FDTD Simulations of Sweat Ducts and Hair at 0.45 THz
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Hair Simulations
3.2. Sweat Duct Simulations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Li, J.; Pi, Y.; Liu, T.; Wang, H. Joint multistatic THz imaging radars for standoff personnel screening. J. Appl. Remote Sens. 2018, 12, 034002. [Google Scholar] [CrossRef]
- Abina, A.; Puc, U.; Jeglič, A.; Zidanšek, A. Applications of Terahertz Spectroscopy in the Field of Construction and Building Materials. Appl. Spectrosc. Rev. 2015, 50, 279–303. [Google Scholar] [CrossRef]
- Sibik, J.; Zeitler, J.A. Direct measurement of molecular mobility and crystallisation of amorphous pharmaceuticals using terahertz spectroscopy. Adv. Drug Deliv. Rev. 2016, 100, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zhang, X.; Zhang, Z.; Yang, Y.; Xiang, Y. Quantitative measurements of binary amino acids mixtures in yellow foxtail millet by terahertz time domain spectroscopy. Food Chem. 2016, 211, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Jastrow, C.; Münter, K.; Piesiewicz, R.; Kürner, T.; Koch, M.; Kleine-Ostmann, T. 300 GHz transmission system. Electron. Lett. 2008, 44, 1. [Google Scholar] [CrossRef]
- Kallfass, I.; Dan, I.; Rey, S.; Harati, P.; Antes, J.; Tessmann, A.; Wagner, S.; Kuri, M.; Weber, R.; Massler, H. Towards MMIC-based 300GHz indoor wireless communication systems. IEICE Trans. Electron. 2015, 98, 1081–1090. [Google Scholar] [CrossRef]
- Lewis, R.A. A review of terahertz sources. J. Physics. D Appl. Phys. 2014, 47, 1–11. [Google Scholar] [CrossRef]
- Yaekashiwa, N.; Yoshida, H.; Otsuki, S.; Hayashi, S.I.; Kawase, K. Verification of Non-thermal Effects of 0.3–0.6 THz-Waves on Human Cultured Cells. Photonics 2019, 6, 33. [Google Scholar] [CrossRef]
- Hasted, J.B.; Husain, S.K.; Frescura, F.A.M.; Birch, J.R. The temperature variation of the near millimetre wavelength optical constants of water. Infrared Phys. 1987, 27, 11–15. [Google Scholar] [CrossRef]
- Liebe, H.J.; Hufford, G.A.; Manabe, T. A model for the complex permittivity of water at frequencies below 1 THz. Int. J. Infrared Millim. Waves 1991, 12, 659–675. [Google Scholar] [CrossRef]
- Vilagosh, Z.; Lajevardipour, A.; Wood, A.W. Computational absorption and reflection studies of normal human skin at 0.45 THz. Biomed. Opt. Express 2020, 11, 417–431. [Google Scholar] [CrossRef] [PubMed]
- Foroughimehr, N.; Vilagosh, Z.; Yavari, A.; Wood, A. Investigating the Impact of Synchrotron THz Radiation on the Corneal Hydration Using Synchrotron THz-Far Infrared Beamline. Sensors 2022, 22, 8261. [Google Scholar] [CrossRef] [PubMed]
- Vilagosh, Z.; Lajevardipour, A.; Wood, A. Computer simulation study of the penetration of pulsed 30, 60 and 90 GHz radiation into the human ear. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Egawa, M.; Hirao, T.; Takahashi, M. In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy. Acta Derm. Venereol. 2007, 87, 4–8. [Google Scholar] [CrossRef]
- Tripathi, S.R.; Miyata, E.; Ishai, P.B.; Kawase, K. Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region. Sci. Rep. 2015, 5, 9071. [Google Scholar] [CrossRef]
- Warner, R.R.; Myers, M.C.; Taylor, D.A. Electron Probe Analysis of Human Skin: Determination of the Water Concentration Profile. J. Investig. Dermatol. 1988, 90, 218–224. [Google Scholar] [CrossRef]
