Parasitic Protozoa and Other Vector-Borne Pathogens in Captive Mammals from Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Study Area
2.3. Samples
2.4. DNA Extraction and PCR Amplification
2.5. Restriction Fragment Length Polymorphism (RFLP) Analysis—PCR for Leishmania spp.
2.6. Sequencing
2.7. Phylogenetic Analysis
2.8. Data Analysis
3. Results
Coinfections Detected
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Chen, Y.; Machalaba, C.C.; Tang, H.; Chmura, A.A.; Fielder, M.D.; Daszak, P. Wild animal and zoonotic disease risk management and regulation in China: Examining gaps and One Health opportunities in scope, mandates, and monitoring systems. One Health 2021, 13, 100301. [Google Scholar] [CrossRef] [PubMed]
- Ferdous, S.; Chowdhury, J.; Hasan, T.; Dutta, P.; Rahman, M.; Hassan, M.M.; Faruque, R.; Alim, M.A. Prevalence of gastrointestinal parasitic infections in wild mammals of a safari park and a zoo in Bangladesh. Vet. Med. Sci. 2023, 9, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Panayotova-Pencheva, M.S. Parasites in captive animals: A review of studies in some European zoos. Der Zool. Gart. 2013, 82, 60–71. [Google Scholar] [CrossRef]
- Perles, L.; Moraes, M.F.; da Silva, M.X.; Vieira, R.F.C.; Machado, R.Z.; Hoppe, E.G.L.; André, M.R. Co-infection by multiple vector-borne agents in wild ring-tailed coatis (Nasua nasua) from Iguaçu National Park, southern Brazil. Sci. Rep. 2023, 13, 1828. [Google Scholar] [CrossRef]
- Iatta, R.; Natale, A.; Ravagnan, S.; Mendoza-Roldan, J.; Zatelli, A.; Cavalera, M.A.; Nachum-Biala, Y.; Baneth, G.; Otranto, D. Zoonotic and vector-borne pathogens in tigers from a wildlife safari park, Italy. Int. J. Parasitol. Parasites Wildl. 2020, 12, 250–325. [Google Scholar] [CrossRef]
- Almazán, C.; Scimeca, R.C.; Reichard, M.V.; Mosqueda, J. Babesiosis and Theileriosis in North America. Pathogens 2022, 11, 168. [Google Scholar] [CrossRef]
- Calchi, A.C.; Vultão, J.G.; Alves, M.H.; Yogui, D.R.; Desbiez, A.L.J.; De Santi, M.; de Souza Santana, M.; Da Silva, T.M.V.; Werther, K.; Teixeira, M.M.G.; et al. Ehrlichia spp. and Anaplasma spp. in Xenarthra mammals from Brazil, with evidence of novel ‘Candidatus anaplasma spp.’. Sci. Rep. 2020, 10, 12615. [Google Scholar] [CrossRef]
- Da Silveira, J.A.G.; Moreira, S.M.; Nascimento, A.F.D.; de Oliveira, M.M.; dos Santos, H.A.; Estevam, L.G.T.d.M.; Pereira, C.R.; Oliveira, A.G.G.; D’elia, M.L.; Araujo, A.d.C.; et al. Preparing Collared Peccary (Pecari tajacu Linnaeus, 1758) for Reintroduction into the Wild: A Screening for Parasites and Hemopathogens of a Captive Population. Pathogens 2024, 13, 47. [Google Scholar] [CrossRef]
- Harms, C.A.; Maggi, R.G.; Breitschwerdt, E.B.; Clemons-Chevis, C.L.; Solangi, M.; Rotstein, D.S.; Fair, P.A.; Hansen, L.J.; Hohn, A.A.; Lovewell, G.N.; et al. Bartonella species detection in captive, stranded and free-ranging cetaceans. Vet. Res. 2008, 39, 59. [Google Scholar] [CrossRef]
- De Sousa, K.C.M.; Herrera, H.M.; Secato, C.T.; Oliveira, A.D.V.; Santos, F.M.; Rocha, F.L.; Barreto, W.T.G.; Macedo, G.C.; Pinto, P.C.E.d.A.; Machado, R.Z.; et al. Occurrence and molecular characterization of hemoplasmas in domestic dogs and wild mammals in a Brazilian wetland. Acta Trop. 2017, 171, 172–181. [Google Scholar] [CrossRef]
- Mathieu, A.; Pastor, A.R.; Berkvens, C.N.; Gara-Boivin, C.; Hébert, M.; Léveillé, A.N.; Barta, J.R.; Smith, D.A. Babesia odocoilei as a cause of mortality in captive cervids in Canada. Can. Vet. J. 2018, 59, 52–58. [Google Scholar] [PubMed]
- Luppi, M.M.; Malta, M.C.; Silva, T.M.; Silva, F.L.; Motta, R.O.; Miranda, I.; Ecco, R.; Santos, R.L. Visceral leishmaniasis in captive wild canids in Brazil. Vet. Parasitol. 2008, 155, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Fleischman, D.A.; Chomel, B.B.; Kasten, R.W.; André, M.R.; Gonçalves, L.R.; Machado, R.Z. Bartonella clarridgeiae and Bartonella vinsonii subsp. berkhoffii exposure in captive wild canids in Brazil. Epidemiol. Infect. 2015, 143, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Silveira, J.A.; Rabelo, E.M.; Ribeiro, M.F. Molecular detection of tick-borne pathogens of the family Anaplasmataceae in Brazilian brown brocket deer (Mazama gouazoubira, Fischer, 1814) and marsh deer (Blastocerus dichotomus, Illiger, 1815). Transbound. Emerg. Dis. 2012, 59, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Chomel, B.B.; Lowenstine, L.J.; Kikuchi, Y.; Phillips, L.G.; Barr, B.C.; Swift, P.K.; Jones, K.R.; Riley, S.P.D.; Kasten, R.W.; et al. Bartonella henselae antibody prevalence in free-ranging and captive wild felids from California. J. Wildl. Dis. 1998, 34, 56–63. [Google Scholar] [CrossRef]
- Millán, J.; Di Cataldo, S.; Volokhov, D.V.; Becker, D.J. Worldwide occurrence of hemoplasmas in wildlife: Insights into the patterns of infection, transmission, pathology, and zoonotic potential. Transbound. Emerg. Dis. 2020, 68, 3236–3256. [Google Scholar] [CrossRef]
- Prefeitura de Belo Horizonte; Fundação de Parques Municipais e Zoobotânica. Belo Horizonte. PBH. Available online: https://prefeitura.pbh.gov.br/fundacao-de-parques-e-zoobotanica (accessed on 15 November 2024).
