Hydro, Wind, and Geothermal: Navigating the Compatibility of Renewable Energy Infrastructure with Tourism
Abstract
:1. Introduction
- How do tourism service providers perceive the compatibility of three types of REI—wind, hydro, and geothermal—with tourism?
- Which factors affect the perceptions of tourism service providers regarding the compatibility of the three types of REI with tourism?
2. Review of Existing Research
3. Renewable Energy Harnessing in Iceland
4. Methods
5. Results: The Compatibility of Hydro, Geothermal, and Wind Energy Infrastructure with Tourism
5.1. Tourism Service Providers’ Attitudes towards Three Types of REI
5.2. Factors Shaping the Perceived Compatibility of Hydro, Geothermal, and Wind Energy Infrastructure with Tourism
5.2.1. Landscape and Environmental Impacts
5.2.2. Potential of REI as a Tourist Attraction
Uniqueness and Rarity
Interesting Design
5.2.3. Reversibility
5.2.4. The Image of REI
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- REN21. Renewables 2023 Global Status Report; REN21 Secretariat: Paris, France, 2023. [Google Scholar]
- IPCC. Current Status and Trends. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar]
- IEA. CO2 Emissions in 2022; IEA: Paris, France, 2023. [Google Scholar]
- IEA. Net Zero by 2050; IEA: Paris, France, 2021. [Google Scholar]
- Wolsink, M. Wind power implementation: The nature of public attitudes: Equity and fairness instead of ‘backyard motives’. Renew. Sustain. Energy Rev. 2007, 11, 1188–1207. [Google Scholar] [CrossRef]
- Segreto, M.; Principe, L.; Desormeaux, A.; Torre, M.; Tomassetti, L.; Tratzi, P.; Paolini, V.; Petracchini, F. Trends in social acceptance of renewable energy across Europe—A literature review. Int. J. Environ. Res. Public Health 2020, 17, 9161. [Google Scholar] [CrossRef]
- Leiren, M.D.; Aakre, S.; Linnerud, K.; Julsrud, T.E.; Di Nucci, M.-R.; Krug, M. Community acceptance of wind energy developments: Experience from wind energy scarce regions in Europe. Sustainability 2020, 12, 1754. [Google Scholar] [CrossRef]
- Sæþórsdóttir, A.D.; Wendt, M.; Tverijonaite, E. Wealth of wind and visitors: Tourist industry attitudes towards wind energy development in Iceland. Land 2021, 10, 693. [Google Scholar] [CrossRef]
- Tverijonaite, E.; Sæþórsdóttir, A.D.; Ólafsdóttir, R.; Hall, C.M. How close is too close? Mapping the impact area of renewable energy infrastructure on tourism. Energy Res. Soc. Sci. 2022, 90, 102574. [Google Scholar] [CrossRef]
- Mordue, T.; Moss, O.; Johnston, L. The impacts of onshore-windfarms on a UK rural tourism landscape: Objective evidence, local opposition, and national politics. J. Sustain. Tour. 2020, 28, 1882–1904. [Google Scholar] [CrossRef]
- Toke, D. Explaining wind power planning outcomes: Some findings from a study in England and Wales. Energy Policy 2005, 33, 1527–1539. [Google Scholar] [CrossRef]
- Rudolph, D. The resurgent conflict between offshore wind farms and tourism: Underlying storylines. Scott. Geogr. J. 2014, 130, 168–187. [Google Scholar] [CrossRef]
- Kohsaka, R.; Kohyama, S. Contested renewable energy sites due to landscape and socio-ecological barriers: Comparison of wind and solar power installation cases in Japan. Energy Environ. 2022, 34, 0958305X221115070. [Google Scholar] [CrossRef]
- Althingi. Þingsályktun um Áætlun um Vernd og Orkunýtingu Landsvæða [Parliamentary Resolution on the Master Plan for Nature Protection and Energy Utilization]; Althingi: Reykjavík, Iceland, 2022. [Google Scholar]
- Sæþórsdóttir, A.D.; Ólafsdóttir, R.; Smith, D. Turbulent times: Tourists’ attitudes towards wind turbines in the Southern Highlands in Iceland. Int. J. Sustain. Energy 2018, 37, 886–901. [Google Scholar] [CrossRef]
- Voltaire, L.; Koutchade, O.P. Public acceptance of and heterogeneity in behavioral beach trip responses to offshore wind farm development in Catalonia (Spain). Resour. Energy Econ. 2020, 60, 101152. [Google Scholar] [CrossRef]
