Limited-Stage Small-Cell Lung Cancer: Current Progress and the Next Frontier
Abstract
:Simple Summary
Abstract
1. Introduction
2. Current Role of Radiation in Managing LS-SCLC
2.1. Concurrent Chemotherapy with Thoracic Radiation
2.2. Optimal LS-SCLC Radiation Fractionation
2.3. The Role of Prophylactic Cranial Irradiation
3. Novel Radiation Approaches to Manage LS-SCLC
3.1. Intensity Modulated Radiation Therapy (IMRT)
3.1.1. IMRT for Thoracic RT
3.1.2. IMRT for Hippocampal-Avoidance PCI (HA-PCI)
3.2. Stereotactic Body Radiation Therapy (SBRT)
3.3. Proton Beam Therapy
3.4. Stereotactic Radiosurgery (SRS) and Whole-Brain Radiation Therapy (WBRT)
4. Novel Therapeutic Strategies for LS-SCLC
4.1. Targeted Therapies and Molecular Subtypes
4.1.1. DNA Damage Response Inhibitors (DDR)
4.1.2. Delta-like Protein 3 (DLL3)
4.2. Immunotherapies
4.3. Pre-Clinical and Translational Studies
5. Discussion
5.1. Current Limitations
5.2. Risks and Benefits with Multi-Modal Combinatorial Therapies
5.3. Molecular Subtyping of SCLC Leading towards an Understanding of Inter- and Intra-Tumour Heterogeneity
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ahmad, I.; Chufal, K.S.; Gupta, S.; Bhatt, C.P. Defining Limited Stage Small Cell Lung Cancer: A Radiation Oncologist’s Perspective. BMJ Case Rep. 2018, 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudin, C.M.; Brambilla, E.; Faivre-Finn, C.; Sage, J. Small-Cell Lung Cancer. Nat. Rev. Dis. Primers 2021, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Furrukh, M. Tobacco Smoking and Lung Cancer: Perception-Changing Facts. Sultan Qaboos Univ. Med. J. 2013, 13, 345–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anna, F.; Farago, F.K.K. Current Standards for Clinical Management of Small Cell Lung Cancer. Transl. Lung Cancer Res. 2018, 7, 69. [Google Scholar]
- Turrisi, A.T., 3rd; Kim, K.; Blum, R.; Sause, W.T.; Livingston, R.B.; Komaki, R.; Wagner, H.; Aisner, S.; Johnson, D.H. Twice-Daily Compared with Once-Daily Thoracic Radiotherapy in Limited Small-Cell Lung Cancer Treated Concurrently with Cisplatin and Etoposide. N. Engl. J. Med. 1999, 340, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Faivre-Finn, C.; Snee, M.; Ashcroft, L.; Appel, W.; Barlesi, F.; Bhatnagar, A.; Bezjak, A.; Cardenal, F.; Fournel, P.; Harden, S.; et al. Concurrent Once-Daily versus Twice-Daily Chemoradiotherapy in Patients with Limited-Stage Small-Cell Lung Cancer (CONVERT): An Open-Label, Phase 3, Randomised, Superiority Trial. Lancet Oncol. 2017, 18, 1116–1125. [Google Scholar] [CrossRef] [Green Version]
- Noronha, V.; Sekhar, A.; Patil, V.M.; Menon, N.; Joshi, A.; Kapoor, A.; Prabhash, K. Systemic Therapy for Limited Stage Small Cell Lung Carcinoma. J. Thorac. Dis. 2020, 12, 6275. [Google Scholar] [CrossRef] [PubMed]
- Warde, P.; Payne, D. Does Thoracic Irradiation Improve Survival and Local Control in Limited-Stage Small-Cell Carcinoma of the Lung? A Meta-Analysis. J. Clin. Oncol. 1992, 10, 890–895. [Google Scholar] [CrossRef]
- Pignon, J.P.; Arriagada, R.; Ihde, D.C.; Johnson, D.H.; Perry, M.C.; Souhami, R.L.; Brodin, O.; Joss, R.A.; Kies, M.S.; Lebeau, B. A Meta-Analysis of Thoracic Radiotherapy for Small-Cell Lung Cancer. N. Engl. J. Med. 1992, 327, 1618–1624. [Google Scholar] [CrossRef]
- Murray, N.; Coy, P.; Pater, J.L.; Hodson, I.; Arnold, A.; Zee, B.C.; Payne, D.; Kostashuk, E.C.; Evans, W.K.; Dixon, P. Importance of Timing for Thoracic Irradiation in the Combined Modality Treatment of Limited-Stage Small-Cell Lung Cancer. The National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 1993, 11, 336–344. [Google Scholar] [CrossRef]
- Fried, D.B.; Morris, D.E.; Poole, C.; Rosenman, J.G.; Halle, J.S.; Detterbeck, F.C.; Hensing, T.A.; Socinski, M.A. Systematic Review Evaluating the Timing of Thoracic Radiation Therapy in Combined Modality Therapy for Limited-Stage Small-Cell Lung Cancer. J. Clin. Oncol. 2004, 22, 4837–4845. [Google Scholar] [CrossRef] [PubMed]
- Bogart, J.A.; Wang, X.F.; Masters, G.A.; Gao, J.; Komaki, R.; Kuzma, C.S.; Heymach, J.; Petty, W.J.; Gaspar, L.E.; Waqar, S.N.; et al. Phase 3 Comparison of High-Dose Once-Daily (QD) Thoracic Radiotherapy (TRT) with Standard Twice-Daily (BID) TRT in Limited Stage Small Cell Lung Cancer (LSCLC): CALGB 30610 (Alliance)/RTOG 0538. J. Clin. Orthod. 2021, 39, 8505. [Google Scholar] [CrossRef]
- High-Dose versus Standard-Dose Twice-Daily Thoracic Radiotherapy for Patients with Limited Stage Small-Cell Lung Cancer: An Open-Label, Randomised, Phase 2 Trial. Lancet Oncol. 2021, 22, 321–331. [CrossRef]