- Birkenheuer, A.J.; Levy, M.G.; Breitschwerdt, E.B. Development and evaluation of a seminested PCR for detection and differentiation of Babesia gibsoni (Asian genotype) and B. canis DNA in canine blood samples. J. Clin. Microbiol. 2003, 41, 4172–4177. [Google Scholar] [CrossRef]
- Massung, R.F.; Slater, K.; Owens, J.H.; Nicholson, W.L.; Mather, T.N.; Solberg, V.B.; Olson, J.G. Nested PCR assay for detection of granulocytic ehrlichiae. J. Clin. Microbiol. 1998, 36, 1090–1095. [Google Scholar] [CrossRef]
- Kawahara, M.; Tajima, T.; Torii, H.; Yabutani, M.; Ishii, J.; Harasawa, M.; Isogai, E.; Rikihisa, Y. Ehrlichia chaffeensis infection of sika deer, Japan. Emerg. Infect. Dis. 2009, 15, 1991–1993. [Google Scholar] [CrossRef]
- De la Fuente, J.; Massung, R.F.; Wong, S.J.; Chu, F.K.; Lutz, H.; Meli, M.; von Loewenich, F.D.; Grzeszczuk, A.; Torina, A.; Caracappa, S.; et al. Sequence analysis of the msp4 gene of Anaplasma phagocytophilum strains. J. Clin. Microbiol. 2005, 43, 1309–1317. [Google Scholar] [CrossRef]
- Bown, K.J.; Lambin, X.; Ogden, N.H.; Petrovec, M.; Shaw, S.E.; Woldehiwet, Z.; Birtles, R.J. High-resolution genetic fingerprinting of European strains of Anaplasma phagocytophilum by use of multilocus variable-number tandem-repeat analysis. J. Clin. Microbiol. 2007, 45, 1771–1776. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente, J.; Ruiz-Fons, F.; Naranjo, V.; Torina, A.; Rodríguez, O.; Gortázar, C. Evidence of Anaplasma infections in European roe deer (Capreolus capreolus) from southern Spain. Res. Vet. Sci. 2008, 84, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.A.N.; Ramos, R.A.N.; Araújo, F.R.; Júnior, D.S.G.; Souza, I.I.F.; Ono, T.M.; Pimentel, D.S.; Rosas, E.O.; Faustino, M.A.G.; Alves, L.C. Comparação de nested-PCR com o diagnóstico direto na detecção de Ehrlichia canis e Anaplasma platys em cães. Rev. Bras. Parasitol. Vet. 2009, 18, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Zahler, M.; Rinder, H.; Schein, E.; Gothe, R. Detection of a new pathogenic Babesia microti-like species in dogs. Vet. Parasitol. 2000, 89, 241–248. [Google Scholar] [CrossRef]
- Silveira, J.A.; Rabelo, E.M.; Ribeiro, M.F. Detection of Theileria and Babesia in brown brocket deer (Mazama gouazoubira) and marsh deer (Blastocerus dichotomus) in the State of Minas Gerais, Brazil. Vet. Parasitol. 2011, 177, 61–66. [Google Scholar] [CrossRef]
- Birkenheuer, A.J.; Marr, H.; Alleman, A.R.; Levy, M.G.; Breitschwerdt, E.B. Development and evaluation of a PCR assay for the detection of Cytauxzoon felis DNA in feline blood samples. Vet. Parasitol. 2006, 137, 144–149. [Google Scholar] [CrossRef]
- Schönian, G.; Nasereddin, A.; Dinse, N.; Schweynoch, C.; Schallig, H.D.; Presber, W.; Jaffe, C.L. PCR diagnosis and characterization of Leishmania in local and imported clinical samples. Diagn. Microbiol. Infect. Dis. 2003, 47, 349–358. [Google Scholar] [CrossRef]
- Jensen, W.A.; Fall, M.Z.; Rooney, J.; Kordick, D.L.; Breitschwerdt, E.B. Rapid identification and differentiation of Bartonella species using a single-step PCR assay. J. Clin. Microbiol. 2000, 38, 1717–1722. [Google Scholar] [CrossRef]
- Criado-Fornelio, A.; Martinez-Marcos, A.; Buling-Saraña, A.; Barba-Carretero, J.C. Presence of Mycoplasma haemofelis, Mycoplasma haemominutum and piroplasmids in cats from southern Europe: A molecular study. Vet. Microbiol. 2003, 93, 307–317. [Google Scholar] [CrossRef]
- Bastos, C.; Passos, L.; Facury-Filho, E.; Rabelo, E.; de la Fuente, J.; Ribeiro, M. Protection in the absence of exclusion between two Brazilian isolates of Anaplasma marginale in experimentally infected calves. Vet. J. 2010, 186, 374–378. [Google Scholar] [CrossRef]
- Moreira, S.M. Estudo retrospectivo (1998–2001) da erliquiose canina em Belo Horizonte: Avaliação clínica e laboratorial de infecções experimentais. Master’s Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 2001. Available online: http://hdl.handle.net/1843/BUOS-8C8DX2 (accessed on 15 November 2024).
