The Difficulties of Ex Situ Conservation: A Nationwide Investigation of Avian Haemosporidia Among Captive Penguins in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction and Molecular Detection of Avian Haemosporidia
2.3. Microscopic Detection and Infection Intensity of Avian Haemosporidia
2.4. Statistical Analysis
3. Results
3.1. Haemosporidian Prevalence by PCR
3.2. Phylogeny
3.3. Haemosporidian Prevalence by Microscopy and Parasitemia
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valkiūnas, G. Avian Malaria Parasites and Other Haemosporidia; CRC Press: Boca Raton, FL, USA, 2005; Volume 1, ISBN 9788578110796. [Google Scholar]
- Atkinson, C.T.; Dusek, R.J.; Woods, K.L.; Iko, W.M. Pathogenicity of Avian Malaria in Experimentally-Infected Hawaii Amakihi. J. Wildl. Dis. 2000, 36, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Møller, A.P.; Erritzée, J. Host Immune Defence and Migration in Birds. Evol. Ecol. 1998, 12, 945–953. [Google Scholar] [CrossRef]
- Warner, R.E. The Role of Introduced Diseases in the Extinction of the Endemic Hawaiian Avifauna. Condor 1968, 70, 101–120. [Google Scholar] [CrossRef]
- Van Riper, C.I.; Van Riper, S.G.; Goff, M.L.; Laird, M. The Epizootiology and Ecological Significance of Malaria in Hawaiian Land Birds. Ecol. Monogr. 1986, 56, 327–344. [Google Scholar] [CrossRef]
- Jia, T.; Huang, X.; Valkiūnas, G.; Yang, M.; Zheng, C.; Pu, T.; Zhang, Y.; Dong, L.; Suo, X.; Zhang, C. Malaria Parasites and Related Haemosporidians Cause Mortality in Cranes: A Study on the Parasites Diversity, Prevalence and Distribution in Beijing Zoo. Malar. J. 2018, 17, 234. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Catedral, L.; Brunton, D.; Stidworthy, M.F.; Elsheikha, H.M.; Pennycott, T.; Schulze, C.; Braun, M.J.; Wink, M.; Gerlach, H.; Pendl, H.; et al. Haemoproteus Minutus Is Highly Virulent for Australasian and South American Parrots. Parasit. Vectors 2019, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- Olias, P.; Wegelin, M.; Zenker, W.; Freter, S.; Gruber, A.D.; Klopfleisch, R.; Klopflisch, R. Avian Malaria Deaths in Parrots, Europe. Emerg. Infect. Dis. 2011, 17, 950–952. [Google Scholar] [CrossRef] [PubMed]
- Donovan, T.A.; Schrenzel, M.; Tucker, T.A.; Pessier, A.P.; Stalis, I.H. Hepatic Hemorrhage, Hemocoelom, and Sudden Death Due to Haemoproteus Infection in Passerine Birds: Eleven Cases. J. Vet. Diagn. Investig. 2008, 20, 304–313. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kwak, D.; Kim, K.-T. The First Clinical Cases of Haemoproteus Infection in a Snowy Owl (Bubo scandiacus) and a Goshawk (Accipiter gentilis) at a Zoo in the Republic of Korea. J. Vet. Med. Sci. 2018, 80, 1255–1258. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, M.; Ozawa, K.; Kondo, H.; Echigoya, Y.; Shibuya, H.; Sato, Y.; Sehgal, R.N.M. A Fatal Case of a Captive Snowy Owl (Bubo scandiacus) with Haemoproteus Infection in Japan. Parasitol. Res. 2020, 120, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Vanstreels, R.E.T.; Braga, É.M.; Catão-Dias, J.L. Blood Parasites of Penguins: A Critical Review. Parasitology 2016, 143, 931–956. [Google Scholar] [CrossRef]
- Ings, K.; Denk, D. Avian Malaria in Penguins: Diagnostics and Future Direction in the Context of Climate Change. Animals 2022, 12, 600. [Google Scholar] [CrossRef] [PubMed]
- IUCN. The IUCN Red List of Threatened Species Version 2020-1. Available online: www.iucnredlist.org (accessed on 1 January 2025).