- Frantál, B.; Kunc, J. Wind turbines in tourism landscapes: Czech Experience. Ann. Tour. Res. 2011, 38, 499–519. [Google Scholar] [CrossRef]
- Smythe, T.; Bidwell, D.; Moore, A.; Smith, H.; McCann, J. Beyond the beach: Tradeoffs in tourism and recreation at the first offshore wind farm in the United States. Energy Res. Soc. Sci. 2020, 70, 101726. [Google Scholar] [CrossRef]
- Rahman, A.; Farrok, O.; Haque, M.M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Kienast, F.; Huber, N.; Hergert, R.; Bolliger, J.; Moran, L.S.; Hersperger, A.M. Conflicts between decentralized renewable electricity production and landscape services—A spatially-explicit quantitative assessment for Switzerland. Renew. Sustain. Energy Rev. 2017, 67, 397–407. [Google Scholar] [CrossRef]
- Rohrig, K.; Berkhout, V.; Callies, D.; Durstewitz, M.; Faulstich, S.; Hahn, B.; Jung, M.; Pauscher, L.; Seibel, A.; Shan, M.; et al. Powering the 21st century by wind energy—Options, facts, figures. Appl. Phys. Rev. 2019, 6, 031303. [Google Scholar] [CrossRef]
- Pasqualetti, M.J.; Smardon, R. Conserving scenery during an energy transition. In The Renewable Energy Landscape: Preserving Scenic Values in our Sustainable Future; Apostol, D., Palmer, J., Pasqualetti, M., Smardon, R., Sullivan, R., Eds.; Routledge: New York, NY, USA, 2017; pp. 17–40. [Google Scholar]
- Nazir, M.S.; Ali, N.; Bilal, M.; Iqbal, H.M.N. Potential environmental impacts of wind energy development: A global perspective. Curr. Opin. Environ. Sci. Health 2020, 13, 85–90. [Google Scholar] [CrossRef]
- Reusch, C.; Lozar, M.; Kramer-Schadt, S.; Voigt, C.C. Coastal onshore wind turbines lead to habitat loss for bats in Northern Germany. J. Environ. Manag. 2022, 310, 114715. [Google Scholar] [CrossRef]
- Moran, E.F.; Lopez, M.C.; Moore, N.; Müller, N.; Hyndman, D.W. Sustainable hydropower in the 21st century. Proc. Natl. Acad. Sci. USA 2018, 115, 11891–11898. [Google Scholar] [CrossRef]
- Greiner, C.; Klagge, B.; Owino, E.A. The political ecology of geothermal development: Green sacrifice zones or energy landscapes of value? Energy Res. Soc. Sci. 2023, 99, 103063. [Google Scholar] [CrossRef]
- Ioannidis, R.; Koutsoyiannis, D. A review of land use, visibility and public perception of renewable energy in the context of landscape impact. Appl. Energy 2020, 276, 115367. [Google Scholar] [CrossRef]
- Navratil, J.; Picha, K.; Buchecker, M.; Martinat, S.; Svec, R.; Brezinova, M.; Knotek, J. Visitors’ preferences of renewable energy options in “green” hotels. Renew. Energy 2019, 138, 1065–1077. [Google Scholar] [CrossRef]
- Sæþórsdóttir, A.D.; Hall, C.M. Contested development paths and rural communities: Sustainable energy or sustainable tourism in Iceland? Sustainability 2019, 11, 3642. [Google Scholar] [CrossRef]
- Tverijonaite, E.; Sæþórsdóttir, A.D.; Ólafsdóttir, R.; Hall, C.M. Wilderness: A resource or a sanctuary? Views of tourism service providers. Scand. J. Hosp. Tour. 2023, 23, 195–225. [Google Scholar] [CrossRef]
- Beer, M.; Rybár, R.; Kaľavský, M. Renewable energy sources as an attractive element of industrial tourism. Curr. Issues Tour. 2018, 21, 2147–2159. [Google Scholar] [CrossRef]
- Frantál, B.; Urbánková, R. Energy tourism: An emerging field of study. Curr. Issues Tour. 2017, 20, 1395–1412. [Google Scholar] [CrossRef]
- Alekseeva, N.; Hercegová, K. Energy and industrial tourism: A specific niche on the tourism market. In Proceedings of the E3S Web of Conferences, online, 9 April 2021; Volume 250, p. 01002. [Google Scholar] [CrossRef]
- Pavlakovič, B.; Demir, M.R.; Pozvek, N.; Turnšek, M. Role of tourism in promoting geothermal energy: Public interest and motivation for geothermal energy tourism in Slovenia. Sustainability 2021, 13, 10353. [Google Scholar] [CrossRef]
- Liu, D.; Curtis, C.; Upchurch, R.S. The evolving field of wind energy tourism: An application of the theory of reasoned action. Tour. Rev. Int. 2019, 23, 37–53. [Google Scholar] [CrossRef]