- Costa, V.M.d.M.; Ribeiro, M.F.B.; Duarte, A.L.L.; Mangueira, J.M.; Pessoa, A.F.A.; Azevedo, S.S.; de Barros, A.T.M.; Riet-Correa, F.; Labruna, M.B. Seroprevalence and risk factors for cattle anaplasmosis, babesiosis, and trypanosomiasis in a Brazilian semiarid region. Rev. Bras. Parasitol. Vet. 2013, 22, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Castillo, A.P.; Miranda, J.V.O.; Fonseca, P.L.C.; Silva, S.d.O.; Lopes, R.E.N.; Spanhol, V.C.; Moreira, R.G.; Nicolino, R.R.; Queiroz, D.C.; Santos, L.C.G.d.A.e.; et al. Evidence of SARS-CoV-2 infection and co-infections in stray cats in Brazil. Acta Trop. 2024, 249, 107056. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. Available online: https://www.academia.edu/2034992/BioEdit_a_user_friendly_biological_sequence_alignment_editor_and_analysis_program_for_Windows_95_98_NT (accessed on 15 November 2024).
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Jukes, T.H.; Cantor, C.R. Evolution of Protein Molecules. In Mammalian Protein Metabolism; Munro, H., Ed.; Academic Press: New York, NY, USA, 1969; Volume III, Charpter 24; pp. 21–132. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evol. Int. J. Org. Evol. 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Robinette, C.; Saffran, L.; Ruple, A.; Deem, S. Zoos and public health: A partnership on the One Health frontier. One Health 2016, 3, 1–4. [Google Scholar] [CrossRef]
- Silveira, J.A.; Valente, P.C.; Paes, P.R.; Vasconcelos, A.V.; Silvestre, B.T.; Ribeiro, M.F. The first clinical and laboratory evidence of co-infection by Anaplasma phagocytophilum and Ehrlichia canis in a Brazilian dog. Ticks Tick-Borne Dis. 2015, 6, 242–245. [Google Scholar] [CrossRef]
- Lasta, C.S.; dos Santos, A.P.; Messick, J.B.; Oliveira, S.T.; Biondo, A.W.; Vieira, R.F.d.C.; Dalmolin, M.L.; González, F.H.D. Molecular detection of Ehrlichia canis and Anaplasma platys in dogs in Southern Brazil. Rev. Bras. Parasitol. Vet. 2013, 22, 360–366. [Google Scholar] [CrossRef] [PubMed]
- De Arruda, R.M.F.; Cardoso, D.T.; Teixeira-Neto, R.G.; Barbosa, D.S.; Ferraz, R.K.; Morais, M.H.F.; Belo, V.S.; da Silva, E.S. Space-time analysis of the incidence of human visceral leishmaniasis (VL) and prevalence of canine VL in a municipality of southeastern Brazil: Identification of priority areas for surveillance and control. Acta Trop. 2019, 197, 105052. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.V.; Michalsky, M.; Pereira, N.C.L.; de Paula, A.J.V.; Souza, A.G.M.; Pinheiro, L.C.; Lima, A.C.V.M.d.R.; de Avelar, D.M.; França-Silva, J.C.; Lanzetta, V.A.S.; et al. Canine visceral leishmaniasis in area with recent Leishmania transmission: Prevalence, diagnosis, and molecular identification of the infecting species. Rev. Soc. Bras. Med. Trop. 2020, 53, e20200141. [Google Scholar] [CrossRef] [PubMed]
- Xavier, S.; Chiarelli, I.; Lima, W.; Gonçalves, R.; Tafuri, W. Canine visceral leishmaniasis: A remarkable histopathological picture of one asymptomatic animal reported from Belo Horizonte, Minas Gerais, Brazil. Arq. Bras. Med. Vet. Zootec. 2006, 58, 944–1000. [Google Scholar] [CrossRef]
- De Fraga, A.P.; da Silveira, V.P.; Salla, P.d.F.; Goulart, F.G.d.O.; Streck, A.F.; Pereira, V.R.Z.B.; de Mello, L.S.; Fonseca, A.S.K.; Ikuta, N.; Lunge, V.R. Canine Leishmaniasis in Southern Brazil: Diagnosis and Clinical Features in Domestic Dogs. Zoonotic Dis. 2024, 4, 114–122. [Google Scholar] [CrossRef]
- André, M.R.; Denardi, N.C.B.; de Sousa, K.C.M.; Gonçalves, L.R.; Henrique, P.C.; Ontivero, C.R.G.R.; Gonzalez, I.H.L.; Nery, C.V.C.; Chagas, C.R.F.; Monticelli, C.; et al. Arthropod-borne pathogens circulating in free-roaming domestic cats in a zoo environment in Brazil. Ticks Tick-Borne Dis. 2014, 5, 545–551. [Google Scholar] [CrossRef]
- Calchi, A.C.; Yogui, D.R.; Alves, M.H.; Desbiez, A.L.J.; Kluyber, D.; Vultão, J.G.; Arantes, P.V.C.; de Santi, M.; Werther, K.; Teixeira, M.M.G.; et al. Molecular detection of piroplasmids in mammals from the Superorder Xenarthra in Brazil. Parasitol. Res. 2023, 122, 3169–3180. [Google Scholar] [CrossRef]
