Bird Displacement by Wind Turbines: Assessing Current Knowledge and Recommendations for Future Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Major Trends in Research
4. Current Knowledge on Bird Displacement by Wind Turbines
5. Guidance and Opportunities for Future Studies
5.1. Study Design
5.1.1. Robust Experimental Design and Sampling Effort
5.1.2. Definition of Study Area Limits and Appropriate Distance Bands
5.1.3. Control for Confounding Factors
5.1.4. Selection of the Appropriate Survey Methods/Technologies
5.2. Reporting and Result Dissemination
6. Study Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Katzner, T.E.; Nelson, D.M.; Diffendorfer, J.E.; Duerr, A.E.; Campbell, C.J.; Leslie, D.; Vander Zanden, H.B.; Yee, J.L.; Sur, M.; Huso, M.M.P.; et al. Wind energy: An ecological challenge. Science 2019, 366, 1206–1207. [Google Scholar] [CrossRef]
- Drewitt, A.L.; Langston, R.H.W. Collision Effects of Wind-power Generators and Other Obstacles on Birds. Ann. N. Y. Acad. Sci. 2008, 1134, 233–266. [Google Scholar] [CrossRef]
- Drewitt, A.L.; Langston, R.H.W. Assessing the impacts of wind farms on birds. Ibis 2006, 148, 29–42. [Google Scholar] [CrossRef]
- Marques, A.T.; Batalha, H.; Rodrigues, S.; Costa, H.; Pereira, M.J.R.; Fonseca, C.; Mascarenhas, M.; Bernardino, J. Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biol. Conserv. 2014, 179, 40–52. [Google Scholar] [CrossRef]
- May, R.F. A unifying framework for the underlying mechanisms of avian avoidance of wind turbines. Biol. Conserv. 2015, 190, 179–187. [Google Scholar] [CrossRef]
- Wilson, M.W.; Ridlon, A.D.; Gaynor, K.M.; Gaines, S.D.; Stier, A.C.; Halpern, B.S. Ecological impacts of human-induced animal behaviour change. Ecol. Lett. 2020, 23, 1522–1536. [Google Scholar] [CrossRef]
- Thaker, M.; Zambre, A.; Bhosale, H. Wind farms have cascading impacts on ecosystems across trophic levels. Nat. Ecol. Evol. 2018, 2, 1854–1858. [Google Scholar] [CrossRef]
- Dierschke, V.; Furness, R.W.; Garthe, S. Seabirds and offshore wind farms in European waters: Avoidance and attraction. Biol. Conserv. 2016, 202, 59–68. [Google Scholar] [CrossRef]
- Percival, S. Birds and windfarms. Br. Birds 2005, 98, 194–204. [Google Scholar]
- Stewart, G.B.; Pullin, A.S.; Coles, C.F. Poor evidence-base for assessment of windfarm impacts on birds. Environ. Conserv. 2007, 34, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Coppes, J.; Braunisch, V.; Bollmann, K.; Storch, I.; Mollet, P.; Grünschachner-Berger, V.; Taubmann, J.; Suchant, R.; Nopp-Mayr, U. The impact of wind energy facilities on grouse: A systematic review. J. Ornithol. 2020, 161, 1–15. [Google Scholar] [CrossRef]
- Rees, E.C. Impacts of wind farms on swans and geese: A review. Wildfowl 2012, 62, 37–72. [Google Scholar]
- Pruett, C.L.; PattenN, M.A.; Wolfe, D.H. Avoidance Behavior by Prairie Grouse: Implications for Development of Wind Energy. Conserv. Biol. 2009, 23, 1253–1259. [Google Scholar] [CrossRef]
- Schöll, E.M.; Nopp-Mayr, U. Impact of wind power plants on mammalian and avian wildlife species in shrub- and woodlands. Biol. Conserv. 2021, 256, 109037. [Google Scholar] [CrossRef]
- Madders, M.; Whitfield, D.P. Upland raptors and the assessment of wind farm impacts. Ibis 2006, 148, 43–56. [Google Scholar] [CrossRef]
