Production of Bioactive Peptides from Microalgae and Their Biological Properties Related to Cardiovascular Disease
Abstract
:1. Introduction
2. Microalgae as a Protein Source
3. Production of Bioactive Peptides from Microalgae
3.1. Protein Isolate Hydrolysis
3.2. Isolation of Peptides
4. Peptides Derived from Microalgae
5. Cardiovascular Health Promotion from Microalgae Peptides
5.1. Antioxidant Biopeptides
5.2. Antihypertensive Biopeptides
5.3. Anti-Atherosclerotic Biopeptides
6. Concluding Remarks and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vicentini, A.; Liberatore, L.; Mastrocola, D. Functional Foods: Trends and Development. Ital. J. Food Sci. 2016, 28, 338–352. [Google Scholar]
- Yadav, S.; Malik, K.; Moore, J.M.; Kamboj, B.R.; Malik, S.; Malik, V.K.; Arya, S.; Singh, K.; Mahanta, S.; Bishnoi, D.K. Valorisation of Agri-Food Waste for Bioactive Compounds: Recent Trends and Future Sustainable Challenges. Molecules 2024, 29, 2055. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Barba, F.J.; Kovačević, D.B.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef]
- Neenu, R.; Tiwari, S.; Jethani, H.; Chauhan, V.S. The Commercial Microalgae-Based Foods. In Handbook of Food and Feed from Microalgae: Production, Application, Regulation, and Sustainability; Elsevier: Amsterdam, The Netherlands, 2023; pp. 489–507. ISBN 978-0-323-99196-4. [Google Scholar]
- Bhatnagar, P.; Gururani, P.; Joshi, S.; Singh, Y.P.; Vlaskin, M.S.; Kumar, V. Enhancing the Bio-Prospects of Microalgal-Derived Bioactive Compounds in Food Industry: A Review. In Biomass Conversion Biorefinery; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The Promising Future of Microalgae: Current Status, Challenges, and Optimization of a Sustainable and Renewable Industry for Biofuels, Feed, and Other Products. Microb. Cell Factories 2018, 17, 36. [Google Scholar] [CrossRef]
- Villarruel-Lopez, A.; Ascencio, F.; Nuno, K. Microalgae, a Potential Natural Functional Food Source—A Review. Pol. J. Food Nutr. Sci. 2017, 67, 251–263. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Abdelnour, S.; Alagawany, M.; Abdo, M.; Sakr, M.A.; Khafaga, A.F.; Mahgoub, S.A.; Elnesr, S.S.; Gebriel, M.G. Microalgae in Modern Cancer Therapy: Current Knowledge. Biomed. Pharmacother. 2019, 111, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Mosibo, O.K.; Ferrentino, G.; Udenigwe, C.C. Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges. Foods 2024, 13, 733. [Google Scholar] [CrossRef]
- Zhou, L.; Li, K.; Duan, X.; Hill, D.; Barrow, C.; Dunshea, F.; Martin, G.; Suleria, H. Bioactive Compounds in Microalgae and Their Potential Health Benefits. Food Biosci. 2022, 49, 101932. [Google Scholar] [CrossRef]
- Papadaki, S.; Tricha, N.; Panagiotopoulou, M.; Krokida, M. Innovative Bioactive Products with Medicinal Value from Microalgae and Their Overall Process Optimization through the Implementation of Life Cycle Analysis—An Overview. Mar. Drugs 2024, 22, 152. [Google Scholar] [CrossRef]
- Saha, S.; Murray, P. Exploitation of Microalgae Species for Nutraceutical Purposes: Cultivation Aspects. Fermentation 2018, 4, 46. [Google Scholar] [CrossRef]
- Çelekli, A.; Özbal, B.; Bozkurt, H. Challenges in Functional Food Products with the Incorporation of Some Microalgae. Foods 2024, 13, 725. [Google Scholar] [CrossRef]
- Plaza, M.; Herrero, M.; Cifuentes, A.; Ibáñez, E. Innovative Natural Functional Ingredients from Microalgae. J. Agric. Food Chem. 2009, 57, 7159–7170. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Mathys, A. Trends in Microalgae Incorporation into Innovative Food Products with Potential Health Benefits. Front. Nutr. 2018, 5, 58. [Google Scholar] [CrossRef] [PubMed]
- Siddhnath; Surasani, V.K.R.; Singh, A.; Singh, S.M.; Hauzoukim; Murthy, L.N.; Baraiya, K.G. Bioactive Compounds from Micro-Algae and Its Application in Foods: A Review. Discov. Food 2024, 4, 27. [Google Scholar] [CrossRef]