- Sperling, L.C. Hair anatomy for the clinician. J. Am. Acad. Dermatol. 1991, 25, 1–17. [Google Scholar] [CrossRef]
- Franbourg, A.; Hallegot, P.; Baltenneck, F.; Toutaina, C.; Leroy, F. Current research on ethnic hair. J. Am. Acad. Dermatol. 2003, 48, S115–S119. [Google Scholar] [CrossRef]
- Feldman, Y.; Puzenko, A.; Ben Ishai, P.; Caduff, A.; Davidovich, I.; Sakran, F.; Agranat, A.J. The electromagnetic response of human skin in the millimetre and submillimetre wave range. Phys. Med. Biol. 2009, 54, 3341–3363. [Google Scholar] [CrossRef]
- Hayut, I.; Puzenko, A.; Ben Ishai, P.; Polsman, A.; Agranat, A.J.; Feldman, Y. The Helical Structure of Sweat Ducts: Their Influence on the Electromagnetic Reflection Spectrum of the Skin. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 207–215. [Google Scholar] [CrossRef]
- Guseva, V.; Gusev, S.; Demchenko, P.; Sedykh, E.; Khodzitsky, M. Optical properties of human nails in THz frequency range. J. Biomed. Photonics Eng. 2016, 2, 40306. [Google Scholar] [CrossRef]
- Reid, C.B.; Fitzgerald, A.; Reese, G.; Goldin, R.; Tekkis, P.; O’Kelly, P.S.; Pickwell-MacPherson, E.; Gibson, A.P.; Wallace, V.P. Terahertz pulsed imaging of freshly excised human colonic tissues. Phys. Med. Biol. 2011, 56, 4333–4353. [Google Scholar] [CrossRef]
- Yaghjian, A. An overview of near-field antenna measurements. IEEE Trans. Antennas Propag. 1986, 34, 30–45. [Google Scholar] [CrossRef]
- Kuster, N.; Balzano, Q. Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz. IEEE Trans. Veh. Technol. 1992, 41, 17–23. [Google Scholar] [CrossRef]
- Christ, A.; Samaras, T.; Klingenböck, A.; Kuster, N. Characterization of the electromagnetic near-field absorption in layered biological tissue in the frequency range from 30 MHz to 6000 MHz. Phys. Med. Biol. 2006, 51, 4951–4965. [Google Scholar] [CrossRef]
- Nguyen, T.H.P.; Shamis, Y.; Croft, R.J.; Wood, A.; McIntosh, R.L.; Crawford, R.J.; Ivanova, E.P. 18 GHz electromagnetic field induces permeability of Gram-positive cocci. Sci. Rep. 2015, 5, 10980. [Google Scholar] [CrossRef]
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). ICNIRP Guidelines on Limits of Exposure to Laser Radiation of Wavelengths between 180 nm and 1000 μm. Health Phys. 2013, 105, 271–295. [Google Scholar] [CrossRef]
- Taylor, Z.D.; Singh, R.S.; Bennett, D.B.; Tewari, P.; Kealey, C.P.; Bajwa, N.; Culjat, M.O.; Stojadinovic, A.; Hua, L.; Hubschman, J.-P.; et al. THz Medical Imaging: In vivo Hydration Sensing. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 201–219. [Google Scholar] [CrossRef]
- Vorobyov, A.; Daskalaki, E.; Hennemann, C.; Decotignie, J.-D. Human physical condition RF sensing at THz range. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 2067–2070. [Google Scholar]
- Mittleman, D.M. Twenty years of terahertz imaging. Opt. Express 2018, 26, 9417–9431. [Google Scholar] [CrossRef]
- Vilagosh, Z.; Lajevardipour, A.; Wood, A.W. Computational phantom study of frozen melanoma imaging at 0.45 terahertz: Computational Frozen Melanoma Imaging. Bioelectromagnetics 2019, 40, 118–127. [Google Scholar] [CrossRef]
- Kane, Y. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar] [CrossRef]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed.; Taflove, A., Hagness, S.C., Eds.; Artech House: Boston, MA, USA, 2000. [Google Scholar]