- Vanermen, N.; Stienen, E. Seabirds: Displacement. In Wildlife and Wind Farms, Conflicts and Solutions. Volume 3. Offshore: Potential Effects; Perrow, M.R., Ed.; Pelagic: Exeter, UK, 2019; pp. 174–205. ISBN 978-1-78427-127-5. [Google Scholar]
- Zwart, M.C.; Robson, P.; Rankin, S.; Whittingham, M.J.; McGowan, P.J.K. Using environmental impact assessment and post-construction monitoring data to inform wind energy developments. Ecosphere 2015, 6, art26. [Google Scholar] [CrossRef] [Green Version]
- Hötker, H. Birds: Displacement. In Wildlife and Wind Farms: Conflicts and Solutions. Volume 1. Onshore: Potential Effects; Perrow, M., Ed.; Pelagic: Exeter, UK, 2017; pp. 119–154. [Google Scholar]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Powell, L.A.; Brown, M.B.; Smith, J.A.; Harrison, J.O.; Whalen, C.E. Modeling the spatial effects of disturbance: A constructive critique to provide evidence of ecological thresholds. Wildlife Biol. 2017, wlb.00245. [Google Scholar] [CrossRef] [Green Version]
- Gill, F.; Donsker, D.; Rasmussen, P. IOC World Bird List (v11.2); 2021; Available online: https://www.worldbirdnames.org/new/ (accessed on 1 November 2021). [CrossRef]
- IRENA Renewable Energy Statistics 2020; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021.
- Morgan, R.K. Environmental impact assessment: The state of the art. Impact Assess. Proj. Apprais. 2012, 30, 5–14. [Google Scholar] [CrossRef]
- Larsen, J.K.; Madsen, J. Effects of wind turbines and other physical elements on field utilization by pink-footed geese (Anser brachyrhynchus): A landscape perspective. Landsc. Ecol. 2000, 15, 755–764. [Google Scholar] [CrossRef]
- Farfán, M.A.; Vargas, J.M.; Duarte, J.; Real, R. What is the impact of wind farms on birds? A case study in southern Spain. Biodivers. Conserv. 2009, 18, 3743–3758. [Google Scholar] [CrossRef]
- Santos, C.D.; Ferraz, R.; Muñoz, A.-R.; Onrubia, A.; Wikelski, M. Black kites of different age and sex show similar avoidance responses to wind turbines during migration. R. Soc. Open Sci. 2021, 8, 201933. [Google Scholar] [CrossRef]
- Skov, H.; Desholm, M.; Heinänen, S.; Kahlert, J.A.; Laubek, B.; Jensen, N.E.; Žydelis, R.; Jensen, B.P. Patterns of migrating soaring migrants indicate attraction to marine wind farms. Biol. Lett. 2016, 12, 20160804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dohm, R.; Jennelle, C.S.; Garvin, J.C.; Drake, D. A long-term assessment of raptor displacement at a wind farm. Front. Ecol. Environ. 2019, 17, 433–438. [Google Scholar] [CrossRef]
- Farfán, M.A.; Duarte, J.; Real, R.; Muñoz, A.R.; Fa, J.E.; Vargas, J.M. Differential recovery of habitat use by birds after wind farm installation: A multi-year comparison. Environ. Impact Assess. Rev. 2017, 64, 8–15. [Google Scholar] [CrossRef]
- Keehn, J.E.; Feldman, C.R. Disturbance affects biotic community composition at desert wind farms. Wildl. Res. 2018, 45, 383. [Google Scholar] [CrossRef]
- Pearce-Higgins, J.W.; Stephen, L.; Langston, R.H.W.; Bainbridge, I.P.; Bullman, R. The distribution of breeding birds around upland wind farms. J. Appl. Ecol. 2009, 46, 1323–1331. [Google Scholar] [CrossRef]