- Shahi, J.; Wright, J.R.; Gabos, Z.; Swaminath, A. Management of Small-Cell Lung Cancer with Radiotherapy—a Pan-Canadian Survey of Radiation Oncologists. Curr. Oncol. 2016, 23, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, M.; Sigurdson, S.; Greifer, N.; Kennedy, T.A.C.; Toh, T.S.; Lindsay, P.E.; Weiss, J.; Hueniken, K.; Yeung, C.; Sugumar, V.; et al. A Comparison of Hypofractionated and Twice-Daily Thoracic Irradiation in Limited-Stage Small-Cell Lung Cancer: An Overlap-Weighted Analysis. Cancers 2021, 13, 2895. [Google Scholar] [CrossRef] [PubMed]
- Farrell, M.J.; Yahya, J.B.; Degnin, C.; Chen, Y.; Holland, J.M.; Henderson, M.A.; Jaboin, J.J.; Harkenrider, M.M.; Thomas, C.R., Jr.; Mitin, T. Radiation Dose and Fractionation for Limited-Stage Small-Cell Lung Cancer: Survey of US Radiation Oncologists on Practice Patterns. Clin. Lung Cancer 2019, 20, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Gronberg, B.H.; Killingberg, K.T.; Fløtten, Ø.; Bjaanæs, M.M.; Madebo, T.; Langer, S.; Schytte, T.; Brustugun, O.T.; Nyman, J.; Stokke, K.; et al. Randomized Phase II Trial Comparing the Efficacy of Standard-Dose with High-Dose Twice-Daily Thoracic Radiotherapy (TRT) in Limited Disease Small-Cell Lung Cancer (LD SCLC). J. Clin. Oncol. 2020, 38, 9007. [Google Scholar] [CrossRef]
- Aupérin, A.; Arriagada, R.; Pignon, J.P.; Le Péchoux, C.; Gregor, A.; Stephens, R.J.; Kristjansen, P.E.; Johnson, B.E.; Ueoka, H.; Wagner, H.; et al. Prophylactic Cranial Irradiation for Patients with Small-Cell Lung Cancer in Complete Remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N. Engl. J. Med. 1999, 341, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Pezzi, T.A.; Fang, P.; Gjyshi, O.; Feng, L.; Liu, S.; Komaki, R.; Lin, S.H. Rates of Overall Survival and Intracranial Control in the Magnetic Resonance Imaging Era for Patients with Limited-Stage Small Cell Lung Cancer with and without Prophylactic Cranial Irradiation. JAMA Netw. Open 2020, 3, e201929. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.; Yamanaka, T.; Seto, T.; Harada, H.; Nokihara, H.; Saka, H.; Nishio, M.; Kaneda, H.; Takayama, K.; Ishimoto, O.; et al. Prophylactic Cranial Irradiation versus Observation in Patients with Extensive-Disease Small-Cell Lung Cancer: A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2017, 18, 663–671. [Google Scholar] [CrossRef]
- Koh, M.; Song, S.Y.; Jo, J.H.; Park, G.; Park, J.W.; Kim, S.S.; Choi, E.K. The Value of Prophylactic Cranial Irradiation in Limited-Stage Small Cell Lung Cancer: Should It Always Be Recommended? Radiat. Oncol. J. 2019, 37, 156. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.J.; Gillis, A.; Foster, A.; Woo, K.; Zhang, Z.; Gelblum, D.Y.; Downey, R.J.; Rosenzweig, K.E.; Ong, L.; Perez, C.A.; et al. Patterns of Failure in Limited-Stage Small Cell Lung Cancer: Implications of TNM Stage for Prophylactic Cranial Irradiation. Radiother. Oncol. 2017, 125, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, M.; Sun, A.; Bezjak, A.; Ma, C.; Le, L.W.; Brade, A.; Cho, J.; Leighl, N.B.; Shepherd, F.A.; Hope, A.J. Utilization of Prophylactic Cranial Irradiation in Patients with Limited Stage Small Cell Lung Carcinoma. Cancer 2010, 116, 5694–5699. [Google Scholar] [CrossRef]
- Yan, M.; Toh, T.S.; Lindsay, P.E.; Weiss, J.; Hueniken, K.; Yeung, C.; Sugumar, V.; Pinto, D.; Tadic, T.; Sun, A.; et al. Limited-Stage Small Cell Lung Cancer: Outcomes Associated with Prophylactic Cranial Irradiation over a 20-Year Period at the Princess Margaret Cancer Centre. Clin. Transl. Radiat. Oncol. 2021, 30, 43–49. [Google Scholar] [CrossRef]
- Lok, B.H.; Ma, J.; Foster, A.; Perez, C.A.; Shi, W.; Zhang, Z.; Li, B.T.; Rudin, C.M.; Rimner, A.; Wu, A.J. Factors Influencing the Utilization of Prophylactic Cranial Irradiation in Patients with Limited-Stage Small Cell Lung Cancer. Adv. Radiat. Oncol. 2017, 2, 548–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozawa, Y.; Omae, M.; Fujii, M.; Matsui, T.; Kato, M.; Sagisaka, S.; Asada, K.; Karayama, M.; Shirai, T.; Yasuda, K.; et al. Management of Brain Metastasis with Magnetic Resonance Imaging and Stereotactic Irradiation Attenuated Benefits of Prophylactic Cranial Irradiation in Patients with Limited-Stage Small Cell Lung Cancer. BMC Cancer 2015, 15, 589. [Google Scholar] [CrossRef] [Green Version]
- Farris, M.K.; Wheless, W.H.; Hughes, R.T.; Soike, M.H.; Masters, A.H.; Helis, C.A.; Chan, M.D.; Cramer, C.K.; Ruiz, J.; Lycan, T.; et al. Limited-Stage Small Cell Lung Cancer: Is Prophylactic Cranial Irradiation Necessary? Pract. Radiat. Oncol. 2019, 9, e599–e607. [Google Scholar] [CrossRef]