- Schneider, T.; Olsen, D.; Dykstra, C.; Huettner, S.; Branch, S.; Sirpenski, G.; Sarro, S.; Waterfall, K.; Henry, L.; DuBois, L.; et al. Penguin (Spheniscidae) Care Manual; Association of Zoos and Aquariums: Silver Spring, MD, USA, 2014. [Google Scholar]
- Bueno, M.G.; Lopez, R.P.G.; de Menezes, R.M.T.; de Jesus Costa-Nascimento, M.; de Castro Lima, G.F.M.; de Sousa Araújo, R.A.; Vaz Guida, F.J.; Kirchgatter, K. Identification of Plasmodium relictum Causing Mortality in Penguins (Spheniscus magellanicus) from São Paulo Zoo, Brazil. Vet. Parasitol. 2010, 173, 123–127. [Google Scholar] [CrossRef]
- Ejiri, H.; Sato, Y.; Sawai, R.; Sasaki, E.; Matsumoto, R.; Ueda, M.; Higa, Y.; Tsuda, Y.; Omori, S.; Murata, K.; et al. Prevalence of Avian Malaria Parasite in Mosquitoes Collected at a Zoological Garden in Japan. Parasitol. Res. 2009, 105, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Grilo, M.; Vanstreels, R.E.T.; Wallace, R.; García-Párraga, D.; Braga, É.M.; Chitty, J.; Catão-Dias, J.L.; Madeira de Carvalho, L.M. Malaria in Penguins – Current Perceptions. Avian Pathol. 2016, 45, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Tamura, J.; Sumiyama, D.; Kanazawa, T.; Sato, Y.; Murata, K. A Study on Molecular Phylogeny of the Avian Malaria Parasite’s MSP1 Gene from the Penguins in Captivity (Japanese). J. Jpn. Assoc. Zoos Aquar. 2018, 60, 103–111. [Google Scholar]
- Shimazu, M.; Tatara, S.; Kinuta, T. Avian Malaria (Plasmodium sp.) in Magellanic Penguins (Spheniscus magellanicus) and a Rockhopper Penguin (Eudyptes chrysocome) in Captivity (Japanese). J. Jpn. Assoc. Zoos Aquar. 1994, 35, 107–117. [Google Scholar]
- Fix, A.S.; Waterhouse, C.; Greiner, E.C.; Stoskopf, M.K. Plasmodium relictum as a Cause of Avian Malaria in Wild-Caught Magellanic Penguins (Spheniscus magellanicus). J. Wildl. Dis. 1988, 24, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.I.; Shellam, G.R. Blood Parasites in Penguins, and Their Potential Impact on Conservation. Mar. Ornithol. 1999, 27, 181–184. [Google Scholar]
- Scott, H.H. Report on the Deaths Occurring in the Society’s Gardens during the Year 1926. Proc. Zool. Soc. London 1927, 1, 173–198. [Google Scholar] [CrossRef]
- Grilo, M. Characterization of Infection by Malaria Parasites in Penguins Housed in Zoological Collections. Maste’s Thesis, Universidade de Lisboa, Lisboa, Portugal, 2014. [Google Scholar]
- Murata, M.; Murakami, M. Two Distinct MtDNA Lineages among Captive African Penguins in Japan. J. Vet. Med. Sci. 2014, 76, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Takami, K. Consideration on the Vaccination to Captive Rare and Endangered Species Based on Their Conditions (Japanese). Jpn. J. Zoo Wildl. Med. 2012, 17, 63–71. [Google Scholar] [CrossRef]
- Ishikawa, H.; Hasegawa, K. Protozoiasis Suspected as Haemoproteus Sp. in Magellanic Penguins Spheniscus Magellanics in Captivity (Japanese). Toba Aquar. Annu. Rep. 1989, 1, 77–89. [Google Scholar]
- Inumaru, M.; Aratani, S.; Shimizu, M.; Yamamoto, M.; Sato, Y.; Murata, K.; Valkiūnas, G. Penguins Are Competent Hosts of Haemoproteus Parasites: The First Detection of Gametocytes, with Molecular Characterization of Haemoproteus Larae. Parasit. Vectors 2020, 13, 307. [Google Scholar] [CrossRef]
- Inumaru, M.; Yamada, A.; Shimizu, M.; Ono, A.; Horinouchi, M.; Shimamoto, T.; Tsuda, Y.; Murata, K.; Sato, Y. Vector Incrimination and Transmission of Avian Malaria at an Aquarium in Japan: Mismatch in Parasite Composition between Mosquitoes and Penguins. Malar. J. 2021, 20, 136. [Google Scholar] [CrossRef]
- Ejiri, H.; Sato, Y.; Kim, K.S.; Hara, T.; Tsuda, Y.; Imura, T.; Murata, K.; Yukawa, M. Entomological Study on Transmission of Avian Malaria Parasites in a Zoological Garden in Japan: Bloodmeal Identification and Detection of Avian Malaria Parasite DNA from Blood-Fed Mosquitoes. J. Med. Entomol. 2011, 48, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Hellgren, O.; Waldenström, J.; Bensch, S. A New PCR Assay for Simultaneous Studies of Leucocytozoon, Plasmodium, and Haemoproteus from Avian Blood. J. Parasitol. 2004, 90, 797–802. [Google Scholar] [CrossRef] [PubMed]
- NCBI Resource Coordinators Database Resources of the National Center for Biotechnology Information. Nucleic Acid Res. 2018, 46, D8–D13. [CrossRef]
- Madden, T. The BLAST Sequence Analysis Tool. In The NCBI Handbook; National Center for Biotechnology Information: Bethesda, MD, USA, 2013. [Google Scholar]
- Bensch, S.; Hellgren, O.; Pérez-Tris, J. MalAvi: A Public Database of Malaria Parasites and Related Haemosporidians in Avian Hosts Based on Mitochondrial Cytochrome b Lineages. Mol. Ecol. Resour. 2009, 9, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. 2020. Available online: https://www.r-project.org/ (accessed on 10 January 2024).