- May, R.; Nygård, T.; Dahl, E.L.; Bevanger, K. Habitat utilization in white-tailed eagles (Haliaeetus albicilla) and the displacement impact of the Smøla wind-power plant. Wildl. Soc. Bull. 2013, 37, 75–83. [Google Scholar] [CrossRef]
- Campedelli, T.; Londi, G.; Cutini, S.; Sorace, A.; Tellini Florenzano, G. Raptor displacement due to the construction of a wind farm: Preliminary results after the first 2 years since the construction. Ethol. Ecol. Evol. 2014, 26, 376–391. [Google Scholar] [CrossRef]
- Garvin, J.C.; Jennelle, C.S.; Drake, D.; Grodsky, S.M. Response of raptors to a windfarm. J. Appl. Ecol. 2011, 48, 199–209. [Google Scholar] [CrossRef]
- Marques, A.T.; Santos, C.D.; Hanssen, F.; Muñoz, A.; Onrubia, A.; Wikelski, M.; Moreira, F.; Palmeirim, J.M.; Silva, J.P. Wind turbines cause functional habitat loss for migratory soaring birds. J. Anim. Ecol. 2020, 89, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.W.; Fernández-Bellon, D.; Irwin, S.; O’Halloran, J. Hen Harrier Circus cyaneus population trends in relation to wind farms. Bird Study 2017, 64, 20–29. [Google Scholar] [CrossRef]
- Walker, D.; Mcgrady, M.; Mccluskie, A.; Madders, M.; Mcleod, D.R.A. Resident Golden Eagle ranging behaviour before and after construction of a windfarm in Argyll. Scottish Birds 2005, 25, 24–40. [Google Scholar]
- Hull, C.L.; Muir, S.C. Behavior and turbine avoidance rates of eagles at two wind farms in Tasmania, Australia. Wildl. Soc. Bull. 2013, 37, 49–58. [Google Scholar] [CrossRef]
- Hernández-Pliego, J.; de Lucas, M.; Muñoz, A.-R.; Ferrer, M. Effects of wind farms on Montagu’s harrier (Circus pygargus) in southern Spain. Biol. Conserv. 2015, 191, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Balotari-Chiebao, F.; Brommer, J.E.; Niinimäki, T.; Laaksonen, T. Proximity to wind-power plants reduces the breeding success of the white-tailed eagle. Anim. Conserv. 2016, 19, 265–272. [Google Scholar] [CrossRef]
- de Lucas, M.; Janss, G.F.E.; Ferrer, M. The effects of a wind farm on birds in a migration point: The Strait of Gibraltar. Biodivers. Conserv. 2004, 13, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Madsen, J.; Boertmann, D. Animal behavioral adaptation to changing landscapes: Spring-staging geese habituate to wind farms. Landsc. Ecol. 2008, 23, 1007–1011. [Google Scholar] [CrossRef]
- Loesch, C.R.; Walker, J.A.; Reynolds, R.E.; Gleason, J.S.; Niemuth, N.D.; Stephens, S.E.; Erickson, M.A. Effect of wind energy development on breeding duck densities in the Prairie Pothole Region. J. Wildl. Manag. 2013, 77, 587–598. [Google Scholar] [CrossRef]
- Larsen, J.K.; Guillemette, M. Effects of wind turbines on flight behaviour of wintering common eiders: Implications for habitat use and collision risk. J. Appl. Ecol. 2007, 44, 516–522. [Google Scholar] [CrossRef]
- Fijn, R.C.; Krijgsveld, K.L.; Tijsen, W.; Prinsen, H.A.; Dirksen, S. Habitat use, disturbance and collision risks for Bewick. Wildfowl 2012, 62, 97–116. [Google Scholar]
- Desholm, M.; Kahlert, J. Avian collision risk at an offshore wind farm. Biol. Lett. 2005, 1, 296–298. [Google Scholar] [CrossRef]
- Plonczkier, P.; Simms, I.C. Radar monitoring of migrating pink-footed geese: Behavioural responses to offshore wind farm development. J. Appl. Ecol. 2012, 49, 1187–1194. [Google Scholar] [CrossRef]