- Fava, N.M.N.; Alves, T.S.; Lopes, M.G.; Labruna, M.B.; Santos, A.Q.; Cury, M.C. Occurrence and Molecular Identification of Hemoparasites in Wild Mammals Kept in Rehabilitation Centers in Brazil. Acta Parasitol. 2022, 67, 476–486. [Google Scholar] [CrossRef]
- Furtado, M.M.; Taniwaki, S.A.; Metzger, B.; Paduan, K.d.S.; O’dwyer, H.L.; Jácomo, A.T.d.A.; Porfírio, G.E.; Silveira, L.; Sollmann, R.; Tôrres, N.M.; et al. Is the free-ranging jaguar (Panthera onca) a reservoir for Cytauxzoon felis in Brazil? Ticks Tick-Borne Dis. 2017, 8, 470–476. [Google Scholar] [CrossRef]
- McNew, S.M.; Barrow, L.N.; Williamson, J.L.; Galen, S.C.; Skeen, H.R.; DuBay, S.G.; Gaffney, A.M.; Johnson, A.B.; Bautista, E.; Ordoñez, P.; et al. Contrasting drivers of diversity in hosts and parasites across the tropical Andes. Proc. Natl. Acad. Sci. USA 2021, 118, e2010714118. [Google Scholar] [CrossRef]
- Otiende, M.Y.; Kivata, M.W.; Makumi, J.N.; Mutinda, M.N.; Okun, D.; Kariuki, L.; Obanda, V.; Gakuya, F.; Mijele, D.; Soriguer, R.C.; et al. Epidemiology of Theileria bicornis among black and white rhinoceros metapopulation in Kenya. BMC Vet. Res. 2015, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.L.d.B.; de Almeida, S.L.H.; Maia, M.O.; Santos, T.; Pavelegini, L.A.D.; Zaffalon, G.B.; Marcili, A.; Morgado, T.O.; Dutra, V.; Nakazato, L.; et al. Post mortem protozoan hemoparasites detection in wild mammals from Mato Grosso state, Midwestern Brazil. Rev. Bras. Parasitol. Vet. 2021, 30, e013021. [Google Scholar] [CrossRef] [PubMed]
- Guizelini, C.C.; Nascimento, C.A.; Echeverria, J.T.; Soares, R.L.; Pimenta, M.M.; de Deco-Souza, T.; Esteves, F.C.; Gomes, D.C. Fatal infection caused by Cytauxzoon felis in a captive-reared jaguar (Panthera onca). Int. J. Parasitol. Parasites Wildl. 2021, 16, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Fenelon, A.C.G.; da Hora, A.S.; da Silva, K.L.; de Oliveira, G.H.B.; Gonçalves, M.S.e.S.; Pastor, F.M.; Barbosa, F.C.; Siqueira, M.T.S.; Rosalinski-Moraes, F. Co-infection of Cytauxzoon felis, Mycoplasma haemofelis, and the feline immunodeficiency virus in a domestic cat in Uberlândia, Minas Gerais, Brazil. Braz. J. Vet. Res. Anim. Sci. 2023, 60, e210131. [Google Scholar] [CrossRef]
- Ikeda, P.; Menezes, T.R.; Torres, J.M.; de Oliveira, C.E.; Lourenço, E.C.; Herrera, H.M.; Machado, R.Z.; André, M.R. First molecular detection of piroplasmids in non-hematophagous bats from Brazil, with evidence of putative novel species. Parasitol. Res. 2021, 120, 301–310. [Google Scholar] [CrossRef]
- Yam, J.; Gestier, S.; Bryant, B.; Campbell-Ward, M.; Bogema, D.; Jenkins, C. The identification of Theileria bicornis in captive rhinoceros in Australia. Int. J. Parasitol. Parasites Wildl. 2017, 7, 85–89. [Google Scholar] [CrossRef]
- Otiende, M.Y.; Kivata, M.W.; Jowers, M.J.; Makumi, J.N.; Runo, S.; Obanda, V.; Gakuya, F.; Mutinda, M.; Kariuki, L.; Alasaad, S. Three Novel Haplotypes of Theileria bicornis in Black and White Rhinoceros in Kenya. Transbound. Emerg. Dis. 2016, 63, e144–e150. [Google Scholar] [CrossRef]
- Sivakumar, T.; Fujita, S.; Tuvshintulga, B.; Kothalawala, H.; Silva, S.S.P.; Yokoyama, N. Discovery of a new Theileria sp. closely related to Theileria annulata in cattle from Sri Lanka. Sci. Rep. 2019, 9, 16132. [Google Scholar] [CrossRef]
- Silveira, J.A.G.; D’Elia, M.L.; Avelar, I.d.O.; de Almeida, L.R.; dos Santos, H.A.; Soares, D.F.d.M.; Ribeiro, M.F.B.; Lima, W.d.S.; Ecco, R. Rangelia vitalii in a free-ranging maned wolf (Chrysocyon brachyurus) and co-infections. Int. J. Parasitol. Parasites Wildl. 2016, 5, 280–285. [Google Scholar] [CrossRef]