- Kim, K.S.; Tsuda, Y. Sporogony and Sporozoite Rates of Avian Malaria Parasites in Wild Culex Pipiens Pallens and C. Inatomii in Japan. Parasit. Vectors 2015, 8, 633. [Google Scholar] [CrossRef] [PubMed]
- Inumaru, M.; Murata, K.; Sato, Y. Prevalence of Avian Haemosporidia among Injured Wild Birds in Tokyo and Environs, Japan. Int. J. Parasitol. Parasites Wildl. 2017, 6, 299–309. [Google Scholar] [CrossRef]
- Tanigawa, M.; Sato, Y.; Ejiri, H.; Imura, T.; Chiba, R.; Yamamoto, H.; Kawaguchi, M.; Tsuda, Y.; Murata, K.; Yukawa, M. Molecular Identification of Avian Haemosporidia in Wild Birds and Mosquitoes on Tsushima Island, Japan. J. Vet. Med. Sci. 2013, 75, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Odagawa, T.; Inumaru, M.; Sato, Y.; Murata, K.; Higa, Y.; Tsuda, Y. A Long-Term Field Study on Mosquito Vectors of Avian Malaria Parasites in Japan. J. Vet. Med. Sci. 2022, 84, 1391–1398. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Tsuda, Y.; Sasaki, T.; Kobayashi, M.; Hirota, Y. Mosquito Blood-Meal Analysis for Avian Malaria Study in Wild Bird Communities: Laboratory Verification and Application to Culex Sasai (Diptera: Culicidae) Collected in Tokyo, Japan. Parasitol. Res. 2009, 105, 1351–1357. [Google Scholar] [CrossRef]
- Kim, K.S.; Tsuda, Y. Avian Plasmodium Lineages Found in Spot Surveys of Mosquitoes from 2007 to 2010 at Sakata Wetland, Japan: Do Dominant Lineages Persist for Multiple Years? Mol. Ecol. 2012, 21, 5374–5385. [Google Scholar] [CrossRef] [PubMed]
- Murata, K.; Nii, R.; Sasaki, E.; Ishikawa, S.; Sato, Y.; Sawabe, K.; Tsuda, Y.; Matsumoto, R.; Suda, A.; Ueda, M. Plasmodium (Bennettinia) Juxtanucleare Infection in a Captive White Eared-Pheasant (Crossoptilon crossoptilon) at a Japanese Zoo. J. Vet. Med. Sci. 2008, 70, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Inumaru, M.; Kimura, R.; Suzuki, N.; Suzuki, H.; Horikoshi, K.; Nishiumi, I.; Kawakami, K.; Tsuda, Y.; Murata, K.; Sato, Y. Prevalence and Transmission Cycle of Avian Pathogens in the Isolated Oceanic Islands of Japan. Ecol. Evol. 2024, 14, e70737. [Google Scholar] [CrossRef] [PubMed]
- Ejiri, H.; Sato, Y.; Sasaki, E.; Sumiyama, D.; Tsuda, Y.; Sawabe, K.; Matsui, S.; Horie, S.; Akatani, K.; Takagi, M.; et al. Detection of Avian Plasmodium Spp. DNA Sequences from Mosquitoes Captured in Minami Daito Island of Japan. J. Vet. Med. Sci. 2008, 70, 1205–1210. [Google Scholar] [CrossRef]
- Imura, T.; Suzuki, Y.; Ejiri, H.; Sato, Y.; Ishida, K.; Sumiyama, D.; Murata, K.; Yukawa, M. Prevalence of Avian Haematozoa in Wild Birds in a High-Altitude Forest in Japan. Vet. Parasitol. 2012, 183, 244–248. [Google Scholar] [CrossRef]
- Kim, K.S.; Tsuda, Y. Seasonal Changes in the Feeding Pattern of Culex Pipiens Pallens Govern the Transmission Dynamics of Multiple Lineages of Avian Malaria Parasites in Japanese Wild Bird Community. Mol. Ecol. 2010, 19, 5545–5554. [Google Scholar] [CrossRef] [PubMed]