- Zehtindjiev, P.; Vasilev, V.; Marinov, M.P.; Ilieva, M.; Dimitrov, D.; Peev, S.; Raykov, I.; Raykova, V.; Ivanova, K.; Bedev, K.; et al. No Evidence for Displacement of Wintering Red-breasted Geese Branta ruficollis (Pallas, 1769)(Anseriformes) at a Wind Farms Area in Northeast Bulgaria: Long-term Monitoring Results. Acta Zool. Bulg. 2017, 69, 215–228. [Google Scholar]
- Meek, E.R.; Ribbands, J.B.; Christer, W.G.; Davy, P.R.; Higginson, I. The effects of aero-generators on moorland bird populations in the Orkney Islands, Scotland. Bird Study 1993, 40, 140–143. [Google Scholar] [CrossRef]
- Rothery, P.; Newton, I.; Little, B. Observations of seabirds at offshore wind turbines near Blyth in northeast England. Bird Study 2009, 56, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Lange, C.J.; Ballard, B.M.; Collins, D.P. Impacts of wind turbines on redheads in the Laguna Madre. J. Wildl. Manag. 2018, 82, 531–537. [Google Scholar] [CrossRef]
- Welcker, J.; Nehls, G. Displacement of seabirds by an offshore wind farm in the North Sea. Mar. Ecol. Prog. Ser. 2016, 554, 173–182. [Google Scholar] [CrossRef]
- Shaffer, J.A.; Buhl, D.A. Effects of wind-energy facilities on breeding grassland bird distributions. Conserv. Biol. 2016, 30, 59–71. [Google Scholar] [CrossRef]
- Vanermen, N.; Onkelinx, T.; Courtens, W.; Van de walle, M.; Verstraete, H.; Stienen, E.W.M. Seabird avoidance and attraction at an offshore wind farm in the Belgian part of the North Sea. Hydrobiologia 2015, 756, 51–61. [Google Scholar] [CrossRef]
- Pearce-Higgins, J.W.; Stephen, L.; Douse, A.; Langston, R.H.W. Greater impacts of wind farms on bird populations during construction than subsequent operation: Results of a multi-site and multi-species analysis. J. Appl. Ecol. 2012, 49, 386–394. [Google Scholar] [CrossRef]
- Sansom, A.; Pearce-Higgins, J.W.; Douglas, D.J.T. Negative impact of wind energy development on a breeding shorebird assessed with a BACI study design. Ibis 2016, 158, 541–555. [Google Scholar] [CrossRef]
- Vanermen, N.; Courtens, W.; Daelemans, R.; Lens, L.; Müller, W.; Van de walle, M.; Verstraete, H.; Stienen, E.W.M. Attracted to the outside: A meso-scale response pattern of lesser black-backed gulls at an offshore wind farm revealed by GPS telemetry. ICES J. Mar. Sci. 2020, 77, 701–710. [Google Scholar] [CrossRef]
- Peschko, V.; Mercker, M.; Garthe, S. Telemetry reveals strong effects of offshore wind farms on behaviour and habitat use of common guillemots (Uria aalge) during the breeding season. Mar. Biol. 2020, 167, 118. [Google Scholar] [CrossRef]
- Peschko, V.; Mendel, B.; Müller, S.; Markones, N.; Mercker, M.; Garthe, S. Effects of offshore windfarms on seabird abundance: Strong effects in spring and in the breeding season. Mar. Environ. Res. 2020, 162, 105157. [Google Scholar] [CrossRef] [PubMed]
- Douglas, D.J.T.; Bellamy, P.E.; Pearce-Higgins, J.W. Changes in the abundance and distribution of upland breeding birds at an operational wind farm. Bird Study 2011, 58, 37–43. [Google Scholar] [CrossRef]
