The Potential of Omics in Biological Dosimetry
Abstract
:Simple Summary
Abstract
1. Introduction
2. Fields of Application of Biological Dosimetry
3. The Prerequisite of Suitable Biomarkers for Biological Dosimetry
- Specific to ionising radiation;
- Clear dose–effect relationship for different radiation qualities and dose rates;
- Low background level;
- Stable appearance without temporal fluctuations and stable base values;
- Reliable for a large dose range;
- Possibility to distinguish different radiation exposures (dose rate, partial irradiation, radiation quality);
- Good reproducibility;
- No influence of gender, age, and health status;
- Comparability of in vitro and in vivo results;
- Rapid sample processing and evaluation of received doses;
- Minimally invasive sample collection;
- Cheap and simple analysis.
4. Radiobiological Biomarkers Based on Omics Technologies
4.1. Transcriptomics
4.2. Proteomics
4.3. Metabolomics
4.4. Opportunities and Limitations of Omics-Based Biological Dosimetry
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AACT | Alpha-1-antichymotrypsin |
ACTA2 | Actin, aortic smooth muscle |
AEN | Apoptosis-enhancing nuclease |
AMY | Alpha-amylase 1A |
APOBEC3H | Apolipoprotein B mRNA editing enzyme |
ASCC3 | Activating signal cointegrator 1 complex subunit 3, |
ATM | Ataxia telangiectasia mutated |
BAX | Bcl-2-like protein 4 |
BBC3 | Bcl-2-binding component 3 |
CCL2 | C-C motif chemokine 2 |
CCNG1 | Cyclin-G1 |
CDKN1A | Cyclin-dependent kinase inhibitor 1 |
CRP | C-reactive protein |
DDB2 | DNA damage-binding protein 2 |
DNA | Deoxyribonucleic acid |
EPR | Electron Paramagnetic Resonance |
FAST-DOSE | Fluorescent Automated Screening Tool for Dosimetry |
FDXR | Ferredoxin Reductase |
FLT3L | FMS-like tyrosine kinase 3 ligand |
GADD45 | Growth arrest and DNA damage-inducible protein |
H2AX | H2A.X Variant Histone |
HPLC | High performance liquid chromatography |
Hu-NSG | NOD-scid-gamma |
IL6 | Interleukin-6 receptor |
IR | Ionising Radiation |
LBP | Lipopolysaccharide-binding protein |
LCN2 | Lipocalin-2 |
MDM2 | Mouse double minute 2 homolog |
mRNA | Messenger ribonucleic acid |
NHP | Non-human primate |
PCNA | Proliferating cell nuclear antigen |
PFKP | ATP-dependent 6-phosphofructokinase |
PHPT | Phosphohistidine phosphatase |
qRT-PCR | Quantitative real time polymerase chain reaction |
RENEB | Running the European Network of Biodosimetry), |
TNF | Tumour necrosis factor |
TP53 | Cellular tumour antigen p53 |
TSPYL2 | Testis-specific Y-encoded-like protein 2 |
XPC | Xeroderma pigmentosum group C-complementing protein |
XRCC6 | X-ray repair cross-complementing protein 6 |
ZMAT3 | Zinc finger matrin-type protein 3 |
References
- Agyeman, A.A.; Ofori-Asenso, R. Perspective: Does personalized medicine hold the future for medicine? J. Pharm. Bioallied Sci. 2015, 7, 239–244. [Google Scholar] [CrossRef]
- Chen, R.; Snyder, M. Promise of personalized omics to precision medicine. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013, 5, 73–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, S.; Amundson, S.A. Development of gene expression signatures for practical radiation biodosimetry. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 1236–1244. [Google Scholar] [CrossRef] [Green Version]
- Lacombe, J.; Sima, C.; Amundson, S.A.; Zenhausern, F. Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review. PLoS ONE 2018, 13, e0198851. [Google Scholar] [CrossRef]
- Marchetti, F.; Coleman, M.A.; Jones, I.M.; Wyrobek, A.J. Candidate protein biodosimeters of human exposure to ionizing radiation. Int. J. Radiat. Biol. 2006, 82, 605–639. [Google Scholar] [CrossRef]
- Swartz, H.M.; Williams, B.B.; Flood, A.B. Overview of the principles and practice of biodosimetry. Radiat. Environ. Biophys. 2014, 53, 221–232. [Google Scholar] [CrossRef] [PubMed]
- ISO 21243; Radiation Protection—Performance Criteria for Laboratories Performing Cytogenetic Triage for Assessment of Mass Casualties in Radiological or Nuclear Emergencies—General Principles and Application to Dicentric Assay. ISO: Geneva, Switzerland, 2008.