- Mol, J.P.; Soave, S.A.; Turchetti, A.P.; Pinheiro, G.R.; Pessanha, A.T.; Malta, M.C.; Tinoco, H.P.; Figueiredo, L.A.; Gontijo, N.F.; Paixão, T.A.; et al. Transmissibility of Leishmania infantum from maned wolves (Chrysocyon brachyurus) and bush dogs (Speothos venaticus) to Lutzomyia longipalpis. Vet. Parasitol. 2015, 212, 86–91. [Google Scholar] [CrossRef]
- Schäfer, I.; Kohn, B.; Volkmann, M.; Müller, E. Retrospective evaluation of vector-borne pathogens in cats living in Germany (2012–2020). Parasites Vectors 2021, 14, 123. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Parreira, R.; Nunes, M.; Casadinho, A.; Vieira, M.L.; Campino, L.; Maia, C. Molecular detection of tick-borne bacteria and protozoa in cervids and wild boars from Portugal. Parasites Vectors 2016, 9, 251. [Google Scholar] [CrossRef] [PubMed]
- Kolo, A.O.; Collins, N.E.; Brayton, K.A.; Chaisi, M.; Blumberg, L.; Frean, J.; Gall, C.A.; Wentzel, J.M.; Wills-Berriman, S.; De Boni, L.; et al. Anaplasma phagocytophilum and Other Anaplasma spp. in Various Hosts in the Mnisi Community, Mpumalanga Province, South Africa. Microorganisms 2020, 8, 1812. [Google Scholar] [CrossRef] [PubMed]
- Salazar, A.; Ochoa-Corona, F.M.; Talley, J.L.; Noden, B.H. Recombinase polymerase amplification (RPA) with lateral flow detection for three Anaplasma species of importance to livestock health. Sci. Rep. 2021, 11, 15962. [Google Scholar] [CrossRef]
- Gomes, P.D.; Hirano, L.Q.L.; de Paula, R.C. Epidemiological survey of infectious agents in free-ranging maned wolves (Chrysocyon brachyurus) in Northeastern Brazil. Braz. J. Microbiol. 2024, 55, 933–941. [Google Scholar] [CrossRef]
- Nasr, A.; Ghafar, M.; El hariri, M. Detection of Anaplasma platys and Ehrlichia canis in Rhipicephalus sanguineus ticks attached to dogs from Egypt; a public health concern. Vet. Med. J. 2020, 66, 1–9. [Google Scholar] [CrossRef]
- Luo, Y.Y.; Yu, D.; Zhang, H.Z.; Liu, Z.X.; Hong, R.D.; Hong, M.; Ai, Z.Q.; Zhu, J.J.; Yin, J.X. Molecular detection of Bartonella species in wild small mammals in western Yunnan Province, China. Front. Vet. Sci. 2023, 10, 1301316. [Google Scholar] [CrossRef]
- Mongruel, A.C.B.; Medici, E.P.; Canena, A.d.C.; Dias, C.M.; Machado, R.Z.; André, M.R. Molecular evidence of Bartonella spp. in wild lowland tapirs (Tapirus terrestris), the largest land mammals in Brazil. Comp. Immunol. Microbiol. Infect. Dis. 2023, 101, 102042. [Google Scholar] [CrossRef]
- Rao, H.; Li, S.; Lu, L.; Wang, R.; Song, X.; Sun, K.; Shi, Y.; Li, D.; Yu, J. Genetic diversity of Bartonella species in small mammals in the Qaidam Basin, western China. Sci. Rep. 2021, 11, 1735. [Google Scholar] [CrossRef]
- Greco, G.; Zarea, A.A.K.; Sgroi, G.; Tempesta, M.; D’alessio, N.; Lanave, G.; Bezerra-Santos, M.A.; Iatta, R.; Veneziano, V.; Otranto, D.; et al. Zoonotic Bartonella species in Eurasian wolves and other free-ranging wild mammals from Italy. Zoonoses Public Health 2021, 68, 316–326. [Google Scholar] [CrossRef]
- Pacheco, T.d.A.; Amaral, R.B.D.; Ikeda, P.; Maia, M.O.; Lee, D.A.B.; Semedo, T.B.F.; de Mendonça, R.F.B.; Pedroni, F.; Horta, M.C.; Rossi, R.V.; et al. Molecular detection and characterization of Bartonella spp. in small mammals in the Amazonia and Cerrado biomes, midwestern Brazil. Acta Trop. 2024, 251, 107129. [Google Scholar] [CrossRef] [PubMed]
- Cubilla, M.P.; Santos, L.C.; de Moraes, W.; Cubas, Z.S.; Leutenegger, C.M.; Estrada, M.; Vieira, R.F.; Soares, M.J.; Lindsay, L.L.; Sykes, J.E.; et al. Occurrence of hemotropic mycoplasmas in non-human primates (Alouatta caraya, Sapajus nigritus and Callithrix jacchus) of southern Brazil. Comp. Immunol. Microbiol. Infect. Dis. 2017, 52, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Mongruel, A.C.B.; Somma, A.T.; Pinto, A.C.A.; Campos, C.d.F.; Calado, M.I.Z.; Montiani-Ferreira, F.; Vieira, T.S.W.J.; Vieira, R.F.d.C. First Report of ‘Candidatus Mycoplasma haematomacacae’ in Laboratory-Kept Rhesus Monkeys (Macaca mulatta) Maintained in Rio de Janeiro, Brazil. Vet. Sci. 2022, 9, 443. [Google Scholar] [CrossRef] [PubMed]