- Niemuth, N.D.; Walker, J.A.; Gleason, J.S.; Loesch, C.R.; Reynolds, R.E.; Stephens, S.E.; Erickson, M.A. Influence of Wind Turbines on Presence of Willet, Marbled Godwit, Wilson’s Phalarope and Black Tern on Wetlands in the Prairie Pothole Region of North Dakota and South Dakota. Waterbirds 2013, 36, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Vallejo, G.C.; Grellier, K.; Nelson, E.J.; McGregor, R.M.; Canning, S.J.; Caryl, F.M.; McLean, N. Responses of two marine top predators to an offshore wind farm. Ecol. Evol. 2017, 7, 8698–8708. [Google Scholar] [CrossRef]
- Bai, M.-L.; Chih, W.-C.; Lee, P.-F.; Lien, Y.-Y. Response of waterbird abundance and flight behavior to a coastal wind farm on the East Asian-Australasian Flyway. Environ. Monit. Assess. 2021, 193, 181. [Google Scholar] [CrossRef] [PubMed]
- Battisti, C.; Fortunati, L.; Ferri, V.; Dallari, D.; Lucatello, G. Lack of evidence for short-term structural changes in bird assemblages breeding in Mediterranean mosaics moderately perforated by a wind farm. Glob. Ecol. Conserv. 2016, 6, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Garcia, D.A.; Canavero, G.; Ardenghi, F.; Zambon, M. Analysis of wind farm effects on the surrounding environment: Assessing population trends of breeding passerines. Renew. Energy 2015, 80, 190–196. [Google Scholar] [CrossRef]
- Łopucki, R.; Klich, D.; Gielarek, S. Do terrestrial animals avoid areas close to turbines in functioning wind farms in agricultural landscapes? Environ. Monit. Assess. 2017, 189, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppes, J.; Kämmerle, J.-L.; Grünschachner-Berger, V.; Braunisch, V.; Bollmann, K.; Mollet, P.; Suchant, R.; Nopp-Mayr, U. Consistent effects of wind turbines on habitat selection of capercaillie across Europe. Biol. Conserv. 2020, 244, 108529. [Google Scholar] [CrossRef]
- Lebeau, C.W.; Beck, J.L.; Johnson, G.D.; Nielson, R.M.; Holloran, M.J.; Gerow, K.G.; McDonald, T.L. Greater sage-grouse male lek counts relative to a wind energy development. Wildl. Soc. Bull. 2017, 41, 17–26. [Google Scholar] [CrossRef]
- LeBeau, C.W.; Johnson, G.D.; Holloran, M.J.; Beck, J.L.; Nielson, R.M.; Kauffman, M.E.; Rodemaker, E.J.; McDonald, T.L. Greater sage-grouse habitat selection, survival, and wind energy infrastructure. J. Wildl. Manag. 2017, 81, 690–711. [Google Scholar] [CrossRef]
- Zeiler, H.P.; Gruenschachner-Berger, V. Impact of wind power plants on black grouse, Lyrurus tetrix in Alpine regions. Folia Zool. 2009, 58, 173. [Google Scholar]
- Devereux, C.L.; Denny, M.J.H.; Whittingham, M.J. Minimal effects of wind turbines on the distribution of wintering farmland birds. J. Appl. Ecol. 2008, 45, 1689–1694. [Google Scholar] [CrossRef]
- González, M.A.; García-Tejero, S.; Wengert, E.; Fuertes, B. Severe decline in Cantabrian Capercaillie Tetrao urogallus cantabricus habitat use after construction of a wind farm. Bird Conserv. Int. 2016, 26, 256–261. [Google Scholar] [CrossRef]
- Winder, V.L.; McNew, L.B.; Gregory, A.J.; Hunt, L.M.; Wisely, S.M.; Sandercock, B.K. Space use by female Greater Prairie-Chickens in response to wind energy development. Ecosphere 2014, 5, art3. [Google Scholar] [CrossRef]
- Peterson, J.M.; Earl, J.E.; Fuhlendorf, S.D.; Elmore, R.D.; Haukos, D.A.; Tanner, A.M.; Carleton, S.A. Estimating response distances of lesser prairie-chickens to anthropogenic features during long-distance movements. Ecosphere 2020, 11, e03202. [Google Scholar] [CrossRef]