- Hall, E.J. Radiation and life. Bull. N. Y. Acad. Med. 1989, 65, 430–438. [Google Scholar]
- Knebel, A.R.; Coleman, C.N.; Cliffer, K.D.; Murrain-Hill, P.; McNally, R.; Oancea, V.; Jacobs, J.; Buddemeier, B.; Hick, J.L.; Weinstock, D.M.; et al. Allocation of scarce resources after a nuclear detonation: Setting the context. Disaster Med. Public Health Prep. 2011, 5 (Suppl. S1), S20–S31. [Google Scholar] [CrossRef] [Green Version]
- Port, M.; Majewski, M.; Abend, M. Radiation Dose Is of Limited Clinical Usefulness in Persons with Acute Radiation Syndrome. Radiat. Prot. Dosim. 2019, 186, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Stone, F.P. The "Worried Well" Response to CBRN Events: Analysis and Solutions; Maxwell Air Force Base, Ala., USAF Counterproliferation Center, Air University: Montgomery, AL, USA, 2007; p. 56. Available online: https://purl.fdlp.gov/GPO/LPS105355 (accessed on 17 May 2021).
- Kulka, U.; Ainsbury, L.; Atkinson, M.; Barnard, S.; Smith, R.; Barquinero, J.F.; Barrios, L.; Bassinet, C.; Beinke, C.; Cucu, A.; et al. Realising the European network of biodosimetry: RENEB-status quo. Radiat. Prot. Dosim. 2015, 164, 42–45. [Google Scholar] [CrossRef] [Green Version]
- Satyamitra, M.; Reyes Turcu, F.E.; Pantoja-Galicia, N.; Wathen, L. Challenges and Strategies in the Development of Radiation Biodosimetry Tests for Patient Management. Radiat. Res. 2021, 196, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.M.; Prasanna, P.G.; Grace, M.B.; Wathen, L.K.; Wallace, R.L.; Koerner, J.F.; Coleman, C.N. Assessment of biodosimetry methods for a mass-casualty radiological incident: Medical response and management considerations. Health Phys. 2013, 105, 540–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biomarkers Definitions Working, G. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharm. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Rehakova, Z.; Sinkora, J.; Vlkova, M.; Vokurkova, D.; Osterreicher, J.; Vavrova, J.; Driak, D. CD27(+) peripheral blood B-cells are a useful biodosimetric marker in vitro. Physiol. Res. 2008, 57, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Vasilenko, E.K.; Khokhryakov, V.F.; Miller, S.C.; Fix, J.J.; Eckerman, K.; Choe, D.O.; Gorelov, M.; Khokhryakov, V.V.; Knyasev, V.; Krahenbuhl, M.P.; et al. Mayak worker dosimetry study: An overview. Health Phys. 2007, 93, 190–206. [Google Scholar] [CrossRef]
- Ghandhi, S.A.; Smilenov, L.; Shuryak, I.; Pujol-Canadell, M.; Amundson, S.A. Discordant gene responses to radiation in humans and mice and the role of hematopoietically humanized mice in the search for radiation biomarkers. Sci. Rep. 2019, 9, 19434. [Google Scholar] [CrossRef]
- Park, J.G.; Paul, S.; Briones, N.; Zeng, J.; Gillis, K.; Wallstrom, G.; LaBaer, J.; Amundson, S.A. Developing Human Radiation Biodosimetry Models: Testing Cross-Species Conversion Approaches Using an Ex Vivo Model System. Radiat. Res. 2017, 187, 708–721. [Google Scholar] [CrossRef]
- Romm, H.; Oestreicher, U.; Kulka, U. Cytogenetic damage analysed by the dicentric assay. Ann. Ist. Super. Sanita 2009, 45, 251–259. [Google Scholar] [PubMed]
- ICRU. Biodosimetry; ICRU: Bethesda, MD, USA, 2019; pp. 26–45. [Google Scholar]