- Slotman, B.; Faivre-Finn, C.; Kramer, G.; Rankin, E.; Snee, M.; Hatton, M.; Postmus, P.; Collette, L.; Musat, E.; Senan, S. Prophylactic Cranial Irradiation in Extensive Small-Cell Lung Cancer. N. Engl. J. Med. 2007, 357, 664–672. [Google Scholar] [CrossRef] [Green Version]
- Redmond, K.J.; Hales, R.K.; Anderson-Keightly, H.; Zhou, X.C.; Kummerlowe, M.; Sair, H.I.; Duhon, M.; Kleinberg, L.; Rosner, G.L.; Vannorsdall, T. Prospective Study of Hippocampal-Sparing Prophylactic Cranial Irradiation in Limited-Stage Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 603–611. [Google Scholar] [CrossRef]
- Levy, A.; Le Péchoux, C.; Mistry, H.; Martel-Lafay, I.; Bezjak, A.; Lerouge, D.; Padovani, L.; Taylor, P.; Faivre-Finn, C. Prophylactic Cranial Irradiation for Limited-Stage Small-Cell Lung Cancer Patients: Secondary Findings from the Prospective Randomized Phase 3 CONVERT Trial. J. Thorac. Oncol. 2019, 14, 294–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, G.; Du, X.; Zhou, X.; Bao, W.; Chen, L.; Chen, J.; Ji, Y.; Wang, S. Prophylactic Cranial Irradiation in 399 Patients with Limited-Stage Small Cell Lung Cancer. Oncol. Lett. 2016, 11, 2654–2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooqi, A.S.; Holliday, E.B.; Allen, P.K.; Wei, X.; Cox, J.D.; Komaki, R. Prophylactic Cranial Irradiation after Definitive Chemoradiotherapy for Limited-Stage Small Cell Lung Cancer: Do All Patients Benefit? Radiother. Oncol. 2017, 122, 307–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirvani, S.M.; Juloori, A.; Allen, P.K.; Komaki, R.; Liao, Z.; Gomez, D.; O’Reilly, M.; Welsh, J.; Papadimitrakopoulou, V.; Cox, J.D.; et al. Comparison of 2 Common Radiation Therapy Techniques for Definitive Treatment of Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez de Dios, N.; Couñago, F.; Murcia-Mejía, M.; Rico-Oses, M.; Calvo-Crespo, P.; Samper, P.; Vallejo, C.; Luna, J.; Trueba, I.; Sotoca, A.; et al. Randomized Phase III Trial of Prophylactic Cranial Irradiation with or without Hippocampal Avoidance for Small-Cell Lung Cancer (PREMER): A GICOR-GOECP-SEOR Study. J. Clin. Oncol. 2021, 39, 3118–3127. [Google Scholar] [CrossRef] [PubMed]
- Amy, C.; Moreno, S.H.L. The Optimal Treatment Approaches for Stage I Small Cell Lung Cancer. Transl. Lung Cancer Res. 2019, 8, 88. [Google Scholar]
- Timmerman, R.; Paulus, R.; Galvin, J.; Michalski, J.; Straube, W.; Bradley, J.; Fakiris, A.; Bezjak, A.; Videtic, G.; Johnstone, D.; et al. Stereotactic Body Radiation Therapy for Inoperable Early Stage Lung Cancer. JAMA 2010, 303, 1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.Y.; Senan, S.; Paul, M.A.; Mehran, R.J.; Louie, A.V.; Balter, P.; Groen, H.J.M.; McRae, S.E.; Widder, J.; Feng, L.; et al. Stereotactic Ablative Radiotherapy versus Lobectomy for Operable Stage I Non-Small-Cell Lung Cancer: A Pooled Analysis of Two Randomised Trials. Lancet Oncol. 2015, 16, 630–637. [Google Scholar] [CrossRef] [Green Version]
- Shioyama, Y.; Nakamura, K.; Sasaki, T.; Ohga, S.; Yoshitake, T.; Nonoshita, T.; Asai, K.; Terashima, K.; Matsumoto, K.; Hirata, H.; et al. Clinical Results of Stereotactic Body Radiotherapy for Stage I Small-Cell Lung Cancer: A Single Institutional Experience. J. Radiat. Res. 2013, 54, 108–112. [Google Scholar] [CrossRef]
- Videtic, G.M.; Stephans, K.L.; Woody, N.M.; Pennell, N.A.; Shapiro, M.; Reddy, C.A.; Djemil, T. Stereotactic Body Radiation Therapy-Based Treatment Model for Stage I Medically Inoperable Small Cell Lung Cancer. Pract. Radiat. Oncol. 2013, 3, 301–306. [Google Scholar] [CrossRef]
- Verma, V.; Simone, C.B., 2nd; Allen, P.K.; Lin, S.H. Outcomes of Stereotactic Body Radiotherapy for T1-T2N0 Small Cell Carcinoma According to Addition of Chemotherapy and Prophylactic Cranial Irradiation: A Multicenter Analysis. Clin. Lung Cancer 2017, 18, 675–681.e1. [Google Scholar] [CrossRef]
- Guidelines Detail. Available online: https://www.nccn.org/guidelines/guidelines-detail (accessed on 4 October 2021).
- Recommendations|Lung Cancer: Diagnosis and Management|Guidance|NICE. Available online: https://www.nice.org.uk/guidance/ng122/chapter/recommendations (accessed on 4 October 2021).
- Initial Management of Small Cell Lung Cancer (Limited and Extensive Stage) and the Role of Thoracic Radiotherapy and First-Line Chemotherapy. Available online: https://www.cancercareontario.ca/en/guidelines-advice/types-of-cancer/49411 (accessed on 27 October 2021).