- De Melo, C.M.F.; Daneze, E.R.; Mendes, N.S.; Ramos, I.A.d.S.; Morales-Donoso, J.A.; Fernandes, S.J.; Machado, R.Z.; André, M.R.; Sobreira, M.F.d.R. Genetic diversity and hematological and biochemical alterations in Alouatta primates naturally infected with hemoplasmas in Brazil. Comp. Immunol. Microbiol. Infect. Dis. 2019, 63, 104–111. [Google Scholar] [CrossRef]
- Carneiro, F.T.; Scalon, M.C.; Amorim, G.; Silva, W.A.; Honorato, S.M.; Pereira, F.M.; Silva, L.H.; Aquino, L.C.; Paludo, G.R. Hemoplasma infection in wild captive carnivores. Pesqui. Vet. Bras. 2020, 40, 293–299. [Google Scholar] [CrossRef]
- André, M.R.; Duarte, J.M.B.; Gonçalves, L.R.; Sacchi, A.B.V.; Jusi, M.M.G.; Machado, R.Z. New records and genetic diversity of Mycoplasma ovis in free-ranging deer in Brazil. Epidemiol. Infect. 2020, 148, e6. [Google Scholar] [CrossRef]
- Mongruel, A.C.B.; Medici, E.P.; Canena, A.D.C.; Calchi, A.C.; Machado, R.Z.; André, M.R. Expanding the Universe of Hemoplasmas: Multi-Locus Sequencing Reveals Putative Novel Hemoplasmas in Lowland Tapirs (Tapirus terrestris), the Largest Land Mammals in Brazil. Microorganisms 2022, 10, 614. [Google Scholar] [CrossRef]
- Andrews, K.R.; Besser, T.E.; Stalder, T.; Top, E.M.; Baker, K.N.; Fagnan, M.W.; New, D.D.; Schneider, G.M.; Gal, A.; Andrews-Dickert, R.; et al. Comparative genomic analysis identifies potential adaptive variation and virulence factors in Mycoplasma ovipneumoniae. bioRxiv 2024. [Google Scholar] [CrossRef]
- De Mello, V.V.C.; Calchi, A.C.; de Oliveira, L.B.; Coelho, T.F.S.B.; Lee, D.A.B.; Franco, E.O.; Machado, R.Z.; André, M.R. Molecular Survey of Piroplasmids and Hemosporidians in Vampire Bats, with Evidence of Distinct Piroplasmida Lineages Parasitizing Desmodus rotundus from the Brazilian Amazon. Parasitologia 2023, 3, 248–259. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- Kuhn, J.; Marti, I.; Ryser-Degiorgis, M.-P.; Wernike, K.; Jones, S.; Tyson, G.; Delalay, G.; Scherrer, P.; Borel, S.; Hosie, M.J.; et al. Investigations on the Potential Role of Free-Ranging Wildlife as a Reservoir of SARS-CoV-2 in Switzerland. Viruses 2024, 16, 1407. [Google Scholar] [CrossRef] [PubMed]
- Young, A.D.; Gillung, J.P. Phylogenomics-principles, opportunities and pitfalls of big-data phylogenetics. Syst. Entomol. 2020, 45, 225–247. [Google Scholar] [CrossRef]
- Firouzeh, N.; Borj, H.F.; Ziaali, N.; Kareshk, A.T.; Ahmadinejad, M.; Shafiei, R. Genetic Diversity of Toxoplasma gondii by Serological and Molecular Analyzes in Different Sheep and Goat Tissues in Northeastern Iran. Iran. J. Parasitol. 2023, 18, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Shafiei, R.; Firouzeh, N.; Rahimi, M.T. Serological and molecular survey of Toxoplasma gondii in aborted livestock fetuses from Northeast Iran. BMC Res. Notes 2024, 17, 290. [Google Scholar] [CrossRef]
Agents | Aim/Primer | Molecular Assay | Primers Sequences | Fragment Size (bp) | Thermal Cycling | Reference |
---|---|---|---|---|---|---|
Anaplasma sp. (A. phagocytophilum, A. bovis, A. platys) (16S rRNA gene) | Screening 1ª reaction gE3a gE10R 2ª reaction gE2 gE9f. | nPCR | 5′-CACATGCAAGTCGAACGGATTATTC-3′ 5′-TTCCGTTAAGAAGGATCTAATCTCC′-3′ | 932 | 94 °C for 5 min 40 cycles: 94 °C for 30 s, 55 °C for 30 s and 72 °C for 1 min, 72 °C for 5 min | [19] |
5′-GGCAGTATTAAAAGCAGCTCCAGG-3′ 5′-AACGGATTATTCTTTATAGCTTGCT-3′ | 546 | |||||
Ehrlichia sp. (E. chaffeensis, E. canis) (16S rRNA gene) | Screening 1ª reaction NS16SCH1F NS16SCH1R 2ª reaction NS16SCH2F NS16SCH2R | nPCR | 5′-ACGGACAATTGCTTATAGCCTT 5′-ACAACTTTTATGGATTAGCTAAAT | 1195 | 94 °C for 5 min 30 cycles: 92 °C for 1 min, 54 °C for 1 min and 72 °C for 2 min, 72 °C for 8 min | [20] |
5′-GGGCACGTAGGTGGACTAG-3′ 5′-CCTGTTAGGAGGGATACGAC-3′ | 443 | |||||
Anaplasma phagocytophilum (msp4 gene) | Characterization 1ª reaction MSP4AP5 MSP4AP3 2ª reaction msp4F msp4R | nPCR | 5′-ATGAATTACAGAGAATTGCTTGTAGG-3′ 5′-TTAATTGAAAGCAAATCTTGCTCCTATG-3′ | 849 | 94 °C for 5 min 30 cycles: 92 °C for 1 min, 54 °C for 1 min and 72 °C for 2 min, 72 °C for 8 min | [21] |