- Gruel, G.; Lucchesi, C.; Pawlik, A.; Frouin, V.; Alibert, O.; Kortulewski, T.; Zarour, A.; Jacquelin, B.; Gidrol, X.; Tronik-Le Roux, D. Novel microarray-based method for estimating exposure to ionizing radiation. Radiat. Res. 2006, 166, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Grace, M.B.; McLeland, C.B.; Gagliardi, S.J.; Smith, J.M.; Jackson, W.E., 3rd; Blakely, W.F. Development and assessment of a quantitative reverse transcription-PCR assay for simultaneous measurement of four amplicons. Clin. Chem. 2003, 49, 1467–1475. [Google Scholar] [CrossRef] [Green Version]
- Lossl, P.; van de Waterbeemd, M.; Heck, A.J. The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J. 2016, 35, 2634–2657. [Google Scholar] [CrossRef]
- Meadows, S.K.; Dressman, H.K.; Daher, P.; Himburg, H.; Russell, J.L.; Doan, P.; Chao, N.J.; Lucas, J.; Nevins, J.R.; Chute, J.P. Diagnosis of partial body radiation exposure in mice using peripheral blood gene expression profiles. PLoS ONE 2010, 5, e11535. [Google Scholar] [CrossRef] [Green Version]
- Amundson, S.A.; Fornace, A.J., Jr. Gene expression profiles for monitoring radiation exposure. Radiat. Prot. Dosim. 2001, 97, 11–16. [Google Scholar] [CrossRef]
- Smeenk, L.; van Heeringen, S.J.; Koeppel, M.; van Driel, M.A.; Bartels, S.J.; Akkers, R.C.; Denissov, S.; Stunnenberg, H.G.; Lohrum, M. Characterization of genome-wide p53-binding sites upon stress response. Nucleic Acids Res. 2008, 36, 3639–3654. [Google Scholar] [CrossRef]
- Kruiswijk, F.; Labuschagne, C.F.; Vousden, K.H. p53 in survival, death and metabolic health: A lifeguard with a licence to kill. Nat. Rev. Mol. Cell. Biol. 2015, 16, 393–405. [Google Scholar] [CrossRef]
- Oh, J.H.; Wong, H.P.; Wang, X.; Deasy, J.O. A bioinformatics filtering strategy for identifying radiation response biomarker candidates. PLoS ONE 2012, 7, e38870. [Google Scholar] [CrossRef]
- Amundson, S.A. Transcriptomics for radiation biodosimetry: Progress and challenges. Int. J. Radiat. Biol. 2021, 21, 1–9. [Google Scholar] [CrossRef]
- Li, S.; Lu, X.; Feng, J.B.; Tian, M.; Liu, Q.J. Identification and Validation of Candidate Radiation-responsive Genes for Human Biodosimetr. Biomed. Environ. Sci. 2017, 30, 834–840. [Google Scholar] [CrossRef]
- Ghandhi, S.A.; Shuryak, I.; Morton, S.R.; Amundson, S.A.; Brenner, D.J. New Approaches for Quantitative Reconstruction of Radiation Dose in Human Blood Cells. Sci. Rep. 2019, 9, 18441. [Google Scholar] [CrossRef] [Green Version]
- Ghandhi, S.A.; Smilenov, L.B.; Elliston, C.D.; Chowdhury, M.; Amundson, S.A. Radiation dose-rate effects on gene expression for human biodosimetry. BMC Med. Genom. 2015, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Manning, G.; Kabacik, S.; Finnon, P.; Bouffler, S.; Badie, C. High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood. Int. J. Radiat. Biol. 2013, 89, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Abend, M.; Amundson, S.A.; Badie, C.; Brzoska, K.; Hargitai, R.; Kriehuber, R.; Schule, S.; Kis, E.; Ghandhi, S.A.; Lumniczky, K.; et al. Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise. Sci. Rep. 2021, 11, 9756. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Garcia, L.; O’Brien, G.; Sipos, B.; Mayes, S.; Love, M.I.; Turner, D.J.; Badie, C. Generation of a Transcriptional Radiation Exposure Signature in Human Blood Using Long-Read Nanopore Sequencing. Radiat. Res. 2020, 193, 143–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abend, M.; Badie, C.; Quintens, R.; Kriehuber, R.; Manning, G.; Macaeva, E.; Njima, M.; Oskamp, D.; Strunz, S.; Moertl, S.; et al. Examining Radiation-Induced In Vivo and In Vitro Gene Expression