- Bradley, J.D.; Paulus, R.; Komaki, R.; Masters, G.; Blumenschein, G.; Schild, S.; Bogart, J.; Hu, C.; Forster, K.; Magliocco, A.; et al. Standard-Dose versus High-Dose Conformal Radiotherapy with Concurrent and Consolidation Carboplatin plus Paclitaxel with or without Cetuximab for Patients with Stage IIIA or IIIB Non-Small-Cell Lung Cancer (RTOG 0617): A Randomised, Two-by-Two Factorial Phase 3 Study. Lancet Oncol. 2015, 16, 187–199. [Google Scholar]
- Rwigema, J.-C.M.; Verma, V.; Lin, L.; Berman, A.T.; Levin, W.P.; Evans, T.L.; Aggarwal, C.; Rengan, R.; Langer, C.; Cohen, R.B.; et al. Prospective Study of Proton-Beam Radiation Therapy for Limited-Stage Small Cell Lung Cancer. Cancer 2017, 123, 4244–4251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, D.W.; Scott, C.B.; Sperduto, P.W.; Flanders, A.E.; Gaspar, L.E.; Schell, M.C.; Werner-Wasik, M.; Demas, W.; Ryu, J.; Bahary, J.P.; et al. Whole Brain Radiation Therapy with or without Stereotactic Radiosurgery Boost for Patients with One to Three Brain Metastases: Phase III Results of the RTOG 9508 Randomised Trial. Lancet 2004, 363, 1665–1672. [Google Scholar] [CrossRef]
- Rusthoven, C.G.; Yamamoto, M.; Bernhardt, D.; Smith, D.E.; Gao, D.; Serizawa, T.; Yomo, S.; Aiyama, H.; Higuchi, Y.; Shuto, T.; et al. Evaluation of First-Line Radiosurgery vs Whole-Brain Radiotherapy for Small Cell Lung Cancer Brain Metastases: The FIRE-SCLC Cohort Study. JAMA Oncol. 2020, 6, 1028–1037. [Google Scholar] [CrossRef]
- Paez, J.G.; Jänne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; et al. EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy. Science 2004, 304, 1497–1500. [Google Scholar] [CrossRef] [Green Version]
- Paez, J.G.; Kwak, E.L.; Bergethon, K.; Drilon, A.; Stephens, P.; Takahashi, T.; Sanchez-Cespedes, M.; Shapiro, G.I.; Singh, A.; Medina, P.P.; et al. Comprehensive Molecular Profiling of Lung Adenocarcinoma. Nature 2014, 511, 543–550. [Google Scholar]
- Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; et al. Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non-Small-Cell Lung Cancer to Gefitinib. N. Engl. J. Med. 2004, 350, 2129–2139. [Google Scholar] [CrossRef]
- Piperdi, B.; Perez-Soler, R. Role of Erlotinib in the Treatment of Non-Small Cell Lung Cancer: Clinical Outcomes in Wild-Type Epidermal Growth Factor Receptor Patients. Drugs 2012, 72 (Suppl. 1), 11–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maemondo, M.; Inoue, A.; Kobayashi, K.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Harada, M.; Yoshizawa, H.; Kinoshita, I.; et al. Gefitinib or Chemotherapy for Non-Small-Cell Lung Cancer with Mutated EGFR. N. Engl. J. Med. 2010, 362, 2380–2388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepherd, F.A.; Rodrigues, P.J.; Ciuleanu, T.; Tan, E.H.; Hirsh, V.; Thongprasert, S.; Campos, D.; Maoleekoonpiroj, S.; Smylie, M.; Martins, R.; et al. Erlotinib in Previously Treated Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2005, 353, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Mok, T.S.K. Personalized Medicine in Lung Cancer: What We Need to Know. Nat. Rev. Clin. Oncol. 2011, 8, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Liu, S.V.; Subramaniam, D.S.; Giaccone, G. Refining the Treatment of NSCLC according to Histological and Molecular Subtypes. Nat. Rev. Clin. Oncol. 2015, 12, 511–526. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Five-Year Outcomes with Pembrolizumab versus Chemotherapy for Metastatic Non–Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score ≥ 50%. J. Clin. Oncol. 2021, 39, 2339–2349. [Google Scholar] [CrossRef]
- Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.; Ciuleanu, T.-E.; Badin, F.; et al. First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 376, 2415. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Giaccone, G.; de Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.J.; Herbst, R.S.; Goldberg, S.B. Selecting the Optimal Immunotherapy Regimen in Driver-Negative Metastatic NSCLC. Nat. Rev. Clin. Oncol. 2021, 18, 625–644. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, H.; Sen, T.; Rudin, C.M. Targeted Therapies and Biomarkers in Small Cell Lung Cancer. Front. Oncol. 2020, 10, 741. [Google Scholar] [CrossRef] [PubMed]
- Byers, L.A.; Wang, J.; Nilsson, M.B.; Fujimoto, J.; Saintigny, P.; Yordy, J.; Giri, U.; Peyton, M.; Fan, Y.H.; Diao, L.; et al. Proteomic Profiling Identifies Dysregulated Pathways in Small Cell Lung Cancer and Novel Therapeutic Targets Including PARP1. Cancer Discov. 2012, 2, 798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lok, B.H.; Gardner, E.E.; Schneeberger, V.E.; Ni, A.; Desmeules, P.; Rekhtman, N.; de Stanchina, E.; Teicher, B.A.; Riaz, N.; Powell, S.N.; et al. PARP Inhibitor Activity Correlates with SLFN11 Expression and Demonstrates Synergy with Temozolomide in Small Cell Lung Cancer. Clin. Cancer Res. 2017, 23, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Cardnell, R.J.; Feng, Y.; Mukherjee, S.; Diao, L.; Tong, P.; Stewart, C.A.; Masrorpour, F.; Fan, Y.; Nilsson, M.; Shen, Y.; et al. Activation of the PI3K/mTOR Pathway Following PARP Inhibition in Small Cell Lung Cancer. PLoS ONE 2016, 11, e0152584. [Google Scholar] [CrossRef]