- Óladóttir, O.Þ. Erlendir Ferðamenn á Íslandi 2019: Lýðfræði, Ferðahegðun og Viðhorf [Foreign Tourists in Iceland 2019: Demographics, Travel Behavior and Attitudes]; Icelandic Tourist Board: Reykjavík, Iceland, 2020. [Google Scholar]
- Dalton, G.J.; Lockington, D.A.; Baldock, T.E. A survey of tourist attitudes to renewable energy supply in Australian hotel accommodation. Renew. Energy 2008, 33, 2174–2185. [Google Scholar] [CrossRef]
- Salak, B.; Kienast, F.; Olschewski, R.; Spielhofer, R.; Wissen Hayek, U.; Grêt-Regamey, A.; Hunziker, M. Impact on the perceived landscape quality through renewable energy infrastructure. A discrete choice experiment in the context of the Swiss energy transition. Renew. Energy 2022, 193, 299–308. [Google Scholar] [CrossRef]
- Voke, M.; Fairley, I.; Willis, M.; Masters, I. Economic evaluation of the recreational value of the coastal environment in a marine renewables deployment area. Ocean Coast. Manag. 2013, 78, 77–87. [Google Scholar] [CrossRef]
- Sæþórsdóttir, A.D.; Hall, C.M. Floating away: The impact of hydroelectric power stations on tourists’ experience in Iceland. Sustainability 2018, 10, 2315. [Google Scholar] [CrossRef]
- National Energy Authority. Energy. Available online: https://orkustofnun.is/en/information/numerical_data/electricity (accessed on 7 November 2023).
- Karlsson, G. Iceland’s 1100 Years. History of a Marginal Society; C. Hurst & Co.: London, UK, 2000. [Google Scholar]
- Landsvirkjun. Búrfell Power Station. Available online: https://www.landsvirkjun.com/powerstations/burfell (accessed on 7 November 2023).
- National Energy Authority. Orkutölur 2021 [Energy Numbers 2021]. Available online: https://gogn.orkustofnun.is/os-onnur-rit/Orkutolur-2021-islenska-A-4.pdf (accessed on 7 November 2023).
- National Energy Authority. OS-2020-T013-01: Raforkunotkun á Íslandi 2019 [OS-2020-T013-01: Electricity Consumption in Iceland 2019]. Available online: https://orkustofnun.is/gogn/Talnaefni/OS-2020-T013-01.pdf?fbclid=IwAR0zp-t9tGDhP5nrUsogQdpms-9OsB6qLlnowL9WmOK_ZfIDHNnZxAXJWU8 (accessed on 7 November 2023).
- National Energy Authority. Geothermal Energy. Available online: https://orkustofnun.is/en/natural_resources/geothermal_energy (accessed on 7 November 2023).
- Landsvirkjun. Bjarnarflag Geothermal Station. Available online: https://www.landsvirkjun.com/powerstations/bjarnarflag (accessed on 7 November 2023).
- Landsvirkjun. Hafið. Available online: https://www.landsvirkjun.com/powerstations/hafid (accessed on 7 November 2023).
- Pétursdóttir, G. Skýrsla Verkefnisstjórnar 4. Áfanga Rammaáætlunar um Vernd og Orkunýtingu Landsvæða 2017–2021 [Final Report of the Steering Committee for the 4th Phase of the Icelandic Master Plan for Nature Protection and Energy Utilization 2017–2021]; The steering committee for the 4th Phase of the Icelandic Master Plan for Nature Protection and Energy Utilization and the Ministry for the Environment and Natural Resources: Reykjavík, Iceland, 2021.
- Logadóttir, H.H. Iceland’s sustainable energy story: A model for the world? UN Chron. 2015, 52, 40–45. [Google Scholar] [CrossRef]
- Ministry for the Environment and Natural Resources. Aðgerðaáætlun í Loftslagsmálum [Climate Action Plan]; Ministry for the Environment and Natural Resources: Reykjavík, Iceland, 2020.
- The Environment Agency of Iceland. Report on Policies, Measures and Projections: Projections of Greenhouse Gas Emissions in Iceland until 2040; The Environment Agency of Iceland: Reykjavík, Iceland, 2022.
- Ministry for the Environment and Natural Resources. Iceland’s 2020 Climate Action Plan; Ministry for the Environment and Natural Resources: Reykjavík, Iceland, 2020.
- Government of Iceland. Agreement on the Platform for the Coalition Government of the Independence Party, the Left Green Movement and the Progressive Party; Government of Iceland: Reykjavík, Iceland, 2021.
- Ministry for the Environment and Natural Resources. On the Path to Climate Neutrality. Iceland’s Long-Term Low Emission Development Strategy; Ministry for the Environment and Natural Resources: Reykjavík, Iceland, 2021.