Changes of the Peripheral Blood in Different Laboratories for Biodosimetry Purposes: First RENEB Gene Expression Study. Radiat. Res. 2016, 185, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Badie, C.; Kabacik, S.; Balagurunathan, Y.; Bernard, N.; Brengues, M.; Faggioni, G.; Greither, R.; Lista, F.; Peinnequin, A.; Poyot, T.; et al. Laboratory intercomparison of gene expression assays. Radiat. Res. 2013, 180, 138–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blakely, W.F.; Ossetrova, N.I.; Whitnall, M.H.; Sandgren, D.J.; Krivokrysenko, V.I.; Shakhov, A.; Feinstein, E. Multiple parameter radiation injury assessment using a nonhuman primate radiation model-biodosimetry applications. Health Phys. 2010, 98, 153–159. [Google Scholar] [CrossRef]
- Amundson, S.A.; Grace, M.B.; McLeland, C.B.; Epperly, M.W.; Yeager, A.; Zhan, Q.; Greenberger, J.S.; Fornace, A.J., Jr. Human in vivo radiation-induced biomarkers: Gene expression changes in radiotherapy patients. Cancer Res. 2004, 64, 6368–6371. [Google Scholar] [CrossRef] [Green Version]
- Grace, M.B.; McLeland, C.B.; Blakely, W.F. Real-time quantitative RT-PCR assay of GADD45 gene expression changes as a biomarker for radiation biodosimetry. Int. J. Radiat. Biol. 2002, 78, 1011–1021. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Sanchez, J.C.; Gooley, A.A.; Appel, R.D.; Humphery-Smith, I.; Hochstrasser, D.F.; Williams, K.L. Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 1996, 13, 19–50. [Google Scholar] [CrossRef] [Green Version]
- Budworth, H.; Snijders, A.M.; Marchetti, F.; Mannion, B.; Bhatnagar, S.; Kwoh, E.; Tan, Y.; Wang, S.X.; Blakely, W.F.; Coleman, M.; et al. DNA repair and cell cycle biomarkers of radiation exposure and inflammation stress in human blood. PLoS ONE 2012, 7, e48619. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Pujol Canadell, M.; Shuryak, I.; Perrier, J.R.; Taveras, M.; Patel, P.; Koller, A.; Smilenov, L.B.; Brenner, D.J.; Chen, E.I.; et al. Candidate protein markers for radiation biodosimetry in the hematopoietically humanized mouse model. Sci. Rep. 2018, 8, 13557. [Google Scholar] [CrossRef] [Green Version]
- Chalubinska-Fendler, J.; Fendler, W.; Spych, M.; Wyka, K.; Luniewska-Bury, J.; Fijuth, J. Lipopolysaccharide-binding protein is efficient in biodosimetry during radiotherapy of lung cancer. Biomed. Rep. 2016, 5, 450–454. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Lee, Y.; Shuryak, I.; Pujol Canadell, M.; Taveras, M.; Perrier, J.R.; Bacon, B.A.; Rodrigues, M.A.; Kowalski, R.; Capaccio, C.; et al. Development of the FAST-DOSE assay system for high-throughput biodosimetry and radiation triage. Sci. Rep. 2020, 10, 12716. [Google Scholar] [CrossRef]
- Balog, R.P.; Chang, P.; Javitz, H.S.; Lee, S.; Lin, H.; Shaler, T.; Cooper, D.E. Development of a point-of-care radiation biodosimeter: Studies using novel protein biomarker panels in non-human primates. Int. J. Radiat. Biol. 2020, 96, 35–46. [Google Scholar] [CrossRef]
- Vicente, E.; Vujaskovic, Z.; Jackson, I.L. A Systematic Review of Metabolomic and Lipidomic Candidates for Biomarkers in Radiation Injury. Metabolites 2020, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Pannkuk, E.L.; Laiakis, E.C.; Authier, S.; Wong, K.; Fornace, A.J., Jr. Gas Chromatography/Mass Spectrometry Metabolomics of Urine and Serum from Nonhuman Primates Exposed to Ionizing Radiation: Impacts on the Tricarboxylic Acid Cycle and Protein Metabolism. J. Proteome Res. 2017, 16, 2091–2100. [Google Scholar] [CrossRef] [PubMed]
