Epoxy Coating as a Novel Method to Prevent Avian Electrocutions and Electrical Faults on Distribution Pylons with Grounded Steel Crossarms
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wischkaemper, J.A.; Benner, C.L.; Russell, B.D. Electrical characterization of vegetation contacts with distribution conductors—Investigation of progressive fault behavior. In Proceedings of the 2008 IEEE/PES Transmission and Distribution Conference and Exposition, Chicago, IL, USA, 21–24 April 2008; pp. 1–8. [Google Scholar] [CrossRef]
- Wang, L. The Fault Causes of Overhead Lines in Distribution Network. MATEC Web Conf. 2016, 61, 5. [Google Scholar] [CrossRef]
- Kolnegari, M.; Conway, G.J.; Basiri, A.A.; Panter, C.T.; Hazrati, M.; Rafiee, M.S.; Ferrer, M.; Dwyer, J.F. Electrical components involved in avian-caused outages in Iran. Bird Conserv. Int. 2020, 31, 364–378. [Google Scholar] [CrossRef]
- Kandanaarachchi, S.; Anantharama, N.; Muñoz, M.A. Early Detection of Vegetation Ignition Due to Powerline Faults. IEEE Trans. Power Deliv. 2021, 36, 1324–1334. [Google Scholar] [CrossRef]
- Lehman, R.N.; Kennedy, P.L.; Savidge, J.A. The state of the art in raptor electrocution research: A global review. Biol. Conserv. 2007, 136, 159–174. [Google Scholar] [CrossRef]
- Feng, M.-L.E.; Owolabi, O.O.; Schafer, T.L.J.; Sengupta, S.; Wang, L.; Matteson, D.S.; Che-Castaldo, J.P.; Sunter, D.A. Analysis of animal-related electric outages using species distribution models and community science data. Environ. Resour. Ecol. 2022, 1, 011004. [Google Scholar] [CrossRef]
- Kolnegari, M.; Hazrati, M.; Khodaei Tehrani, V.; Dwyer, J.F. Crowd-sourced Reporting of Birds Breeding on Power Lines in Iran. Wildl. Soc. Bull. 2022, 46, e1336. [Google Scholar] [CrossRef]
- Souto, L.; Neal, R.; Pope, J.O.; Gonzalez, P.L.M.; Wilkinson, J.; Taylor, P.C. Identification of weather patterns and transitions likely to cause power outages in the United Kingdom. Commun. Earth Environ. 2024, 5, 49. [Google Scholar] [CrossRef]
- Sedighizadeh, M.; Rezazadeh, A.; Elkalashy, N.I. Approaches in High Impedance Fault Detection. A Chronological Review. Adv. Electr. Comp. Eng. 2010, 10, 114–128. [Google Scholar] [CrossRef]
- Tonelli-Neto, M.S.; Decanini, J.G.M.S.; Lotufo, A.D.P.; Minussi, C.R. Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders. IET Gener. Transm. Dis. 2017, 11, 1557–1565. [Google Scholar] [CrossRef]
- Guil, F.; Ángeles Soria, M.; Margalida, A.; Pérez-García, J.M. Wildfires as collateral effects of wildlife electrocution: An economic approach to the situation in Spain in recent years. Sci. Total Environ. 2018, 625, 460–469. [Google Scholar] [CrossRef]
- Dwyer, J.F.; Hayes, T.I.; Thorstrom, R.; Harness, R.E. Retrofitting power poles to prevent electrocution of translocated Ridgway’s Hawks (Buteo ridgwayi). J. Carib. Ornithol. 2019, 33, 4–10. [Google Scholar] [CrossRef]
- Barnes, T.A.; Dwyer, J.F.; Mojica, E.K.; Petersen, P.A.; Harness, R.E. Wildland fires ignited by avian electrocutions. Wildl. Soc. Bull. 2022, 46, e1302. [Google Scholar] [CrossRef]
- Dwyer, J.F. Investigating and Mitigating Raptor Electrocution in an Urban Environment. Master’s Thesis, University of Arizona, Tucson, AZ, USA, 2004. [Google Scholar]
- Kemper, C.M.; Court, G.C.; Beck, J.A. Estimating raptor electrocution mortality on distribution power lines in Alberta, Canada. J. Wildl. Manag. 2013, 77, 1342–1352. [Google Scholar] [CrossRef]
- Janss, G.F.; Ferrer, M. Avian electrocution mortality in relation to pole design and adjacent habitat in Spain. Bird Conserv. Int. 2001, 11, 3–12. [Google Scholar] [CrossRef]
- Bekessy, S.A.; Wintle, B.A.; Gordon, A.; Fox, J.C.; Chisholm, R.; Brown, B.; Regan, T.; Mooney, N.; Read, S.M.; Burgman, M.A. Modelling human impacts on the Tasmanian Wedge-tailed Eagle (Aquila audax fleayi). Biol. Conserv. 2009, 142, 2438–2448. [Google Scholar] [CrossRef]