- Sullivan, D.M. Electromagnetic Simulation Using the FDTD Method; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Vilagosh, Z.; Lajevardipour, A.; Wood, A. Modelling Terahertz Radiation Absorption and Reflection with Computational Phantoms of Skin and Associated Appendages. In Proceedings of the SPIE Nanophotonics Australasia, Melbourne, Australia, 11–13 December 2017; Volume 10456, pp. 9–16. [Google Scholar]
- Braconnier, P.; Loncle, N.; Lourenco, J.D.S.; Guérin, H.; Burnier, M.; Pruijm, M. Sodium concentration of sweat correlates with dietary sodium intake. J. Hypertens. 2018, 36, e170. [Google Scholar] [CrossRef]
- Jepsen, P.U.; Merbold, H. Terahertz reflection spectroscopy of aqueous NaCl and LiCl solutions. J. Infrared Millim. Terahertz Waves 2010, 31, 430–440. [Google Scholar] [CrossRef]
- Feldman, Y.; Puzenko, A.; Ishai, P.B.; Caduff, A.; Agranat, A.J. Human skin as arrays of helical antennas in the millimeter and submillimeter wave range. Phys. Rev. Lett. 2008, 100, 128102. [Google Scholar] [CrossRef] [PubMed]
- Png, G.M.; Flook, R.; Ng, B.W.H.; Abbott, D. Terahertz spectroscopy of snap-frozen human brain tissue: An initial study. Electron. Lett. 2009, 45, 343–345. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Y.; Yeung, D.; Ahuja, A.; Zhang, Y.; Pickwell-MacPherson, E. Tissue characterization using terahertz pulsed imaging in reflection geometry. Phys. Med. Biol. 2008, 54, 149. [Google Scholar] [CrossRef]
- Jördens, C.; Scheller, M.; Breitenstein, B.; Selmar, D.; Koch, M. Evaluation of leaf water status by means of permittivity at terahertz frequencies. J. Biol. Phys. 2009, 35, 255–264. [Google Scholar] [CrossRef]
- Sy, S.; Huang, S.; Wang YX, J.; Yu, J.; Ahuja, A.T.; Zhang, Y.T. Pickwell-MacPherson, E. Terahertz spectroscopy of liver cirrhosis: Investigating the origin of contrast. Phys. Med. Biol. 2010, 55, 7587. [Google Scholar] [CrossRef]
- Sim, Y.C.; Park, J.Y.; Ahn, K.M.; Park, C.; Son, J.H. Terahertz imaging of excised oral cancer at frozen temperature. Biomed. Opt. Express 2013, 4, 1413–1421. [Google Scholar] [CrossRef]
- Sim, Y.C.; Ahn, K.M.; Park, J.Y.; Park, C.S.; Son, J.H. Temperature-dependent terahertz imaging of excised oral malignant melanoma. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 368–373. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Fukushi, Y.; Kubota, O.; Itsuji, T.; Ouchi, T.; Yamamoto, S. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy. Sci. Rep. 2016, 6, 30124. [Google Scholar] [CrossRef]
- Hernandez-Cardoso, G.G.; Rojas-Landeros, S.C.; Alfaro-Gomez, M.; Hernandez-Serrano, A.I.; Salas-Gutierrez, I.; Lemus-Bedolla, E.; Castillo-Guzman, A.R.; Lopez-Lemus, H.L.; Castro-Camus, E. Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept. Sci. Rep. 2017, 7, 42124. [Google Scholar] [CrossRef]
- Hübers, M.; Geisler, C.; Bosy-Westphal, A.; Braun, W.; Pourhassan, M.; Sørensen, T.I.A.; Müller, M.J. Association between fat mass, adipose tissue, fat fraction per adipose tissue, and metabolic risks: A cross-sectional study in normal, overweight, and obese adults. Eur. J. Clin. Nutr. 2019, 73, 62–71. [Google Scholar] [CrossRef]
- Mizuno, M.; Yaekashiwa, N.; Watanabe, S. Analysis of dermal composite conditions using collagen absorption characteristics in the THz range. Biomed. Opt. Express 2018, 9, 2277–2283. [Google Scholar] [CrossRef]