- National Energy Authority. Raforkuspá Orkustofnunar 2022-50 [Energy Authority’s Electricity Forecast 2020-50]. Available online: https://orkustofnun.is/raforkueftirlit/raforkuspa (accessed on 7 November 2023).
- Implement Consulting Group. Engin Orkusóun. Möguleikar á Betri Raforkunýtni á Íslandi [No Wasted Energy. Possibilities for Better Electricity Efficiency in Iceland]; Implement Consulting Group: Copenhagen, Denmark, 2023. [Google Scholar]
- Landvernd. Sviðsmyndir Landverndar um Raforkunotkun 2040: Orkuskipti Sem við Getum Verið Stolt af. Loftslagsvernd, Orkuskipti og Náttúruvernd Haldist í Hendur [Landvernd Scenarios for Electricity Consumption 2040: An Energy Transition We Can Be Proud of. Climate Protection, Energy Transition and Nature Conservation go Hand in Hand]; Landvernd: Reykjavík, Iceland, 2022. [Google Scholar]
- Bryman, A. Social Research Methods, 5th ed.; Oxford University Press: New York, NY, USA, 2016. [Google Scholar]
- Hung, K.; Law, R. An overview of internet-based surveys in hospitality and tourism journals. Tour. Manag. 2011, 32, 717–724. [Google Scholar] [CrossRef]
- Shih, T.-H.; Fan, X. Comparing response rates from web and mail surveys: A meta-analysis. Field Methods 2008, 20, 249–271. [Google Scholar] [CrossRef]
- Creswell, J.W. Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research, 4th ed.; Pearson: Boston, MA, USA, 2012. [Google Scholar]
- Corbin, J.; Strauss, A.L. Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory, 4th ed.; Sage Publications: Thousand Oaks, CA, USA, 2015. [Google Scholar]
- IRENA. Renewable Capacity Statistics 2023; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2023. [Google Scholar]
- Vilhjálmsdóttir, V.; Jóhannesson, H.; Bjarnadóttir, E.J. Bolaölduvirkjun. Greining og Mat á Áhrifum Virkjanaframkvæmda á Ferðaþjónustu og Útivist [Bolaalda Geothermal Power Plant. Analysis and Assessment of the Impact of Power Plant Construction on Tourism And Outdoor Recreation]; Icelandic Tourism Research Centre: Akureyri, Iceland, 2023. [Google Scholar]
- Szumilas-Kowalczyk, H.; Pevzner, N.; Giedych, R. Long-term visual impacts of aging infrastructure: Challenges of decommissioning wind power infrastructure and a survey of alternative strategies. Renew. Energy 2020, 150, 550–560. [Google Scholar] [CrossRef]
- Sæþórsdóttir, A.D. Tourism struggling as the Icelandic wilderness is developed. Scand. J. Hosp. Tour. 2010, 10, 334–357. [Google Scholar] [CrossRef]
- Windemer, R.; Cowell, R. Are the impacts of wind energy reversible? Critically reviewing the research literature, the governance challenges and presenting an agenda for social science. Energy Res. Soc. Sci. 2021, 79, 102162. [Google Scholar] [CrossRef]
- Wind Energy Technologies Office. Wind Repowering Helps set the Stage for Energy Transition. 2021. Available online: https://www.energy.gov/eere/wind/articles/wind-repowering-helps-set-stage-energy-transition (accessed on 7 November 2023).
- Dalton, G.J.; Lockington, D.A.; Baldock, T.E. A survey of tourist operator attitudes to renewable energy supply in Queensland, Australia. Renew. Energy 2007, 32, 567–586. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tverijonaite, E.; Sæþórsdóttir, A.D. Hydro, Wind, and Geothermal: Navigating the Compatibility of Renewable Energy Infrastructure with Tourism. Tour. Hosp. 2024, 5, 16-31. https://doi.org/10.3390/tourhosp5010002
Tverijonaite E, Sæþórsdóttir AD. Hydro, Wind, and Geothermal: Navigating the Compatibility of Renewable Energy Infrastructure with Tourism. Tourism and Hospitality. 2024; 5(1):16-31. https://doi.org/10.3390/tourhosp5010002
Chicago/Turabian StyleTverijonaite, Edita, and Anna Dóra Sæþórsdóttir. 2024. "Hydro, Wind, and Geothermal: Navigating the Compatibility of Renewable Energy Infrastructure with Tourism" Tourism and Hospitality 5, no. 1: 16-31. https://doi.org/10.3390/tourhosp5010002
APA StyleTverijonaite, E., & Sæþórsdóttir, A. D. (2024). Hydro, Wind, and Geothermal: Navigating the Compatibility of Renewable Energy Infrastructure with Tourism. Tourism and Hospitality, 5(1), 16-31. https://doi.org/10.3390/tourhosp5010002