- Kaługa, I.; Sparks, T.H.; Tryjanowski, P. Reducing death by electrocution of the white stork Ciconia ciconia. Conserv. Lett. 2011, 4, 483–487. [Google Scholar] [CrossRef]
- Dwyer, J.F.; Harness, R.E.; Donohue, K. Predictive model of avian electrocution risk on overhead power lines. Conserv. Biol. 2014, 28, 159–168. [Google Scholar] [CrossRef]
- Howes, C.G. Power Line Risk to Cape (Gyps coprotheres) and White-Backed (G. africanus) Vultures in Southern Africa. Master’s Thesis, University of Witwatersrand, Johannesburg, South Africa, 2016. [Google Scholar]
- Galmes, M.A.; Sarasola, J.H.; Grande, J.M.; Vargas, F.H. Electrocution risk for the endangered Crowned Solitary Eagle and other birds in semiarid landscapes of central Argentina. Bird Conserv. Int. 2017, 28, 403–415. [Google Scholar] [CrossRef]
- Kolnegari, M.; Moghimi, E.; Basiri, A.A.; Turk Qashqaei, A.; Hazrati, M. A new committee to address the threats of power grids to birds in Iran. Biodiversity 2019, 20, 161–164. [Google Scholar] [CrossRef]
- Dwyer, J.F.; Harness, R.E.; Eccleston, D. Avian electrocutions on incorrectly retrofitted power poles. J. Raptor Res. 2017, 51, 293–304. [Google Scholar] [CrossRef]
- Dwyer, J.F.; Mojica, E.K. The importance of using peer-reviewed science when making raptor management decisions: A reply to Donohue. J. Fish. Wildl. Manag. 2022, 13, 574–575. [Google Scholar] [CrossRef]
- Demeter, I.; Horváth, M.; Nagy, K.; Görögh, Z.; Tóth, P.; Bagyura, J.; Solt, S.; Kovács, A.; Dwyer, J.F.; Harness, R.E. Documenting and reducing avian electrocutions in Hungary: A conservation contribution from citizen scientists. Wilson J. Ornithol. 2018, 130, 600–614. [Google Scholar] [CrossRef]
- Dwyer, J.F.; Harness, R.E. Case study: Primate electrocutions. In Wildlife and Power Lines: Guidelines for Preventing and Mitigating Wildlife Mortality Associated with Electricity Networks; Martín-Martín, J., López, J.R.G., Sousa, H.C., Barrios, V., Eds.; IUCN: Gland, Switzerland, 2022; pp. 230–231. [Google Scholar]
- Dixon, A.; Rahman, M.L.; Galtbalt, B.; Bold, B.; Davaasuren, B.; Batbayar, N.; Sugarsaikhan, B. Mitigation techniques to reduce avian electrocution rates. Wildl. Soc. Bull. 2019, 43, 476–483. [Google Scholar] [CrossRef]
- Ferrer, M.; Lebrija, J.J.I.; Álvarez, E.; Morandini, V. Electrocutions. In Wildlife and Power Lines: Guidelines for Preventing and Mitigating Wildlife Mortality Associated with Electricity Networks; Martín-Martín, J., López, J.R.G., Sousa, H.C., Barrios, V., Eds.; IUCN: Gland, Switzerland, 2022; pp. 84–111. [Google Scholar]
- Tintó, A.; Real, J.; Mañosa, S. Predicting and correcting electrocution of birds in Mediterranean areas. J. Wildl. Manag. 2010, 74, 1852–1862. [Google Scholar] [CrossRef]
- Fidlóczky, J.; Bagyura, J.; Nagy, K.; Tóth, P.; Szitta, T.; Haraszthy, L. Bird conservation on electric-power lines in Hungary: Nest boxes for Saker Falcon and avian protection against electrocutions. Raptor J. 2014, 8, 87–95. [Google Scholar] [CrossRef]
- Kolnegari, M.; Harness, R.E. Three-phase transformer arcing horns: Neglected deadly components to birds. Avocetta 2020, 44, 37–42. [Google Scholar]
- Slater, S.J.; Dwyer, J.F.; Murgatroyd, M. Conservation letter: Raptors and overhead electrical systems. J. Raptor Res. 2020, 54, 198–203. [Google Scholar] [CrossRef]
- Demeter, J.; Lovászi, P.; Nagy, K.; Kovács, A.; Horváth, M. Medium-Voltage Power Lines and Bird Mortality in Hungary: Experience, Nature Conservation Requirements and Suggestions. MME BirdLife. 2004. Available online: https://www.researchgate.net/profile/Marton-Horvath-4/publication/327906135_Medium-voltage_power_lines_and_bird_mortality_in_Hungary_-_Experience_nature_conservation_requirements_and_suggestions/links/5bac95b1a6fdccd3cb76d4c7/Medium-voltage-power-lines-and-bird-mortality-in-Hungary-Experience-nature-conservation-requirements-and-suggestions.pdf (accessed on 16 September 2024).