- Pannkuk, E.L.; Laiakis, E.C.; Authier, S.; Wong, K.; Fornace, A.J., Jr. Global Metabolomic Identification of Long-Term Dose-Dependent Urinary Biomarkers in Nonhuman Primates Exposed to Ionizing Radiation. Radiat. Res. 2015, 184, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Pannkuk, E.L.; Laiakis, E.C.; Gill, K.; Jain, S.K.; Mehta, K.Y.; Nishita, D.; Bujold, K.; Bakke, J.; Gahagen, J.; Authier, S.; et al. Liquid Chromatography-Mass Spectrometry-Based Metabolomics of Nonhuman Primates after 4 Gy Total Body Radiation Exposure: Global Effects and Targeted Panels. J. Proteome Res. 2019, 18, 2260–2269. [Google Scholar] [CrossRef]
- Pannkuk, E.L.; Laiakis, E.C.; Authier, S.; Wong, K.; Fornace, A.J., Jr. Targeted Metabolomics of Nonhuman Primate Serum after Exposure to Ionizing Radiation: Potential Tools for High-throughput Biodosimetry. RSC Adv. 2016, 6, 51192–51202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudarzi, M.; Mak, T.D.; Chen, C.; Smilenov, L.B.; Brenner, D.J.; Fornace, A.J. The effect of low dose rate on metabolomic response to radiation in mice. Radiat. Environ. Biophys. 2014, 53, 645–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudarzi, M.; Weber, W.; Mak, T.D.; Chung, J.; Doyle-Eisele, M.; Melo, D.; Brenner, D.J.; Guilmette, R.A.; Fornace, A.J. Development of urinary biomarkers for internal exposure by cesium-137 using a metabolomics approach in mice. Radiat. Res. 2014, 181, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Brenner, D.J.; Brown, T.R. Identification of urinary biomarkers from X-irradiated mice using NMR spectroscopy. Radiat. Res. 2011, 175, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.W.; Tudor, G.; Li, F.; Tong, Y.; Katz, B.; Farese, A.M.; MacVittie, T.J.; Booth, C.; Kane, M.A. Citrulline as a Biomarker in the Murine Total-Body Irradiation Model: Correlation of Circulating and Tissue Citrulline to Small Intestine Epithelial Histopathology. Health Phys. 2015, 109, 452–465. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.H.; Patterson, A.D.; Krausz, K.W.; Kalinich, J.F.; Tyburski, J.B.; Kang, D.W.; Luecke, H.; Gonzalez, F.J.; Blakely, W.F.; Idle, J.R. Radiation metabolomics. 5. Identification of urinary biomarkers of ionizing radiation exposure in nonhuman primates by mass spectrometry-based metabolomics. Radiat. Res. 2012, 178, 328–340. [Google Scholar] [CrossRef]
- Krise, G.M.; Williams, C.M.; Anderson, D.R. Postirradiation creatinuria in Macaca mulatta. Proc. Soc. Exp. Biol. Med. 1957, 95, 764–766. [Google Scholar] [CrossRef] [PubMed]
- Laiakis, E.C.; Mak, T.D.; Anizan, S.; Amundson, S.A.; Barker, C.A.; Wolden, S.L.; Brenner, D.J.; Fornace, A.J., Jr. Development of a metabolomic radiation signature in urine from patients undergoing total body irradiation. Radiat. Res. 2014, 181, 350–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blakely, W.F.; Carr, Z.; Chu, M.C.; Dayal-Drager, R.; Fujimoto, K.; Hopmeir, M.; Kulka, U.; Lillis-Hearne, P.; Livingston, G.K.; Lloyd, D.C.; et al. WHO 1st consultation on the development of a global biodosimetry laboratories network for radiation emergencies (BioDoseNet). Radiat. Res. 2009, 171, 127–139. [Google Scholar] [CrossRef]
- ISO 19238; Radiation Protection-Performance Criteria for Service Laboratories Performing Biological Dosimetry by Cytogenetics. ISO: Geneva, Switzerland, 2014.