- Gardner, E.E.; Lok, B.H.; Schneeberger, V.E.; Desmeules, P.; Miles, L.A.; Arnold, P.K.; Ni, A.; Khodos, I.; de Stanchina, E.; Nguyen, T.; et al. Chemosensitive Relapse in Small Cell Lung Cancer Proceeds through an EZH2-SLFN11 Axis. Cancer Cell 2017, 31, 286–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison Stewart, C.; Tong, P.; Cardnell, R.J.; Sen, T.; Li, L.; Gay, C.M.; Masrorpour, F.; Fan, Y.; Bara, R.O.; Feng, Y.; et al. Dynamic Variations in Epithelial-to-Mesenchymal Transition (EMT), ATM, and SLFN11 Govern Response to PARP Inhibitors and Cisplatin in Small Cell Lung Cancer. Oncotarget 2017, 8, 28575–28587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murai, J.; Feng, Y.; Yu, G.K.; Ru, Y.; Tang, S.-W.; Shen, Y.; Pommier, Y. Resistance to PARP Inhibitors by SLFN11 Inactivation Can Be Overcome by ATR Inhibition. Oncotarget 2016, 7, 76534–76550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owonikoko, T..K.; Niu, H.; Nackaerts, K.; Csoszi, T.; Ostoros, G.; Mark, Z.; Baik, C.; Joy, A.A.; Chouaid, C.; Jaime, J.C.; et al. Randomized Phase II Study of Paclitaxel plus Alisertib versus Paclitaxel plus Placebo as Second-Line Therapy for SCLC: Primary and Correlative Biomarker Analyses. J. Thorac. Oncol. 2020, 15, 274–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollaoglu, G.; Guthrie, M.R.; Böhm, S.; Brägelmann, J.; Can, I.; Ballieu, P.M.; Marx, A.; George, J.; Heinen, C.; Chalishazar, M.D.; et al. MYC Drives Progression of Small Cell Lung Cancer to a Variant Neuroendocrine Subtype with Vulnerability to Aurora Kinase Inhibition. Cancer Cell 2017, 31, 270–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.; Petty, W.J.; Sands, J.M. An Overview of Lurbinectedin as a New Second-Line Treatment Option for Small Cell Lung Cancer. Ther. Adv. Med. Oncol. 2021, 13, 17588359211020529. [Google Scholar] [CrossRef]
- Eckardt, J.R.; von Pawel, J.; Pujol, J.-L.; Papai, Z.; Quoix, E.; Ardizzoni, A.; Poulin, R.; Preston, A.J.; Dane, G.; Ross, G. Phase III Study of Oral Compared with Intravenous Topotecan as Second-Line Therapy in Small-Cell Lung Cancer. J. Clin. Oncol. 2007, 25, 2086–2092. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.E.R.; Ciuleanu, T.-E.; Tsekov, H.; Shparyk, Y.; Cuceviá, B.; Juhasz, G.; Thatcher, N.; Ross, G.A.; Dane, G.C.; Crofts, T. Phase III Trial Comparing Supportive Care Alone with Supportive Care with Oral Topotecan in Patients with Relapsed Small-Cell Lung Cancer. J. Clin. Oncol. 2006, 24, 5441–5447. [Google Scholar] [CrossRef]
- von Pawel, J.; Schiller, J.H.; Shepherd, F.A.; Fields, S.Z.; Kleisbauer, J.P.; Chrysson, N.G.; Stewart, D.J.; Clark, P.I.; Palmer, M.C.; Depierre, A.; et al. Topotecan versus Cyclophosphamide, Doxorubicin, and Vincristine for the Treatment of Recurrent Small-Cell Lung Cancer. J. Clin. Oncol. 1999, 17, 658–667. [Google Scholar] [CrossRef]
- Trigo, J.; Subbiah, V.; Besse, B.; Moreno, V.; López, R.; Sala, M.A.; Peters, S.; Ponce, S.; Fernández, C.; Alfaro, V.; et al. Lurbinectedin as Second-Line Treatment for Patients with Small-Cell Lung Cancer: A Single-Arm, Open-Label, Phase 2 Basket Trial. Lancet Oncol. 2020, 21, 645–654. [Google Scholar] [CrossRef]
- Elez, M.E.; Tabernero, J.; Geary, D.; Macarulla, T.; Kang, S.P.; Kahatt, C.; Pita, A.S.-M.; Teruel, C.F.; Siguero, M.; Cullell-Young, M.; et al. First-in-Human Phase I Study of Lurbinectedin (PM01183) in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2014, 20, 2205–2214. [Google Scholar] [CrossRef] [Green Version]
- George, J.; Lim, J.S.; Jang, S.J.; Cun, Y.; Ozretić, L.; Kong, G.; Leenders, F.; Lu, X.; Fernández-Cuesta, L.; Bosco, G.; et al. Comprehensive Genomic Profiles of Small Cell Lung Cancer. Nature 2015, 524, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Saunders, L.R.; Bankovich, A.J.; Anderson, W.C.; Aujay, M.A.; Bheddah, S.; Black, K.; Desai, R.; Escarpe, P.A.; Hampl, J.; Laysang, A.; et al. A DLL3-Targeted Antibody-Drug Conjugate Eradicates High-Grade Pulmonary Neuroendocrine Tumor-Initiating Cells In Vivo. Sci. Transl. Med. 2015, 7, 302ra136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudin, C.M.; Pietanza, M.C.; Bauer, T.M.; Ready, N.; Morgensztern, D.; Glisson, B.S.; Byers, L.A.; Johnson, M.L.; Burris, H.A.; Robert, F.; et al. Rovalpituzumab Tesirine, a DLL3-Targeted Antibody-Drug Conjugate, in Recurrent Small-Cell Lung Cancer: A First-in-Human, First-in-Class, Open-Label, Phase 1 Study. Lancet Oncol. 