- Inumaru, M.; Nishiumi, I.; Kawakami, K.; Sato, Y. A Widespread Survey of Avian Haemosporidia in Deceased Wild Birds of Japan: The Hidden Value of Personally Collected Samples. J. Vet. Med. Sci. 2022, 84, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Beadell, J.S.; Ishtiaq, F.; Covas, R.; Melo, M.; Warren, B.H.; Atkinson, C.T.; Bensch, S.; Graves, G.R.; Jhala, Y.V.; Peirce, M.A.; et al. Global Phylogeographic Limits of Hawaii’s Avian Malaria. Proc. R. Soc. B Biol. Sci. 2006, 273, 2935–2944. [Google Scholar] [CrossRef] [PubMed]
- Inumaru, M.; Nakamura, K.; Odagawa, T.; Suzuki, M.; Murata, K.; Sato, Y. The First Detection of Avian Haemosporidia from Culicoides Biting Midges in Japan, with Notes on Potential Vector Species and the Transmission Cycle. Vet. Parasitol. Reg. Stud. Reports 2023, 39, 100840. [Google Scholar] [CrossRef] [PubMed]
- Inumaru, M.; Odaya, Y.; Sato, Y.; Marzal, A. First Records of Prevalence and Diversity of Avian Haemosporidia in Snipe Species (Genus Gallinago) of Japan. Int. J. Parasitol. Parasites Wildl. 2021, 16, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, A.; Koketsu, M.; Bando, H.; Saiki, E.; Suzuki, M.; Watanabe, Y.; Kanuka, H.; Fukumoto, S. Phylogeny Comparison of Avian Haemosporidian Parasites from Resident and Migratory Birds in Northern Japan. J. Wildl. Dis. 2014, 50, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Takizawa, R. Incidence of Avian Malaria at an Animal Facility within the Prefecture (Translated from Japanese). Proc. Oita Prefect. Livest. Hygene Livest. Relat. Perform. Present. 2010, 59, 70–72. [Google Scholar]
- Tongjura, J.; Amuga, G.; Mafuyai, H.; Matur, B.; Olatunwa, J. Influence of Some Water Physicochemical Parameters on the Distribution of Black Fly (Diptera, Simuliidae) in Some Rivers in Nasarawa State, Nigeria. Adv. Entomol. 2015, 3, 101–110. [Google Scholar] [CrossRef]
- Hernandez-Colina, A.; Gonzalez-Olvera, M.; Eckley, L.; Lopez, J.; Baylis, M. Avian Malaria Affecting Penguins in Zoological Gardens, Aquariums and Wildlife Parks in the UK. Vet. Rec. 2021, 189, e511. [Google Scholar] [CrossRef] [PubMed]
- Spottiswoode, N.; Bartlett, S.L.; Conley, K.J.; Seimon, T.A.; Griffin, D.O.; Sykes, J.M. Analysis of Plasmodium Lineages Identified in Captive Penguins (Sphenisciformes spp.), Eiders (Somateria spp.), and Inca Terns (Larosterna inca) in the North American Zoological Collection. J. Zoo Wildl. Med. 2020, 51, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Olvera, M.; Hernandez-Colina, A.; Himmel, T.; Eckley, L.; Lopez, J.; Chantrey, J.; Baylis, M.; Jackson, A.P. Molecular and Epidemiological Surveillance of Plasmodium Spp. during a Mortality Event Affecting Humboldt Penguins (Spheniscus Humboldti at a Zoo in the UK. Int. J. Parasitol. Parasites Wildl. 2022, 19, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Vanstreels, R.E.T.; de Angeli Dutra, D.; Ferreira, F.C.J.; Hurtado, R.; Egert, L.; Mayorga, L.F.S.P.; Bhering, R.C.C.; Braga, É.M.; Catão-Dias, J.L. Epidemiology, Hematology, and Unusual Morphological Characteristics of Plasmodium during an Avian Malaria Outbreak in Penguins in Brazil. Parasitol. Res. 2019, 118, 3497–3508. [Google Scholar] [CrossRef] [PubMed]