5′-CTATTGGYGGNGCYAGAGT-3′ 5′-GTTCATCGAAAATTCCGTGGTA-3′ | 381 | [22] | ||||
Anaplasma marginale/ A. ovis (msp4 gene) | Characterization 1ª reaction MSP45 MSP43 2ª reaction AnapF AnapR | nPCR | 5′-GGGAGCTCCTATGAATTACAGAGAATTGTTTAC-3′ 5′-CCGGATCCTTAGCTGAACAGGAATCTTGC-3′ | 872 | 94 °C for 5 min 30 cycles: 92 °C for 1 min, 54 °C for 1 min and 72 °C for 2 min, 72 °C for 8 min | [23] |
5′-CGCCAGCAAACTTTTCCAAA-3′ 5′-ATATGGGGACACAGGCAAAT-3′ | 294 | [14] | ||||
Anaplasma platys (16S rRNA gene) | Characterization 1ª reaction 8-F 1448-R 2ª reaction PLATYS-F EHR16S-R | nPCR | 5′-AGTTTGATCATGGCTCAG-3′ 5′-CCATGGCGTGACGGGCAGTGT-3′ | * | 1ª reaction 94 °C for 2 min, 40 cycles: 94 °C for 1 min, 45 °C for 1 min, 72 °C for 40 s, 72 °C for 4 min. 2ª reaction 94 °C for 1 min, 40 cycles: 94 °C for 1 min, 53 °C for 30 s, 72 °C for 30 s, 72 °C for 4 min. | [24] |
5′-GATTTTTGTCGTAGCTTGCTATG-3′ 5′-TAGCACTCATCGTTTACAGC-3′ | 678 | |||||
Babesia/Theileira/ Cytauxzoon (18S rRNA gene) | Screening 1ª reaction RIB-19 RIB-20 2ª reaction BabRumF BabRumR | nPCR | 5′-CGGGATCCAACCTGGTTGATCCTGC-3′ 5′-CCGAATTCCTTGTTACGACTTCTC-3′ | 1700 | 94 °C for 5 min 30 cycles: 92 °C for 1 min, 54 °C for 1 min and 72 °C for 2 min, 72 °C for 8 min | [25] |
5′-ACCTCACCAGGTCCAGACAG-3′ 5′-GTACAAAGGGCAGGGACGTA-3′ | 430 | [26] | ||||
Cytauxzoon felis | Characterization CytauxF CytauxR | cPCR | 5′-CGAATCGCATTGCTTTATGCTCCAA 5′-TTGATACTCCGGAAAGAG | 284 | 95 °C for 5 min, 40 cycles; 95 °C for 45 s, 59 °C for 45 s and 72 °C for 60 s, 72 °C for 5 min | [27] |
Leishmania sp. (ITS1 gene) | Screening LITSR L5.8S | cPCR | 5′-CTGGATCATTTTCCGATG-3′ 5′-TGATACCACTTATCGCACTT-3′ | 300–350 | 95 °C for 2 min, 37 cycles: 94 °C for 30s, 53 °C for 1 min, 72 °C for 1 min, 72 °C for 6 min. | [28] |
Bartonella spp. (16S-23S rRNA intergenic region) | Screening BartF BartR | cPCR | 5′-CTCTTTCTTCAGATGATGATCC-3′ 5′-AACCAACTGAGCTACAAGCCCT-3′ | 145–232 | 95 °C for 2 min, 45 cycles: 95 °C for 1 min, 60 °C for 1 min, 72 °C for 30 s, 72 °C for 5 min | [29] |
Hemotropic Mycoplasma sp. (16S rRNA) | Screening HBTF HBTR | cPCR | 5′-ATACGGCCCATATTCCTACG-3′ 5′-TGCTCCACCACTTGTTCA-3′ | 618 | 94 °C for 10 min, 40 cycles: 95 °C for 30 s, 60 °C for 30 s, 72 °C for 30 s, 72 °C for 10 min | [30] |
ID | Collection Data | Sex | Species | Granulocytic/Platelet Anaplasma/Ehrlichia sp. | Monocytic Ehrlichia sp. | Bartonella sp. | Hemotropic Mycoplasma sp. | Piroplasmids | Leishmania spp. |
---|---|---|---|---|---|---|---|---|---|
AZ01 | 2021-11-04 | M * | Leopardus braccatus | − | − | − | − | Positive | − |
AZ02 | 2021-11-04 | M | Leopardus braccatus | − | − | − | − | Positive | − |
AZ04 | 2021-11-22 | F ** | Gorilla gorilla gorilla | − | − | Positive | Positive | Positive | − |
AZ05 | 2021-11-22 | F | Gorilla gorilla gorilla | Positive | − | − | − | Positive | − |
AZ06 | 2021-12-07 | F | Puma concolor | − | − | − | − | − | − |
AZ07 | 2021-12-16 | F | Chrysocyon brachyurus | − | − | Positive | − | − | Positive |
AZ08 | 2022-02-08 | M | Galictis cuja | − | − | − | − | − | − |
AZ09 | 2022-02-08 | M | Subulo gouazoubira | − | − | − | − | − | − |
AZ11 | 2022-03-10 | F | Chrysocyon brachyurus | Positive | − | − | Positive | − | Positive |
AZ12 | 2022-03-10 | F | Chrysocyon brachyurus | Positive | − | − | − | − | Positive |
AZ13 | 2022-03-10 | M | Chrysocyon brachyurus | Positive | − | − | − | − | Positive |
AZ14 | 2022-03-16 | M | Chrysocyon brachyurus | Positive | Positive | Positive | − | − | − |
AZ15 | 2022-03-16 | M | Chrysocyon brachyurus | − | − | − | − | − | − |
AZ16 | 2022-05-16 | M | Dama dama | − | − | − | − | − | − |
AZ17 | 2022-05-16 | M | Gorilla gorilla gorilla | − | − | − | − | − | − |
AZ18 | 2022-05-27 | M | Chrysocyon brachyurus | − | − | − | − | − | − |
AZ19 | 2022-05-16 | F | Ceratotherium simum | − | − | Positive | Positive | Positive | − |