- Mcnew, L.B.; Hunt, L.M.; Gregory, A.J.; Wisely, S.M.; Sandercock, B.K. Effects of Wind Energy Development on Nesting Ecology of Greater Prairie-Chickens in Fragmented Grasslands. Conserv. Biol. 2014, 28, 1089–1099. [Google Scholar] [CrossRef] [Green Version]
- Winder, V.L.; Gregory, A.J.; McNew, L.B.; Sandercock, B.K. Responses of male Greater Prairie-Chickens to wind energy development. Condor 2015, 117, 284–296. [Google Scholar] [CrossRef] [Green Version]
- Harrison, J.O.; Brown, M.B.; Powell, L.A.; Schacht, W.H.; Smith, J.A. Nest site selection and nest survival of Greater Prairie-Chickens near a wind energy facility. Condor 2017, 119, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Mendel, B.; Schwemmer, P.; Peschko, V.; Müller, S.; Schwemmer, H.; Mercker, M.; Garthe, S. Operational offshore wind farms and associated ship traffic cause profound changes in distribution patterns of Loons (Gavia spp.). J. Environ. Manag. 2019, 231, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Heinänen, S.; Žydelis, R.; Kleinschmidt, B.; Dorsch, M.; Burger, C.; Morkūnas, J.; Quillfeldt, P.; Nehls, G. Satellite telemetry and digital aerial surveys show strong displacement of red-throated divers (Gavia stellata) from offshore wind farms. Mar. Environ. Res. 2020, 160, 104989. [Google Scholar] [CrossRef]
- Pearse, A.T.; Metzger, K.L.; Brandt, D.A.; Shaffer, J.A.; Bidwell, M.T.; Harrell, W. Migrating Whooping Cranes avoid wind-energy infrastructure when selecting stopover habitat. Ecol. Appl. 2021, 31, e02324. [Google Scholar] [CrossRef]
- Pearse, A.T.; Brandt, D.A.; Krapu, G.L. Wintering Sandhill Crane exposure to wind energy development in the central and southern Great Plains, USA. Condor 2016, 118, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Stevens, T.K.; Hale, A.M.; Karsten, K.B.; Bennett, V.J. An analysis of displacement from wind turbines in a wintering grassland bird community. Biodivers. Conserv. 2013, 22, 1755–1767. [Google Scholar] [CrossRef]
- Lemaître, J.; Lamarre, V. Effects of wind energy production on a threatened species, the Bicknell’s Thrush Catharus bicknelli, with and without mitigation. Bird Conserv. Int. 2020, 30, 194–209. [Google Scholar] [CrossRef]
- Krecia, L.L.; Higgins, K.F.; Naugle, D.E. Effects of Wind Turbines on Upland Nesting Birds in Conservation Reserve Program Grasslands. Wilson Bull. 1999, 11, 100–104. [Google Scholar]
- Gómez-Catasús, J.; Garza, V.; Traba, J. Wind farms affect the occurrence, abundance and population trends of small passerine birds: The case of the Dupont’s lark. J. Appl. Ecol. 2018, 55, 2033–2042. [Google Scholar] [CrossRef]
- Song, N.; Xu, H.; Zhao, S.; Liu, N.; Zhong, S.; Li, B.; Wang, T. Effects of wind farms on the nest distribution of magpie (Pica pica) in agroforestry systems of Chongming Island, China. Glob. Ecol. Conserv. 2021, 27, e01536. [Google Scholar] [CrossRef]
- Hale, A.M.; Hatchett, E.S.; Meyer, J.A.; Bennett, V.J. No evidence of displacement due to wind turbines in breeding grassland songbirds. Condor 2014, 116, 472–482. [Google Scholar] [CrossRef] [Green Version]