- Sijbranda, D.C.; Hunter, S.; Howe, L.; Lenting, B.; Argilla, L.; Gartrell, B.D. Cases of Mortality in Little Penguins (Eudyptula minor) in New Zealand Associated with Avian Malaria. N. Z. Vet. J. 2017, 65, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Sallaberry-Pincheira, N.; Gonzalez-Acuña, D.; Herrera-Tello, Y.; Dantas, G.P.M.; Luna-Jorquera, G.; Frere, E.; Valdés-Velasquez, A.; Simeone, A.; Vianna, J.A. Molecular Epidemiology of Avian Malaria in Wild Breeding Colonies of Humboldt and Magellanic Penguins in South America. Ecohealth 2015, 12, 267–277. [Google Scholar] [CrossRef]
- Levin, I.I.; Outlaw, D.C.; Vargas, F.H.; Parker, P.G. Plasmodium Blood Parasite Found in Endangered Galapagos Penguins (Spheniscus mendiculus). Biol. Conserv. 2009, 142, 3191–3195. [Google Scholar] [CrossRef]
Parasite Genus | Species a | Live | Deceased (All Outdoor) | Total | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indoor (Complete and Partial) | Outdoor | ||||||||||||
Individuals | Positive | Prevalence | Individuals | Positive b | Prevalence b | Individuals | Positive b | Prevalence b | Individuals | Positive b | Prevalence b | ||
Plasmodium | King penguin (Ap. patagonicus) | 36 | 0 | 0 | 18 | 0 | 0 | 3 | 0 | 0 | 57 | 0 | 0 |
Emperor penguin (Ap. forsteri) | 2 | 0 | 0 | 2 | 0 | 0 | |||||||
Adelie penguin (Py. adeliae) | 14 | 0 | 0 | 14 | 0 | 0 | |||||||
Chinstrap penguin (Py. antarcticus) | 15 | 0 | 0 | 15 | 0 | 0 | |||||||
Gentoo penguin (Py. papua) | 69 | 0 | 0 | 10 | 0 (1) | 0 (10.0) | 79 | 0 (1) | 0 (1.27) | ||||
Fairy penguin (El. minor) | 2 | 0 | 0 | 10 | 0 | 0 | 12 | 0 | 0 | ||||
Humboldt penguin (Sp. humboldti) | 21 | 0 | 0 | 574 | 27 (34) | 4.70 (5.92) | 23 | 12 (14) | 52.17 (60.87) | 618 | 39 (48) | 6.31 (7.77) | |
Magellanic penguin (Sp. magellanicus) | 58 | 1 | 1.72 | 88 | 14 (19) | 15.91 (21.59) | 4 | 2 | 50.00 | 150 | 17 (22) | 11.33 (14.67) | |
African penguin (Sp. demersus) | 24 | 1 | 4.17 | 167 | 4 (14) | 2.40 (8.38) | 7 | 0 | 0 | 198 | 5 (15) | 2.52 (7.58) | |
Macaroni penguin (Es. chrysolophus) | 1 | 1 | 100 | 1 | 1 | 100 | |||||||
N. rockhopper penguin (Es. moseleyi) | 23 | 0 | 0 | 7 | 0 | 0 | 30 | 0 | 0 | ||||
S. rockhopper penguin (Es. chrysocome) | 8 | 0 | 0 | 14 | 1 | 7.14 | 5 | 2 | 40.00 | 27 | 3 | 11.11 | |
total | 271 | 3 | 1.11 | 880 | 46 (69) | 5.23 (7.84) | 52 | 16 (18) | 30.77 (34.62) | 1203 | 65 (90) | 5.40 (7.48) | |
Haemoproteus | King penguin (Ap. patagonicus) | 36 | 0 | 0 | 18 | 0 | 0 | 3 | 0 | 0 | 57 | 0 | 0 |
Emperor penguin (Ap. forsteri) | 2 | 0 | 0 | 2 | 0 | 0 | |||||||
Adelie penguin (Py. adeliae) | 14 | 0 | 0 | 14 | 0 | 0 | |||||||