2017, 18, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Morgensztern, D.; Besse, B.; Greillier, L.; Santana-Davila, R.; Ready, N.; Hann, C.L.; Glisson, B.S.; Farago, A.F.; Dowlati, A.; Rudin, C.M.; et al. Efficacy and Safety of Rovalpituzumab Tesirine in Third-Line and Beyond Patients with DLL3-Expressing, Relapsed/Refractory Small-Cell Lung Cancer: Results from the Phase II TRINITY Study. Clin. Cancer Res. 2019, 25, 6958–6966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackhall, F.; Jao, K.; Greillier, L.; Cho, B.C.; Penkov, K.; Reguart, N.; Majem, M.; Nackaerts, K.; Syrigos, K.; Hansen, K.; et al. Efficacy and Safety of Rovalpituzumab Tesirine Compared with Topotecan as Second-Line Therapy in DLL3-High SCLC: Results from the Phase 3 TAHOE Study. J. Thorac. Oncol. 2021, 16, 1547–1558. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, J.; Nikolinakos, P.; Leal, T.; Lehman, J.; Morgensztern, D.; Patel, J.D.; Wrangle, J.M.; Curigliano, G.; Greillier, L.; Johnson, M.L.; et al. A Phase 1–2 Study of Rovalpituzumab Tesirine in Combination with Nivolumab Plus or Minus Ipilimumab in Patients with Previously Treated Extensive-Stage SCLC. J. Thorac. Oncol. 2021, 16, 1559–1569. [Google Scholar] [CrossRef] [PubMed]
- Hann, C.L.; Burns, T.F.; Dowlati, A.; Morgensztern, D.; Ward, P.J.; Koch, M.M.; Chen, C.; Ludwig, C.; Patel, M.; Nimeiri, H.; et al. A Phase 1 Study Evaluating Rovalpituzumab Tesirine in Frontline Treatment of Patients with Extensive-Stage SCLC. J. Thorac. Oncol. 2021, 16, 1582–1588. [Google Scholar] [CrossRef]
- Johnson, M.L.; Zvirbule, Z.; Laktionov, K.; Helland, A.; Cho, B.C.; Gutierrez, V.; Colinet, B.; Lena, H.; Wolf, M.; Gottfried, M.; et al. Rovalpituzumab Tesirine as a Maintenance Therapy after First-Line Platinum-Based Chemotherapy in Patients with Extensive-Stage–SCLC: Results from the Phase 3 MERU Study. J. Thorac. Oncol. 2021, 16, 1570–1581. [Google Scholar] [CrossRef]
- Owonikoko, T.K.; Champiat, S.; Johnson, M.L.; Govindan, R.; Izumi, H.; Victoria Victoria Lai, W.; Borghaei, H.; Boyer, M.J.; Boosman, R.J.; Hummel, H.-D.; et al. Updated Results from a Phase 1 Study of AMG 757, a Half-Life Extended Bispecific T-Cell Engager (BiTE) Immuno-Oncology Therapy against Delta-like Ligand 3 (DLL3), in Small Cell Lung Cancer (SCLC). J. Clin. Oncol. 2021, 39, 8510. [Google Scholar] [CrossRef]
- Esposito, G.; Palumbo, G.; Carillio, G.; Manzo, A.; Montanino, A.; Sforza, V.; Costanzo, R.; Sandomenico, C.; La Manna, C.; Martucci, N.; et al. Immunotherapy in Small Cell Lung Cancer. Cancers 2020, 12, 2522. [Google Scholar] [CrossRef]
- Iams, W.T.; Porter, J.; Horn, L. Immunotherapeutic Approaches for Small-Cell Lung Cancer. Nat. Rev. Clin. Oncol. 2020, 17, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Arriola, E.; Wheater, M.; Galea, I.; Cross, N.; Maishman, T.; Hamid, D.; Stanton, L.; Cave, J.; Geldart, T.; Mulatero, C.; et al. Outcome and Biomarker Analysis from a Multicenter Phase 2 Study of Ipilimumab in Combination with Carboplatin and Etoposide as First-Line Therapy for Extensive-Stage SCLC. J. Thorac. Oncol. 2016, 11, 1511–1521. [Google Scholar] [CrossRef] [Green Version]
- Reck, M.; Luft, A.; Szczesna, A.; Havel, L.; Kim, S.-W.; Akerley, W.; Pietanza, M.C.; Wu, Y.-L.; Zielinski, C.; Thomas, M.; et al. Phase III Randomized Trial of Ipilimumab Plus Etoposide and Platinum versus Placebo Plus Etoposide and Platinum in Extensive-Stage Small-Cell Lung Cancer. J. Clin. Oncol. 2016, 34, 3740–3748. [Google Scholar] [CrossRef] [PubMed]
- Horn, L.; Mansfield, A.S.; Szczęsna, A.; Havel, L.; Krzakowski, M.; Hochmair, M.J.; Huemer, F.; Losonczy, G.; Johnson, M.L.; Nishio, M.; et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2220–2229. [Google Scholar] [CrossRef] [PubMed]
- Glisson, B.; Besse, B.; Dols, M.C.; Dubey, S.; Schupp, M.; Jain, R.; Jiang, Y.; Menon, H.; Nackaerts, K.; Orlov, S.; et al. A Randomized, Placebo-Controlled, Phase 1b/2 Study of Rilotumumab or Ganitumab in Combination with Platinum-Based Chemotherapy as First-Line Treatment for Extensive-Stage Small-Cell Lung Cancer. Clin. Lung Cancer 2017, 18, 615–625.e8. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Dvorkin, M.; Chen, Y.; Reinmuth, N.; Hotta, K.; Trukhin, D.; Statsenko, G.; Hochmair, M.J.; Özgüroğlu, M.; Ji, J.H.; et al. Durvalumab plus Platinum-Etoposide versus Platinum-Etoposide in First-Line Treatment of Extensive-Stage Small-Cell Lung Cancer (CASPIAN): A Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet 2019, 394, 1929–1939. [Google Scholar] [CrossRef]
- Rudin, C.M.; Awad, M.M.; Navarro, A.; Gottfried, M.; Peters, S.; Csőszi, T.; Cheema, P.K.; Rodriguez-Abreu, D.; Wollner, M.; Yang, J.C.-H.; et al. Pembrolizumab or Placebo Plus Etoposide and Platinum as First-Line Therapy for Extensive-Stage Small-Cell Lung Cancer: Randomized, Double-Blind, Phase III KEYNOTE-604 Study. J. Clin. Oncol. 2020, 38, 2369–2379. [Google Scholar] [CrossRef] [PubMed]
- Gay, C.M.; Stewart, C.A.; Park, E.M.; Diao, L.; Groves, S.M.; Heeke, S.; Nabet, B.Y.; Fujimoto, J.; Solis, L.M.; Lu, W.; et al. Patterns of Transcription Factor Programs and Immune Pathway Activation Define Four Major Subtypes of SCLC with Distinct Therapeutic Vulnerabilities. Cancer Cell 2021, 39, 346–360.e7. [Google Scholar] [CrossRef]