- Mavrikakis, N.C.; Mikropoulos, P.N.; Siderakis, K.; Pellas, I.; Thalassinakis, E. Evaluation of the damage caused by bird pecking activity along composite high voltage insulators. In Proceedings of the 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece, 10–13 September 2018. [Google Scholar] [CrossRef]
- Mao, X.; Zhang, Y.; Zhou, X.; Feng, Z.; Huang, Z.; Ren, X.; Shi, T.; Fu, J.; Huang, J. Analysis of bird damage prevention mechanism for overhead transmission lines. J. Phys. Conf. Ser. 2020, 1639, 012038. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, J.; Lu, H.; Xu, B.; Fu, Y.; Liu, Y.; Leng, J. Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties. Smart Mater. Struct. 2015, 25, 015021. [Google Scholar] [CrossRef]
- Frigione, M.; Lettieri, M. Durability issues and challenges for material advancements in FRP employed in the construction industry. Polymers 2018, 10, 247. [Google Scholar] [CrossRef]
- IEC60060-1; High-Voltage Test Techniques—Part 1: General Definitions and Test Requirements. IEC (International Electrotechnical Commission): Geneva, Switzerland, 2010; 149p.
- ASTM D4541; Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- Hauschild, W.; Lemke, E. High-Voltage Test and Measuring Techniques; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Kolnegari, M.; Basiri, A.A.; Hazrati, M.; Dwyer, J.F. Effects of nest box installation on a distribution power line: Increased Common Kestrel nesting, reduced electrocutions, and reduced electrical faults. J. Raptor Res. 2020, 54, 431–439. [Google Scholar] [CrossRef]
- Dixon, A.; Batbayar, N.; Bold, B.; Davaasuren, B.; Erdenechimeg, T.; Galtbalt, B.; Tsolmonjav, P.; Ichinkhorloo, S.; Gunga, A.; Purev-Ochir, G.; et al. Variation in electrocution rate and demographic composition of Saker Falcons electrocuted at power lines in Mongolia. J. Raptor Res. 2020, 54, 136–146. [Google Scholar] [CrossRef]
- Woods, E.E.; Heinrichs, F.W. Cast epoxy insulation for high voltage switchgear and power transformers. In Proceedings of the 1963 EI Electrical Insulation Conference Materials and Application, Chicago, IL, USA, 16–19 September 1963; pp. 265–267. [Google Scholar]
- Chrzan, K.L. Performance of hydrophobic epoxy insulators under industrial pollution. In Proceedings of the 15th International Symposium on High Voltage Engineering, Ljubljana, Slovenia, 27–31 August 2007. [Google Scholar]
- Bleile, H.; Rodgers, S.D. Marine coatings. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Flemings, M.C., Kramer, E.J., Veyssiere, P., Cahn, R.W., Ilschner, B., Mahajan, S., Eds.; Elsevier: Oxford, UK, 2001; pp. 5174–5185. [Google Scholar] [CrossRef]
- Blanpain, N.; Michalakis, N.; Goffinet, J.-F. Two Types of Poles, One Transmission Line; Innovation Helps Elia, the Belgian TSO, to Gain Public Acceptance of Overhead Transmission Lines. 2020. Available online: https://www.tdworld.com/overhead-transmission/article/21122786/two-types-of-poles-one-transmission-line (accessed on 14 June 2023).
Test | Standard | Temperature (C°) | Humidity | Replicates | Results (Mean ± SD) |
---|---|---|---|---|---|
Dielectric | IEC 60060-1 | 7.7 | 47.3 | 10 | 12.30 ± 0.21 kV |
Adhesion | ASTM D4541 | 23 ± 2 | 35 ± 5 | 10 | 10.49 ± 0.4 MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolnegari, M.; Basiri, A.A.; Hazrati, M.; Gaunin, A.; Dwyer, J.F. Epoxy Coating as a Novel Method to Prevent Avian Electrocutions and Electrical Faults on Distribution Pylons with Grounded Steel Crossarms. Birds 2024, 5, 616-624. https://doi.org/10.3390/birds5030041
Kolnegari M, Basiri AA, Hazrati M, Gaunin A, Dwyer JF. Epoxy Coating as a Novel Method to Prevent Avian Electrocutions and Electrical Faults on Distribution Pylons with Grounded Steel Crossarms. Birds. 2024; 5(3):616-624. https://doi.org/10.3390/birds5030041
Chicago/Turabian StyleKolnegari, Mahmood, Ali Akbar Basiri, Mandana Hazrati, Anaïs Gaunin, and James F. Dwyer. 2024. "Epoxy Coating as a Novel Method to Prevent Avian Electrocutions and Electrical Faults on Distribution Pylons with Grounded Steel Crossarms" Birds 5, no. 3: 616-624. https://doi.org/10.3390/birds5030041
APA StyleKolnegari, M., Basiri, A. A., Hazrati, M., Gaunin, A., & Dwyer, J. F. (2024). Epoxy Coating as a Novel Method to Prevent Avian Electrocutions and Electrical Faults on Distribution Pylons with Grounded Steel Crossarms. Birds, 5(3), 616-624. https://doi.org/10.3390/birds5030041