Chinstrap penguin (Py. antarcticus) | 15 | 0 | 0 | 15 | 0 | 0 | |||||||
Gentoo penguin (Py. papua) | 69 | 0 | 0 | 10 | 1 | 10.00 | 79 | 1 | 1.27 | ||||
Fairy penguin (El. minor) | 2 | 0 | 0 | 10 | 0 | 0 | 12 | 0 | 0 | ||||
Humboldt penguin (Sp. humboldti) | 21 | 0 | 0 | 574 | 2 (5) | 23 | 1 | 4.35 | 618 | 3 (6) | 0.49 (0.97) | ||
Magellanic penguin (Sp. magellanicus) | 58 | 0 | 0 | 88 | 4 (7) | 4.55 (7.95) | 4 | 0 | 0 | 150 | 4 (7) | 2.67 (4.67) | |
African penguin (Sp. demersus) | 24 | 1 | 4.17 | 167 | 4 (5) | 2.40 (3.00) | 7 | 0 | 0 | 198 | 5 (6) | 2.52 (3.03) | |
Macaroni penguin (Es. chrysolophus) | 1 | 0 | 0 | 1 | 0 | 0 | |||||||
N. rockhopper penguin (Es. moseleyi) | 23 | 0 | 0 | 7 | 0 | 0 | 30 | 0 | 0 | ||||
S. rockhopper penguin (Es. chrysocome) | 8 | 0 | 0 | 14 | 0 (1) | 0 (7.14) | 5 | 0 | 0 | 27 | 0 (1) | 0 (3.70) | |
total | 271 | 1 | 0.37 | 880 | 11 (19) | 1.25 (2.16) | 52 | 1 | 1.92 | 1203 | 13 (21) | 1.08 (1.75) |
Lineages a | Distribution | Species b | Detected Species in Japan c | Reference | |
---|---|---|---|---|---|
pAPTPAT01 | Japan only | host | 1 | Ap. patagonicus (HK, TY) | MalAvi d |
pCXINA01 * | Japan only | host | 2 | Sp. humbodti (TY, KU); Es. chrysocome (TY) | this study |
vector | 1 | Cx. inatomii (NI) | [36] | ||
pCXPIP09 * | Japan only | host | 11 | Larus argentatus (CB); El. minor (TY); Sp. humboldti (HK, AK, TY, NI, KN, OS); Sp. magellanicus (TY, NI, YN, HG, OI); Sp. demersus (TY, KY, FO); Es. chrysolophus (TY); Es. chrysocome (NI); Ardea cinirea (NS); Cyanopica cyanus (TY); Corvus corone (CB); Corvus macrorhynchos (TY) | [19,29,37,38]; MalAvi; this study |
vector | 5 | Cx. pipiens (TY, KN); Cx. inatomii (NI); Cx. sasai (TY); Lt. vorax (KN) | [17,36,39,40] | ||
pCXPIP10 * | Asia, Europe | host | 2 | Sp. humboldti (TY); Botaurus sinensis (CB) | [37]; this study |
vector | 3 | Cx. pipiens (NI); Cx. inatomii (NI) | [41] | ||
pEUDCHR02 | Japan only | host | 1 | Es. chrysocome (TY) | MalAvi |
pGALLUS02 | Japan and Thailand | host | 4 | Es. chrysocome (NS); Crossoptilon crossoptilon (KN); Streptopelia orientals (KN) | [42]; MalAvi |
vector | 2 | ||||
pGRW04 * | all except Antarctica | host | 91 | Sp. humboldti (TY, YA, KG); Hypsipetes amaurotis (TY); Horornis diphone (TY); Zosterops japonicus (TY); Monticola solitarius (TY) | [19,43]; MalAvi; this study |
vector | 3 | Cx. pipiens (TY, KN, NI); Cx. quinquefasciatus (OK) | [36,39,41,44] | ||
pGRW06 * | all continents except Antarctica | host | 103 | Sp. humboldti (NS); Sp. magellanicus (NI); Hypsipetes amaurotis (TY); Horornis diphone (TY); Zosterops japonicus (TY); Troglodytes troglodytes (ST); Zoothera aurea (TY); Monticola solitarius (TY); Coccothraustes coccothraustes (TY); Chloris sinica (TY) | [43,45]; this study |
vector | 3 | ||||
pGRW11 * | Asia, Europe, Africa | host | 55 | Sp. humboldti (KN); Sp. magellanicus (YA); Sp. demersus (TY);Es. chrysolophus (YA) | [19]; MalAvi; this study |