- de Lucas, M.; Janss, G.F.E.; Ferrer, M. A Bird and Small Mammal BACI and IG Design Studies in a Wind Farm in Malpica (Spain). Biodivers. Conserv. 2005, 14, 3289–3303. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Zhao, S.; Song, N.; Liu, N.; Zhong, S.; Li, B.; Wang, T. Abundance and behavior of little egrets (Egretta garzetta) near an onshore wind farm in Chongming Dongtan, China. J. Clean. Prod. 2021, 312, 127662. [Google Scholar] [CrossRef]
- Peschko, V.; Mendel, B.; Mercker, M.; Dierschke, J.; Garthe, S. Northern gannets (Morus bassanus) are strongly affected by operating offshore wind farms during the breeding season. J. Environ. Manag. 2021, 279, 111509. [Google Scholar] [CrossRef]
- Miao, R.; Ghosh, P.N.; Khanna, M.; Wang, W.; Rong, J. Effect of wind turbines on bird abundance: A national scale analysis based on fixed effects models. Energy Policy 2019, 132, 357–366. [Google Scholar] [CrossRef]
- Fernández-Bellon, D.; Wilson, M.W.; Irwin, S.; O’Halloran, J. Effects of development of wind energy and associated changes in land use on bird densities in upland areas. Conserv. Biol. 2019, 33, 413–422. [Google Scholar] [CrossRef]
- Larsson, A.-K. The Environmental Impact from an Offshore Plant. Wind Eng. 1994, 18, 213–218. [Google Scholar]
- Hill, D.; Hockin, D.; Price, D.; Tucker, G.; Morris, R.; Treweek, J. Bird Disturbance: Improving the Quality and Utility of Disturbance Research. J. Appl. Ecol. 1997, 34, 275. [Google Scholar] [CrossRef]
- Christie, A.P.; Amano, T.; Martin, P.A.; Shackelford, G.E.; Simmons, B.I.; Sutherland, W.J. Simple study designs in ecology produce inaccurate estimates of biodiversity responses. J. Appl. Ecol. 2019, 56, 2742–2754. [Google Scholar] [CrossRef] [Green Version]
- Smokorowski, K.E.; Randall, R.G. Cautions on using the Before-After-Control-Impact design in environmental effects monitoring programs. FACETS 2017, 2, 212–232. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.D.; Marques, A.T.; May, R. Recovery of raptors from displacement by wind farms—A response. Front. Ecol. Environ. 2020, 18, 121–122. [Google Scholar] [CrossRef]
- Colman, J.E.; Bergmo, T.; Tsegaye, D.; Flydal, K.; Eftestøl, S.; Lilleeng, M.S.; Moe, S.R. Wildlife response to infrastructure: The problem with confounding factors. Polar Biol. 2017, 40, 477–482. [Google Scholar] [CrossRef]
- Walters, K.; Kosciuch, K.; Jones, J. Can the effect of tall structures on birds be isolated from other aspects of development? Wildl. Soc. Bull. 2014, 38, 250–256. [Google Scholar] [CrossRef]
- Gerstner, K.; Moreno-Mateos, D.; Gurevitch, J.; Beckmann, M.; Kambach, S.; Jones, H.P.; Seppelt, R. Will your paper be used in a meta-analysis? Make the reach of your research broader and longer lasting. Methods Ecol. Evol. 2017, 8, 777–784. [Google Scholar] [CrossRef] [Green Version]
- McDonald, T.L.; Erickson, W.P.; McDonald, L.L. Analysis of Count Data from Before-after Control-Impact Studies. J. Agric. Biol. Environ. Stat. 2000, 5, 262. [Google Scholar] [CrossRef]
- Shaffer, J.A.; Loesch, C.R.; Buhl, D.A. Estimating offsets for avian displacement effects of anthropogenic impacts. Ecol. Appl. 2019, 29, e01983. [Google Scholar] [CrossRef]
- Amano, T.; González-Varo, J.P.; Sutherland, W.J. Languages Are Still a Major Barrier to Global Science. PLoS Biol. 2016, 14, e2000933. [Google Scholar] [CrossRef]
