 0.19 ± 0.025 | 0.22 ± 0.025 | 0.2568 |
20:1n7 | Paullinic acid | 5.2 ± 0.65 | 9.1 ± 0.65 | 2.7 ± 0.77 | 5.3 ± 0.77 | 0.0002 |
20:2n6 | Eicosadienoic acid | 0.11 ± 0.018 a | 0.10 ± 0.018 | 0.21 ± 0.021 | 0.11 ± 0.021 | 0.0130 |
20:3n3 | Eicosatrienoic acid | 0.03 ± 0.020 | 0.01 ± 0.020 | 0.29 ± 0.024 | 0.03 ± 0.024 | <0.0001 |
20:3n9 | Mead acid | 0.01 ± 0.009 | 0.00 ± 0.009 | 0.07 ± 0.011 | 0.01± 0.011 | 0.0010 |
20:3n6 | Dihomo-γ-Linoleic acid | 0.12 ± 0.012 | 0.13 ± 0.012 | 0.07 ± 0.014 | 0.10 ± 0.014 | 0.1781 |
20:4n6 | Arachidonic acid | 1.3 ± 0.35 | 1.3 ± 0.35 | 2.0 ± 0.41 | 2.6 ± 0.41 | 0.4704 |
20:4n3 | Eicosatetraenoic acid | 0.27 ± 0.038 | 0.25 ± 0.038 | 0.22 ± 0.045 | 0.20 ± 0.045 | 0.6490 |
20:5n3 | Eicosapentaenoic acid | 9.0 ± 0.62 | 4.8 ± 0.62 | 5.8 ± 0.73 | 4.5 ± 0.73 | 0.0005 |
22:0 | Behenic acid | 0.05 ± 0.024 | 0.16 ± 0.024 | 0.13 ± 0.029 | 0.12± 0.029 | 0.0918 |
22:1n9 | Erucic acid | 2.3 ± 0.57 | 5.7 ± 0.57 | 0.87 ± 0.67 | 2.7 ± 0.67 | 0.0004 |
22:4n6 | Adrenic acid | 0.11 ± 0.037 | 0.11 ± 0.037 | 0.209 ± 0.044 | 0.18 ± 0.044 | 0.7440 |
22:5n6 | n6-Docosapentaenoic acid | 0.14 ± 0.055 | 0.15 ± 0.055 | 0.21 ± 0.066 | 0.13 ± 0.066 | 0.5806 |
22:5n3 | n3-Docosapentaenoic acid | 1.11 ± 0.079 | 0.61 ± 0.079 | 0.60 ± 0.093 | 0.41 ± 0.093 | 0.0008 |
22:6n3 | Docosahexanoic acid | 6.4 ± 0.56 | 3.0 ± 0.56 | 6.0 ± 0.67 | 2.9 ± 0.67 | <0.0001 |
24:0 | Lignoceric acid | 0.01 ± 0.012 | 0.06 ± 0.012 | 0.03 ± 0.014 | 0.03 ± 0.014 | 0.0783 |
24:1 | Nervonic acid | 0.30 ± 0.067 | 0.51 ± 0.067 | 0.12 ± 0.079 | 0.43 ± 0.079 | 0.0020 |
Fatty Acid Groups | ||||||
Highly Unsaturated Fatty Acids (HUFA) | 18.5 ± 1.01 | 10.4 ± 1.01 | 15.4 ± 1.19 | 11.1 ± 1,19 | <0.0001 | |
Monoenes | 44.0 ± 1.28 | 52.4 ± 1.28 | 44.0 ± 1.52 | 50.1 ± 1.52 | <0.0001 | |
Total n 6 fatty acid | 4.8 ± 0.66 | 5.0 ± 0.66 | 4.3 ± 0.78 | 5.5 ± 0.78 | 0.3555 | |
Total n 3 fatty acids | 18.1 ± 1.01 | 9.8 ± 1.01 | 13.4 ± 1.20 | 8.6 ± 1.20 | <0.0001 | |
n-3:n-6 Fatty acid ratio | 0.27 ± 0.109 | 0.52 ± 0.109 | 0.33 ± 0.129 | 0.81 ± 0.129 | 0.0067 | |
Poly Unsaturated Fatty Acids (PUFA) | 22.9 ± 1.04 | 14.7 ± 1.04 | 17.8 ± 1.22 | 14.0 ± 1.22 | <0.0001 | |
Saturates | 33.1 ± 1.19 | 32.9 ± 1.19 | 38.2 ± 1.40 | 35.8 ± 1.40 | 0.3156 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, H.S.; Minter, L.J.; Harms, C.; Bibus, D.; Koutsos, L.; Ange-van Heugten, K. Fatty Acid Profiles in Managed Care Green and Kemp’s Ridley Turtles over Time. J. Zool. Bot. Gard. 2022, 3, 545-554. https://doi.org/10.3390/jzbg3040040
Jones HS, Minter LJ, Harms C, Bibus D, Koutsos L, Ange-van Heugten K. Fatty Acid Profiles in Managed Care Green and Kemp’s Ridley Turtles over Time. Journal of Zoological and Botanical Gardens. 2022; 3(4):545-554. https://doi.org/10.3390/jzbg3040040
Chicago/Turabian StyleJones, Hayley S., Larry J. Minter, Craig Harms, Doug Bibus, Liz Koutsos, and Kimberly Ange-van Heugten. 2022. "Fatty Acid Profiles in Managed Care Green and Kemp’s Ridley Turtles over Time" Journal of Zoological and Botanical Gardens 3, no. 4: 545-554. https://doi.org/10.3390/jzbg3040040
APA StyleJones, H. S., Minter, L. J., Harms, C., Bibus, D., Koutsos, L., & Ange-van Heugten, K. (2022). Fatty Acid Profiles in Managed Care Green and Kemp’s Ridley Turtles over Time. Journal of Zoological and Botanical Gardens, 3(4), 545-554. https://doi.org/10.3390/jzbg3040040