vector | 2 | Cx. pipiens (TY); Cx. quinquefasciatus (OK) | [44,46] | ||
pLINN1 | Asia, Australia, Europe, North America | host | 32 | Sp. humboldtii (TY) | MalAvi |
vector | 6 | ||||
pLINOLI01 | Asia, Europe, Africa | host | 28 | Sp. demersus (TY) | MalAvi |
pNYCNYC02 * | Japan only | host | 5 | Sp. humboldti (TY, KY, OS, OI); Sp. magellanicus (IS, HG, OI); Nycticorax nycticorax (CB); Luscinia cyanura (ST); Fringilla montifringilla | [37,47]; MalAvi; this study |
pPADOM02 * | Asia, Australia, Europe, Africa, North America | host | 20 | El. minor (TY); Sp. magellanicus (OI); Corvus corone; Passer montanus (CB) | [37,48]; MalAvi; this study |
vector | 6 | Ae. albopictus (KN, NS); Cx. bitaeniorhynchus (NS); Cx. inatomii (NS); Cx. pipiens (TY, KN, NI); Tr. bambusa (KN); Lt. vorax (KN) | [17,29,38,39,46] | ||
pSGS1 * | all continents except Antarctica | host | 151 | Sp. humboldti (TY, KN, KY, OS, YA, FO); Sp. magellanicus (YN); Sp. demersus (TY, KY); Es. chrysolophus (TY, YA); Hypsipetes amaurotis (CB); Spodiopsar cineraceus (CB, KN) | [19,37]; MalAvi; this study |
vector | 9 | Ae. albopictus (KN); Cx. pipiens (TY, KN); Cx. sasai (TY); Lt. vorax (KN); Cu. sigaensis (KN) | [17,30,36,39,40,49] | ||
pSPHUM01 | Japan only | host | 1 | Sp. humboldtii (TY) | MalAvi |
pSPHUM02 | Japan only | host | 1 | Sp. humboldtii (TY) | MalAvi |
pSPHUM03 * | Japan only | host | 3 | Sp. humboldti (NI, SZ); Sp. demersus (SZ); Calonectris leucomelas (NI) | [29]; MalAvi; this study |
pSPHUM05 * | Japan only | host | 1 | Sp. humboldti (HK, MG, NI) | [29]; this study |
vector | 1 | Cx. pipiens (NI) | [29] | ||
pSW5 | Asia, Europe, Africa, North America | host | 23 | Anas platyrhynchos (HK, CB); Fulica atra (TY, CB); Grus japonensis (HK); Podiceps cristatus (CB); Gallinago megala (IB, CB, OK); Gallinago hardwickii (IB); Sp. magellanicus (HG); Calonectris leucomelas (TY); Botaurus eurhythmus (NS) | [19,37,38,50,51] |
pSYCON02 * | Japan and Spain | host | 3 | Sp. humboldti (KO); Sp. magellanicus (OI) | this study |
vector | 1 | Cx. pipiens (KN) | [39] | ||
pTURPAL01 * | Japan only | host | 2 | Py. papua (HK); Turdus pallidus (OK) | MalAvi; this study |
hAPPAT01 | Japan only | host | 1 | Ap. patagonicus (HK) | MalAvi |
hHYPHI07 | Asia | host | 5 | Es. chrysocome (HK); Hypsipetes amaurotis (CB); Phylloscopus borealoides (CB) | [37]; MalAvi |
hPYGPAP01 * | Japan only | host | 1 | Py. papua (HK) | this study |
hSPHUM04 | Japan only | host | 1 | Sp. humboldtii (KN) | MalAvi |
hSPHUM06 * | Japan only | host | 1 | Sp. humboldtii (SZ) | this study |
hSPMAG12 * | Japan only | host | 5 | Larus crassirostris (CB); Sp. humboldti (TY, NI); Sp. magellanicus (MG, IS, OI); Sp. demersus (SZ, KY, OS); Es. chrysocome (NI) | [28,29]; MalAvi; this study |
Parasite Genus | Species a | Live | Deceased (All Outdoor) | Total | |||||
---|---|---|---|---|---|---|---|---|---|
Indoor | Outdoor | ||||||||
Individuals | Positive b | Individuals | Positive b | Individuals | Positive b | Individuals | Positive b | ||