- Ney, M.; Abdulhalim II, I. Modeling of reflectometric and ellipsometric spectra from the skin in the terahertz and submillimeter waves region. J. Biomed. Opt. 2011, 16, 067006. [Google Scholar] [CrossRef]
- Hasgall, P.; Di Gennaro, F.; Baumgartner, C.; Neufeld, E.; Lloyd, B.; Gosselin, M.; Payne, D.; Klingenböck, A.; Kuster, N. IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues. Version 4.0; ScienceOpen: Burlington, MA, USA, 2018. [Google Scholar]
- Dias, D.T.; Steimacher, A.; Bento, A.C.; Neto, A.M.; Baesso, M.L. Thermal characterization in vitro of human nail: Photoacoustic study of the aging process. Photochem. Photobiol. 2007, 83, 1144–1148. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics; American Association of Physics Teachers: College Park, MD, USA, 1999. [Google Scholar]
Model Type | Short Hair Thin Skin | Minimal Hair Thin Skin | Long Hair Thin Skin | Sweat Ducts Thin Skin | Sweat Duct Thick Skin |
---|---|---|---|---|---|
Problem Space (Yee cells) | 841 × 552 × 454 | 173 × 169 × 139 | 717 × 475 × 536 | 841 × 552 × 454 | 875 × 587 × 375 |
Maximum cell dimension | λ/82 | λ/95 | λ/82 | λ/82 | λ/26 |
Minimum cell dimension | λ/2392 | λ/167 | λ/1499 | λ/2392 | λ/335 |
Step size (fs) | 0.499 | 2.917 | 0.581 | 0.499 | 1.322 |
Number of Timesteps | 20,000 | 10,000 | 30,000 | 20,000 | 30,000 |
Simulated time (ps) | 14.1 | 29.2 | 17.4 | 14.1 | 23.9 |
Oscillations/Simulated time | 6.4 | 13.2 | 7.8 | 6.3 | 9.8 |
Electrical | Absorption | Refractive | Tissue | |||
---|---|---|---|---|---|---|
Conductivity | Coefficient | Index | Density | |||
ε’ | ε” | σ | α | n | ρ | |
Sm−1 | cm−1 | kgm−3 | ||||
Stratum Corneum, hydrated 15% | 3.0 | 1.0 | 25.0 | 53.7 | 1.76 | 1300 |
Stratum Corneum, hydrated 23% | 3.2 | 1.3 | 32.5 | 67.2 | 1.82 | 1260 |
Stratum Corneum, hydrated 30% | 3.4 | 1.5 | 37.6 | 74.9 | 1.89 | 1230 |
Stratum Corneum, hydrated 40% | 3.7 | 1.8 | 45.1 | 85.8 | 1.98 | 1200 |
Stratum Spinosum | 4.1 | 2.3 | 57.6 | 103.0 | 2.10 | 1060 |
Stratum Basale | 4.4 | 3.2 | 80.1 | 136.0 | 2.22 | 1060 |
Dermis | 4.0 | 3.1 | 77.6 | 167.0 | 2.21 | 1080 |
Hair Cuticle | 2.0 | 0.5 | 12.5 | 33.0 | 1.43 | 1300 |
Hair Cortex | 2.2 | 0.45 | 11.3 | 28.4 | 1.49 | 900 |
Hair Medulla | 2.6 | 0.35 | 8.8 | 20.4 | 1.62 | 1060 |
Sweat, physiological | 5.0 | 4.2 | 105 | 165.0 | 2.40 | 1020 |
Sweat, assumption of 1001 Sm | 5.0 | 40.0 | 1001 | 792.0 | 4.76 | 1020 |
Sweat, assumption of 10,014 Sm | 5.0 | 400 | 10014 | 2650.0 | 14.2 | 1020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilagosh, Z.; Foroughimehr, N.; Lajevardipour, A.; Wood, A.W. FDTD Simulations of Sweat Ducts and Hair at 0.45 THz. Dermato 2023, 3, 69-84. https://doi.org/10.3390/dermato3010006
Vilagosh Z, Foroughimehr N, Lajevardipour A, Wood AW. FDTD Simulations of Sweat Ducts and Hair at 0.45 THz. Dermato. 2023; 3(1):69-84. https://doi.org/10.3390/dermato3010006
Chicago/Turabian StyleVilagosh, Zoltan, Negin Foroughimehr, Alireza Lajevardipour, and Andrew W. Wood. 2023. "FDTD Simulations of Sweat Ducts and Hair at 0.45 THz" Dermato 3, no. 1: 69-84. https://doi.org/10.3390/dermato3010006
APA StyleVilagosh, Z., Foroughimehr, N., Lajevardipour, A., & Wood, A. W. (2023). FDTD Simulations of Sweat Ducts and Hair at 0.45 THz. Dermato, 3(1), 69-84. https://doi.org/10.3390/dermato3010006