- Beinke, C.; Barnard, S.; Boulay-Greene, H.; De Amicis, A.; De Sanctis, S.; Herodin, F.; Jones, A.; Kulka, U.; Lista, F.; Lloyd, D.; et al. Laboratory intercomparison of the dicentric chromosome analysis assay. Radiat. Res. 2013, 180, 129–137. [Google Scholar] [CrossRef]
- Oestreicher, U.; Samaga, D.; Ainsbury, E.; Antunes, A.C.; Baeyens, A.; Barrios, L.; Beinke, C.; Beukes, P.; Blakely, W.F.; Cucu, A.; et al. RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA). Int. J. Radiat. Biol. 2017, 93, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pernot, E.; Hall, J.; Baatout, S.; Benotmane, M.A.; Blanchardon, E.; Bouffler, S.; El Saghire, H.; Gomolka, M.; Guertler, A.; Harms-Ringdahl, M.; et al. Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat. Res. 2012, 751, 258–286. [Google Scholar] [CrossRef]
- Stephan, G.; Kampen, W.U.; Nosske, D.; Roos, H. Chromosomal aberrations in peripheral lymphocytes of patients treated with radium-224 for ankylosing spondylitis. Radiat. Environ. Biophys. 2005, 44, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Romm, H.; Ainsbury, E.; Barnard, S.; Barrios, L.; Barquinero, J.F.; Beinke, C.; Deperas, M.; Gregoire, E.; Koivistoinen, A.; Lindholm, C.; et al. Automatic scoring of dicentric chromosomes as a tool in large scale radiation accidents. Mutat. Res. 2013, 756, 174–183. [Google Scholar] [CrossRef]
- Vaurijoux, A.; Gregoire, E.; Roch-Lefevre, S.; Voisin, P.; Martin, C.; Voisin, P.; Roy, L.; Gruel, G. Detection of partial-body exposure to ionizing radiation by the automatic detection of dicentrics. Radiat. Res. 2012, 178, 357–364. [Google Scholar] [CrossRef]
- Biswas, N.; Chakrabarti, S. Artificial Intelligence (AI)-Based Systems Biology Approaches in Multi-Omics Data Analysis of Cancer. Front. Oncol. 2020, 10, 588221. [Google Scholar] [CrossRef]
- Reel, P.S.; Reel, S.; Pearson, E.; Trucco, E.; Jefferson, E. Using machine learning approaches for multi-omics data analysis: A review. Biotechnol. Adv. 2021, 49, 107739. [Google Scholar] [CrossRef] [PubMed]
- Ainsbury, E.A.; Bakhanova, E.; Barquinero, J.F.; Brai, M.; Chumak, V.; Correcher, V.; Darroudi, F.; Fattibene, P.; Gruel, G.; Guclu, I.; et al. Review of retrospective dosimetry techniques for external ionising radiation exposures. Radiat. Prot. Dosim. 2011, 147, 573–592. [Google Scholar] [CrossRef] [Green Version]
- Macaeva, E.; Mysara, M.; De Vos, W.H.; Baatout, S.; Quintens, R. Gene expression-based biodosimetry for radiological incidents: Assessment of dose and time after radiation exposure. Int. J. Radiat. Biol. 2019, 95, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Sprung, C.N.; Yang, Y.; Forrester, H.B.; Li, J.; Zaitseva, M.; Cann, L.; Restall, T.; Anderson, R.L.; Crosbie, J.C.; Rogers, P.A. Genome-wide transcription responses to synchrotron microbeam radiotherapy. Radiat. Res. 2012, 178, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Ainsbury, E.A.; Higueras, M.; Puig, P.; Einbeck, J.; Samaga, D.; Barquinero, J.F.; Barrios, L.; Brzozowska, B.; Fattibene, P.; Gregoire, E.; et al. Uncertainty of fast biological radiation dose assessment for emergency response scenarios. Int. J. Radiat. Biol. 2017, 93, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Jaworska, A.; Ainsbury, E.A.; Fattibene, P.; Lindholm, C.; Oestreicher, U.; Rothkamm, K.; Romm, H.; Thierens, H.; Trompier, F.; Voisin, P.; et al. Operational guidance for radiation emergency response organisations in Europe for using biodosimetric tools developed in EU MULTIBIODOSE project. Radiat. Prot. Dosim. 2015, 164, 165–169. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hladik, D.; Bucher, M.; Endesfelder, D.; Oestreicher, U. The Potential of Omics in Biological Dosimetry. Radiation 2022, 2, 78-90. https://doi.org/10.3390/radiation2010006
Hladik D, Bucher M, Endesfelder D, Oestreicher U. The Potential of Omics in Biological Dosimetry. Radiation. 2022; 2(1):78-90. https://doi.org/10.3390/radiation2010006
Chicago/Turabian StyleHladik, Daniela, Martin Bucher, David Endesfelder, and Ursula Oestreicher. 2022. "The Potential of Omics in Biological Dosimetry" Radiation 2, no. 1: 78-90. https://doi.org/10.3390/radiation2010006
APA StyleHladik, D., Bucher, M., Endesfelder, D., & Oestreicher, U. (2022). The Potential of Omics in Biological Dosimetry. Radiation, 2(1), 78-90. https://doi.org/10.3390/radiation2010006