- Welsh, J.W.; Heymach, J.V.; Guo, C.; Menon, H.; Klein, K.; Cushman, T.R.; Verma, V.; Hess, K.R.; Shroff, G.; Tang, C.; et al. Phase 1/2 Trial of Pembrolizumab and Concurrent Chemoradiation Therapy for Limited-Stage SCLC. J. Thorac. Oncol. 2020, 15, 1919–1927. [Google Scholar] [CrossRef]
- Peters, S.; Pujol, J.-L.; Dafni, U.; Dómine, M.; Popat, S.; Reck, M.; Andrade, J.; Becker, A.; Moro-Sibilot, D.; Curioni-Fontecedro, A.; et al. Consolidation Nivolumab and Ipilimumab versus Observation in Limited-Disease Small Cell Lung Cancer after Chemo-Radiotherapy - Results from the Randomised Phase II ETOP/IFCT 4-12 STIMULI Trial. Ann. Oncol. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Senan, S.; Shire, N.; Mak, G.; Yao, W.; Jiang, H. ADRIATIC: A Phase III Trial of Durvalumab ± Tremelimumab after Concurrent Chemoradiation for Patients with Limited Stage Small Cell Lung Cancer. Ann. Oncol. 2019, 30, ii25. [Google Scholar] [CrossRef]
- Ross, H.J.; Hu, C.; Higgins, K.A.; Jabbour, S.K.; Kozono, D.E.; Owonikoko, T.K.; Movsas, B.; Solberg, T.; Xiao, C.; Williams, T.M.; et al. NRG Oncology/Alliance LU005: A Phase II/III Randomized Clinical Trial of Chemoradiation versus Chemoradiation plus Atezolizumab in Limited Stage Small Cell Lung Cancer. J. Clin. Oncol. 2020, 38, TPS9082. [Google Scholar] [CrossRef]
- Simpson, K.L.; Stoney, R.; Frese, K.K.; Simms, N.; Rowe, W.; Pearce, S.P.; Humphrey, S.; Booth, L.; Morgan, D.; Dynowski, M.; et al. A Biobank of Small Cell Lung Cancer CDX Models Elucidates Inter- and Intratumoral Phenotypic Heterogeneity. Nat. Cancer 2020, 1, 437–451. [Google Scholar] [CrossRef]
- Rudin, C.M.; Poirier, J.T.; Byers, L.A.; Dive, C.; Dowlati, A.; George, J.; Heymach, J.V.; Johnson, J.E.; Lehman, J.M.; MacPherson, D.; et al. Molecular Subtypes of Small Cell Lung Cancer: A Synthesis of Human and Mouse Model Data. Nat. Rev. Cancer 2019, 19, 289–297. [Google Scholar] [CrossRef]
- Iorio, F.; Knijnenburg, T.A.; Vis, D.J.; Bignell, G.R.; Menden, M.P.; Schubert, M.; Aben, N.; Gonçalves, E.; Barthorpe, S.; Lightfoot, H.; et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 2016, 166, 740–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; et al. The Cancer Cell Line Encyclopedia Enables Predictive Modelling of Anticancer Drug Sensitivity. Nature 2012, 483, 603–607. [Google Scholar] [CrossRef]
- Trapnell, C. Defining Cell Types and States with Single-Cell Genomics. Genome Res. 2015, 25, 1491–1498. [Google Scholar] [CrossRef] [Green Version]
- Kolodziejczyk, A.A.; Kim, J.K.; Svensson, V.; Marioni, J.C.; Teichmann, S.A. The Technology and Biology of Single-Cell RNA Sequencing. Mol. Cell 2015, 58, 610–620. [Google Scholar] [CrossRef] [Green Version]
- Rozenblatt-Rosen, O.; Regev, A.; Oberdoerffer, P.; Nawy, T.; Hupalowska, A.; Rood, J.E.; Ashenberg, O.; Cerami, E.; Coffey, R.J.; Demir, E.; et al. The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell 2020, 181, 236–249. [Google Scholar] [CrossRef]
- Ireland, A.S.; Micinski, A.M.; Kastner, D.W.; Guo, B.; Wait, S.J.; Spainhower, K.B.; Conley, C.C.; Chen, O.S.; Guthrie, M.R.; Soltero, D.; et al. MYC Drives Temporal Evolution of Small Cell Lung Cancer Subtypes by Reprogramming Neuroendocrine Fate. Cancer Cell 2020, 38, 60–78.e12. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.A.; Gay, C.M.; Xi, Y.; Sivajothi, S.; Sivakamasundari, V.; Fujimoto, J.; Bolisetty, M.; Hartsfield, P.M.; Balasubramaniyan, V.; Chalishazar, M.D.; et al. Single-Cell Analyses Reveal Increased Intratumoral Heterogeneity after the Onset of Therapy Resistance in Small-Cell Lung Cancer. Nat. Cancer 2020, 1, 423–436. [Google Scholar] [CrossRef] [PubMed]
Study | Total Cohort of LS-SCLC Patients | Intervention vs. Control | Endpoints | Key Findings (Intervention vs. Control) | Statistics (Intervention vs. Control) |
---|---|---|---|---|---|
Prospective Studies for Radiotherapy Fractionation | |||||
Turrisi et al., 1999 [5] | 417 | Twice-daily 45 Gy in 30 fractions vs. once-daily 45 Gy in 25 fractions thoracic radiotherapy | Median OS 2-year survival 5-year survival | 23 vs. 19 months 47% vs. 41% 26% vs. 16% | |
Faivre-Finn et al., 2017 [6] | 547 | Twice-daily 45 Gy in 30 fractions vs. once-daily 66 Gy in 33 fractions thoracic radiotherapy | Median OS 2-year survival | 30 months vs. 25 months 56% vs. 51% | 95% CI 24–34 months vs. 21–31 months 95% CI 50–62% vs. 45–57% |
Grønberg et al., 2020 [17] | 176 | Twice-daily 60 Gy in 40 fractions vs. 45 Gy in 30 fractions thoracic radiotherapy | Median OS 2-year survival | 42 months vs. 23 months 73% vs. 46% | 95% CI, 32–51 months vs. 17–28 months 95% CI 32–51% vs. 36–60% |
Bogart et al., 2021 [12] | 638 | 45 Gy in 30 fractions BID thoracic radiotherapy [ref] vs. once-daily 70 Gy in 35 fractions | OS | HR 0.94 | 95% CI, 0.76–1.2 |