- Møller, A.P.; Jennions, M.D. Testing and adjusting for publication bias. Trends Ecol. Evol. 2001, 16, 580–586. [Google Scholar] [CrossRef]
Group | Effect | No. Trials/No. Studies | Wind Turbine Influence | Source | |
---|---|---|---|---|---|
Maximum Distance with Influence of Wind Turbines (m) Mean ± SD (Range) | Relative Variation in Space Use or Abundance (%) Mean ± SD (Range) | ||||
Accipitriformes | Attraction | 4/1 | 2125 ± 250 (2000: 2500) | - | [27] |
Displacement | 19/11 | 474 ± 213 (250: 674) | −59 ± 18% (−40: −93) | [28,29,30,31,32,33,34,35,36,37,38] | |
No effect | 22/7 | - | - | [28,29,33,34,39,40,41] | |
Anseriformes | Displacement | 15/6 | 116 ± 64 (50: 200) | −54 ± 15% (−40: −75) | [42,43,44,45,46,47] |
No effect | 6/3 | - | - | [48,49,50] | |
Inconclusive | 1/1 | - | - | [51] | |
Charadriiformes | Attraction | 8/4 | 100 | 90 ± 15% (79: 100) | [50,52,53,54] |
Displacement | 23/9 | 2517 ± 5560 (100: 20,000) | −59 ± 18% (−32: −92) | [31,52,53,54,55,56,57,58,59] | |
No effect | 38/12 | - | - | [31,49,50,52,53,54,55,59,60,61,62,63] | |
Ciconiiformes | No effect | 1/1 | - | - | [41] |
Columbiformes | No effect | 2/2 | [64,65] | ||
Cuculiformes | No effect | 2/2 | [64,65] | ||
Falconiformes | Attraction | 1/1 | 2000 | - | [27] |
Displacement | 4/3 | - | −59% | [28,33,34] | |
No effect | 3/3 | - | - | [31,34,41] | |
Galliformes | Attraction | 2/1 | - | 475% | [66] |
Displacement | 16/9 | 4557 ± 4340 (500: 10,500) | −56% | [17,67,68,69,70,71,72,73,74] | |
No effect | 15/12 | - | - | [31,49,55,60,67,68,69,71,73,75,76,77] | |
Gaviiformes | Displacement | 8/4 | 12,062 ± 6911 (1750: 16,500) | −71 ± 20% (−45: −90) | [49,52,78,79] |
Gruiformes | Displacement | 1/1 | 5000 | - | [80] |
Inconclusive | 1/1 | - | - | [81] | |
Passeriformes | Attraction | 6/4 | 150 ± 130 (75: 300) | 7.4% | [30,53,55,71] |
Displacement | 18/9 | 248 ± 103 (80: 400) | −40 ± 24% (−15: −62) | [30,31,41,53,82,83,84,85,86] | |
No effect | 49/12 | - | - | [31,41,49,53,55,64,65,71,82,83,87,88] | |
Inconclusive | 1/1 | - | - | [87] | |
Pelecaniformes | Displacement | 1/1 | - | - | [63] |
No effect | 3/2 | - | - | [63,89] | |
Suliformes | Displacement | 6/4 | - | −61 ± 24% (−29: −85) | [50,52,54,90] |
No effect | 1/1 | - | - | [50] | |
unspecified | Attraction | 1/1 | - | - | [91] |
Displacement | 5/3 | 100 | −50% | [91,92,93] | |
No effect | 7/3 | - | - | [54,71,92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, A.T.; Batalha, H.; Bernardino, J. Bird Displacement by Wind Turbines: Assessing Current Knowledge and Recommendations for Future Studies. Birds 2021, 2, 460-475. https://doi.org/10.3390/birds2040034
Marques AT, Batalha H, Bernardino J. Bird Displacement by Wind Turbines: Assessing Current Knowledge and Recommendations for Future Studies. Birds. 2021; 2(4):460-475. https://doi.org/10.3390/birds2040034
Chicago/Turabian StyleMarques, Ana Teresa, Helena Batalha, and Joana Bernardino. 2021. "Bird Displacement by Wind Turbines: Assessing Current Knowledge and Recommendations for Future Studies" Birds 2, no. 4: 460-475. https://doi.org/10.3390/birds2040034
APA StyleMarques, A. T., Batalha, H., & Bernardino, J. (2021). Bird Displacement by Wind Turbines: Assessing Current Knowledge and Recommendations for Future Studies. Birds, 2(4), 460-475. https://doi.org/10.3390/birds2040034