AZ20 | 2022-05-16 | F | Alouatta sp. | − | − | Positive | − | − | |
AZ21 | 2022-05-27 | F | Alouatta sp. | − | − | − | − | − | |
AZ22 | 2022-07-27 | F | Tamandua tetradactyla | − | − | Positive | − | − | − |
AZ25 | 2022-08-25 | F | Panthera leo | − | − | − | − | − | − |
AZ27 | 2022-07-01 | F | Ateles sp. | − | − | − | − | Positive | − |
AZ28 | 2022-10-25 | F | Lagothrix lagotricha | − | − | Positive | Positive | − | − |
AZ29 | 2022-10-25 | M | Sapajus apella | − | − | Positive | − | − | − |
AZ30 | 2022-11-15 | M | Subulo gouazoubira | − | − | Positive | − | − | − |
AZ31 | 2022-11-21 | F | Panthera onca | − | − | − | − | − | − |
AZ32 | 2022-11-24 | M | Lagothrix lagotricha | − | − | − | − | − | − |
AZ33 | 2022-11-24 | F | Lagothrix lagotricha | − | − | − | Positive | − | − |
AZ34 | 2022-11-24 | M | Sapajus apella | − | − | − | − | − | − |
AZ35 | 2022-11-24 | F | Lagothrix lagotricha | − | − | − | − | − | − |
AZ36 | 2023-01-24 | M | Dama dama | − | − | − | Positive | − | − |
AZ37 | 2023-01-24 | M | Dasyprocta sp. | − | − | Positive | − | − | − |
AZ38 | 2023-01-26 | M | Alouatta sp. | − | − | Positive | − | − | − |
AZ39 | 2023-01-26 | F | Alouatta sp. | − | − | Positive | − | − | − |
AZ41 | 2023-01-26 | F | Alouatta sp. | − | − | Positive | − | − | − |
AZ42 | 2023-01-26 | M | Alouatta sp. | − | − | Positive | − | − | − |
AZ43 | 2023-01-26 | M | Alouatta sp. | − | − | Positive | − | − | − |
AZ44 | 2023-01-25 | F | Puma concolor | − | − | Positive | − | − | − |
AZ45 | 2023-02-10 | M | Alouatta sp. | − | − | Positive | − | − | − |
AZ46 | 2022-11-15 | F | Hippopotamus amphibius | − | − | Positive | − | Positive | − |
ID | Species | Granulocytic/Platelet Anaplasma/Ehrlichia sp. | Monocytic Ehrlichia sp. | Bartonella sp. | Hemotropic Mycoplasma sp. | Piroplasmids | Leishmania spp. | Total Number of Pathogens Coinfected |
---|---|---|---|---|---|---|---|---|
AZ04 | Gorilla gorilla gorilla | − | − | + | + | + | − | 3 |
AZ05 | Gorilla gorilla gorilla | + | − | − | − | + | − | 2 |
AZ07 | Chrysocyon brachyurus | − | − | + | − | − | + | 2 |
AZ11 | Chrysocyon brachyurus | + | − | − | + | − | + | 3 |
AZ12 | Chrysocyon brachyurus | + | − | − | − | − | + | 2 |
AZ13 | Chrysocyon brachyurus | + | − | − | − | − | + | 2 |
AZ14 | Chrysocyon brachyurus | + | + | + | − | − | − | 3 |
AZ19 | Ceratotherium simum | − | − | + | + | + | − | 3 |
AZ28 | Lagothrix lagotricha | − | − | + | + | − | − | 2 |
AZ46 | Hippopotamus amphibius | − | − | + | − | + | − | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo, A.P.; Colácio, N.; Rodrigues, P.H.C.; Miranda, J.V.O.; Lima, P.C.S.; Motta, R.O.C.; Tinoco, H.P.; Coelho, C.M.; da Silveira, J.A.G. Parasitic Protozoa and Other Vector-Borne Pathogens in Captive Mammals from Brazil. J. Zool. Bot. Gard. 2024, 5, 754-773. https://doi.org/10.3390/jzbg5040050
Castillo AP, Colácio N, Rodrigues PHC, Miranda JVO, Lima PCS, Motta ROC, Tinoco HP, Coelho CM, da Silveira JAG. Parasitic Protozoa and Other Vector-Borne Pathogens in Captive Mammals from Brazil. Journal of Zoological and Botanical Gardens. 2024; 5(4):754-773. https://doi.org/10.3390/jzbg5040050
Chicago/Turabian StyleCastillo, Anisleidy Pérez, Nicolas Colácio, Pedro Henrique Cotrin Rodrigues, João Victor Oliveira Miranda, Paula Cristina Senra Lima, Rafael Otávio Cançado Motta, Herlandes Penha Tinoco, Carlyle Mendes Coelho, and Júlia Angélica Gonçalves da Silveira. 2024. "Parasitic Protozoa and Other Vector-Borne Pathogens in Captive Mammals from Brazil" Journal of Zoological and Botanical Gardens 5, no. 4: 754-773. https://doi.org/10.3390/jzbg5040050
APA StyleCastillo, A. P., Colácio, N., Rodrigues, P. H. C., Miranda, J. V. O., Lima, P. C. S., Motta, R. O. C., Tinoco, H. P., Coelho, C. M., & da Silveira, J. A. G. (2024). Parasitic Protozoa and Other Vector-Borne Pathogens in Captive Mammals from Brazil. Journal of Zoological and Botanical Gardens, 5(4), 754-773. https://doi.org/10.3390/jzbg5040050