Study and Publication Year | Total Cohort of SCLC Patients | SCLC Patients That Received PCI (n, % of Total Cohort) | Intervention vs. Control | Endpoints | Key Findings and Statistics (Intervention vs. Control) |
---|---|---|---|---|---|
Prospective Studies | |||||
Aupérin et al., 1999 [18] | 987 | 526 (53.2) | No PCI [ref] vs. PCI | OS Disease-free survival | Pooled relative risk of 0.84 (95% CI, 0.73–0.97) Pooled relative risk of 0.46 (95% CI, 0.38–0.57) |
** Slotman et al., 2007 [28] | 286 | 143 (50.0) | No PCI [ref] vs. PCI | Time to symptomatic brain metastases Cumulative risk of brain metastases within 1 year Disease-free survival 1-year survival | HR, 0.27 (95% CI, 0.16–0.44) 40.4% (95% CI, 32.1–48.6) vs. 14.6% (95% CI, 8.3–20.9) HR 0.76 (95% CI, 0.59–0.96) 13.3% (95% CI, 8.1–19.9) vs. 27.1% (95% CI, 19.4–35.5) |
Redmond et al., 2017 [29] | 20 | 20 (100.0) | Hippocampal-sparing PCI (no comparator) | HVLT-R delayed recall at 6 months after completion of PCI Reliable Change Index at 6 months for HVLT-R delayed recall Reliable Change Index at 12 months for HVLT-R delayed recall 2-year survival Median progression-free survival | 7.06 (SD 2.77, n = 14) 17.6% 7.10% 88% (95% CI, 68–100%) Not reached |
Levy et al., 2019 [30] | 547 | 449 (82.0) | Secondary analysis of PCI in CONVERT study thoracic BID [ref] vs. once daily [6] | * Brain relapse times * Median OS 3-year survival | HR 0.95 (95% CI, 0.60–1.50) 28 months (95% CI, 22–35) vs. 31 months (95% CI, 27–52) 48% (95% CI, 41–55) vs. 42% (95% CI, 36–49) |
Retrospective Studies | |||||
Giuliani et al., 2010 [23] | 228 | 127 (55.7) | PCI vs. no PCI | Brain FFS Median OS | 76.6% (95%, CI, 68–87) vs. 46.7% (95% CI, 8–34) 21.7 months (95% CI, 17–36.8) vs. 11.2 (95% CI, 8.9–14.1) |
Ozawa et al., 2015 [26] | 124 | 29 (23.4) | PCI vs. no PCI (with MRI and SRS salvage) | * Median OS * Brain metastasis occurrence rates in 2 years | 25 vs. 34 months 43.0% vs. 38.4% |
Qiu et al., 2016 [31] | 399 | 185 (46.4) | Early vs. late PCI | Symptomatic brain metastases at 6, 12 and 24 months 1-year OS rates 3-year OS rates | 0, 3 and 13% vs. 7, 29 and 42% 96% vs. 82% 53% vs. 35% |
Lok et al., 2017 [25] | 208 | 115 (55.0) | PCI vs. no PCI (no significant difference in outcomes, all patients reported together) | Median OS 2-year OS rates 3-year OS rates | 35.1 months 64% 49% |
Farooqi et al., 2017 [32] | 658 | 364 (55.3) | No PCI [ref] vs. PCI | Risk of death Risk of brain metastasis | HR 0.73 (95% CI 0.61–0.88) HR 0.56 (95% CI 0.40–0.78) |
Wu et al., 2017 [22] | 283 | 114 (41.0) | PCI vs. no PCI (no significant difference in outcomes, all patients reported together) | Median survival 2-year survival 5-year survival 2-year cumulative incidence of brain metastasis | 26 months (95% CI, 22–34 months) 53% 33% 17% |
Pezzi et al., 2020 [19] | 297 | 205 (69.0) | No PCI [ref] vs. PCI | * OS * 3-year incidence rate of brain metastasis | HR 0.844 (95% CI, 0.604–1.180) 11.20% (95% CI, 5.40–19.20) vs. 20.40% (95% CI, 12.45–29.67) |
Yan and Toh et al., 2021 [24] | 369 | 196 (71.0) | PCI [ref] vs. no PCI | OS Brain failure risk | HR 1.77 (95% CI, 1.31–2.40) HR 2.93 (95% CI, 1.85–4.63) |
Study and Publication Year | Total Cohort of LS-SCLC Patients | Intervention | Endpoints | Key Findings and Statistics (Intervention vs. Control) |
---|---|---|---|---|
Completed Trials | ||||
Welsh et al., 2020 [93] | 40 | Concurrent pembroluzimab | Maximum tolerated dose Median progression-free survival Median OS | No grade 5 toxicities, 3 grade 4 events (2 neutropenia, 1 respiratory failure). [n = 40] 19.7 months (95% CI, 8.8–30.5) [n = 40] 39.5 months (95% CI, 8.0–71.0) [n = 40] |
Peters et al., 2021 [94] | 153 | Consolidation immunotherapy (nivolumab and ipilimumab) vs. observation after standard chemo-radiotherapy and PCI [ref] | * Progression-free survival * OS | HR 1.02 (95% CI, 0.66–1.58) HR 0.95 (95% CI, 0.59–1.52) |
Ongoing Trials | ||||
Senan et al., 2019 [95] | 600 (estimated enrollment) | Consolidation durvalumab ± tremelimumab vs. placebo | Progression-free survival OS | Currently ongoing |
Ross et al., 2020 [96] | 506 (estimated enrollment) | Concurrent chemoradiation plus atezolizumab vs. chemoradiation | Progression-free survival OS | Currently ongoing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toh, T.S.; Lok, B.H. Limited-Stage Small-Cell Lung Cancer: Current Progress and the Next Frontier. Radiation 2021, 1, 317-333. https://doi.org/10.3390/radiation1040026
Toh TS, Lok BH. Limited-Stage Small-Cell Lung Cancer: Current Progress and the Next Frontier. Radiation. 2021; 1(4):317-333. https://doi.org/10.3390/radiation1040026
Chicago/Turabian StyleToh, Tzen S., and Benjamin H. Lok. 2021. "Limited-Stage Small-Cell Lung Cancer: Current Progress and the Next Frontier" Radiation 1, no. 4: 317-333. https://doi.org/10.3390/radiation1040026
APA StyleToh, T. S., & Lok, B. H. (2021). Limited-Stage Small-Cell Lung Cancer: Current Progress and the Next Frontier. Radiation, 1(4), 317-333. https://doi.org/10.3390/radiation1040026