Plasmodium | King penguin (Ap. patagonicus) | 33 | 0/0 | 1 | 0/0 | 34 | 0/0 | ||
Emperor penguin (Ap. forsteri) | 2 | 0/0 | 2 | 0/0 | |||||
Adelie penguin (Py. adeliae) | 14 | 0/0 | 14 | 0/0 | |||||
Chinstrap penguin (Py. antarcticus) | 15 | 0/0 | 15 | 0/0 | |||||
Gentoo penguin (Py. papua) | 61 | 0/0 | 1 | 0/0 | 62 | 0/0 | |||
Fairy penguin (El. minor) | 2 | 0/0 | 2 | 0/0 | |||||
Humboldt penguin (Sp. humboldti) | 21 | 0/0 | 446 | 21/9 | 5 | 5/5 | 472 | 26/14 | |
Magellanic penguin (Sp. magellanicus) | 58 | 1/1 | 84 | 14/10 | 1 | 0/0 | 143 | 15/11 | |
African penguin (Sp. demersus) | 19 | 0/0 | 147 | 13/12 | 1 | 0/0 | 167 | 13/12 | |
N. rockhopper penguin (Es. moseleyi) | 23 | 0/0 | 7 | 0/0 | 30 | 0/0 | |||
S. rockhopper penguin (Es. chrysocome) | 8 | 0/0 | 4 | 0/0 | 12 | 0/0 | |||
total | 254 | 1/1 | 692 | 48/31 | 7 | 5/5 | 953 | 54/37 | |
Haemoproteus | King penguin (Ap. patagonicus) | 33 | 0/0 | 1 | 0/0 | 34 | 0/0 | ||
Emperor penguin (Ap. forsteri) | 2 | 0/0 | 2 | 0/0 | |||||
Adelie penguin (Py. adeliae) | 14 | 0/0 | 14 | 0/0 | |||||
Chinstrap penguin (Py. antarcticus) | 15 | 0/0 | 15 | 0/0 | |||||
Gentoo penguin (Py. papua) | 61 | 0/0 | 1 | 0/0 | 62 | 0/0 | |||
Fairy penguin (El. minor) | 2 | 0/0 | 2 | 0/0 | |||||
Humboldt penguin (Sp. humboldti) | 21 | 0/0 | 446 | 1/0 | 5 | 0/0 | 472 | 1/0 | |
Magellanic penguin (Sp. magellanicus) | 58 | 0/0 | 84 | 7/4 | 1 | 0/0 | 143 | 7/4 | |
African penguin (Sp. demersus) | 19 | 1/0 | 147 | 4/2 | 1 | 0/0 | 167 | 5/2 | |
N. rockhopper penguin (Es. moseleyi) | 23 | 0/0 | 7 | 0/0 | 30 | 0/0 | |||
S. rockhopper penguin (Es. chrysocome) | 8 | 0/0 | 4 | 1/1 | 12 | 1/1 | |||
254 | 1/0 | 692 | 13/7 | 7 | 0/0 | 953 | 14/7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inumaru, M.; Shimizu, M.; Shibata, A.; Murata, K.; Sato, Y. The Difficulties of Ex Situ Conservation: A Nationwide Investigation of Avian Haemosporidia Among Captive Penguins in Japan. J. Zool. Bot. Gard. 2025, 6, 7. https://doi.org/10.3390/jzbg6010007
Inumaru M, Shimizu M, Shibata A, Murata K, Sato Y. The Difficulties of Ex Situ Conservation: A Nationwide Investigation of Avian Haemosporidia Among Captive Penguins in Japan. Journal of Zoological and Botanical Gardens. 2025; 6(1):7. https://doi.org/10.3390/jzbg6010007
Chicago/Turabian StyleInumaru, Mizue, Misa Shimizu, Ayumi Shibata, Koichi Murata, and Yukita Sato. 2025. "The Difficulties of Ex Situ Conservation: A Nationwide Investigation of Avian Haemosporidia Among Captive Penguins in Japan" Journal of Zoological and Botanical Gardens 6, no. 1: 7. https://doi.org/10.3390/jzbg6010007
APA StyleInumaru, M., Shimizu, M., Shibata, A., Murata, K., & Sato, Y. (2025). The Difficulties of Ex Situ Conservation: A Nationwide Investigation of Avian Haemosporidia Among Captive Penguins in Japan. Journal of Zoological and Botanical Gardens, 6(1), 7. https://doi.org/10.3390/jzbg6010007