- O’Connor, J.; Garcia-Vaquero, M.; Meaney, S.; Tiwari, B.K. Bioactive Peptides from Algae: Traditional and Novel Generation Strategies, Structure-Function Relationships, and Bioinformatics as Predictive Tools for Bioactivity. Mar. Drugs 2022, 20, 317. [Google Scholar] [CrossRef] [PubMed]
- Norton, T.A.; Melkonian, M.; Andersen, R.A. Algal Biodiversity. Phycologia 1996, 35, 308–326. [Google Scholar] [CrossRef]
- Bleakley, S.; Hayes, M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 2017, 6, 33. [Google Scholar] [CrossRef]
- Tan, J.S.; Lee, S.Y.; Chew, K.W.; Lam, M.K.; Lim, J.W.; Ho, S.-H.; Show, P.L. A Review on Microalgae Cultivation and Harvesting, and Their Biomass Extraction Processing Using Ionic Liquids. Bioengineered 2020, 11, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, Y.; Wang, J.; Cheng, K.; Liu, J.; He, Y.; Zhang, Y.; Mou, H.; Sun, H. Microalgal Protein for Sustainable and Nutritious Foods: A Joint Analysis of Environmental Impacts, Health Benefits and Consumer’s Acceptance. Trends Food Sci. Technol. 2024, 143, 104278. [Google Scholar] [CrossRef]
- Uduman, N.; Qi, Y.; Danquah, M.K.; Forde, G.M.; Hoadley, A. Dewatering of Microalgal Cultures: A Major Bottleneck to Algae-Based Fuels. J. Renew. Sustain. Energy 2010, 2, 012701. [Google Scholar] [CrossRef]
- Barros, A.I.; Gonçalves, A.L.; Simões, M.; Pires, J.C.M. Harvesting Techniques Applied to Microalgae: A Review. Renew. Sustain. Energy Rev. 2015, 41, 1489–1500. [Google Scholar] [CrossRef]
- Loke Show, P. Global Market and Economic Analysis of Microalgae Technology: Status and Perspectives. Bioresour. Technol. 2022, 357, 127329. [Google Scholar] [CrossRef] [PubMed]
- Lafarga, T.; Rodríguez-Bermúdez, R.; Morillas-España, A.; Villaró, S.; García-Vaquero, M.; Morán, L.; Sánchez-Zurano, A.; González-López, C.V.; Acién-Fernández, F.G. Consumer Knowledge and Attitudes towards Microalgae as Food: The Case of Spain. Algal Res. 2021, 54, 102174. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-Algae as a Source of Protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Guo, X.; Wang, Q.; Wu, Y.; Liu, X.; Gong, Z. Comprehensive Insights into Microalgae Proteins: Nutritional Profiles and Innovative Applications as Sustainable Alternative Proteins in Health and Food Sciences. Food Hydrocoll. 2024, 154, 110112. [Google Scholar] [CrossRef]
- Capelli, B.; Cysewski, G. Potential Health Benefits of Spirulina Microalgae: A Review of the Existing Literature. Nutrafoods 2010, 9, 19–26. [Google Scholar] [CrossRef]
- Boisen, S.; Eggum, B.O. Critical Evaluation of in Vitro Methods for Estimating Digestibility in Simple-Stomach Animals. Nutr. Res. Rev. 1991, 4, 141–162. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial Applications of Microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef]
- Templeton, D.W.; Laurens, L.M.L. Nitrogen-to-Protein Conversion Factors Revisited for Applications of Microalgal Biomass Conversion to Food, Feed and Fuel. Algal Res. 2015, 11, 359–367. [Google Scholar] [CrossRef]
- Fan, X.; Bai, L.; Zhu, L.; Yang, L.; Zhang, X. Marine Algae-Derived Bioactive Peptides for Human Nutrition and Health. J. Agric. Food Chem. 2014, 62, 9211–9222. [Google Scholar] [CrossRef]
- Ejike, C.E.C.C.; Ezeorba, T.P.C.; Ajah, O.; Udenigwe, C.C. Big Things, Small Packages: An Update on Microalgae as Sustainable Sources of Nutraceutical Peptides for Promoting Cardiovascular Health. Glob. Chall. 2023, 7, 2200162. [Google Scholar] [CrossRef] [PubMed]
- Ejike, C.; Collins, S.; Balasuriya, N.; Swanson, A.; Mason, B.; Udenigwe, C. Prospects of Microalgae Proteins in Producing Peptide-Based Functional Foods for Promoting Cardiovascular Health. Trends Food Sci. Technol. 2017, 59, 30–36. [Google Scholar] [CrossRef]
- Kim, S.K.; Ngo, D.H.; Vo, T.S. Marine Fish-Derived Bioactive Peptides as Potential Antihypertensive Agents, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Volume 65, ISBN 9780124160033. [Google Scholar]
- Saadi, S.; Saari, N.; Anwar, F.; Abdul Hamid, A.; Ghazali, H.M. Recent Advances in Food Biopeptides: Production, Biological Functionalities and Therapeutic Applications. Biotechnol. Adv. 2015, 33, 80–116. [Google Scholar] [CrossRef] [PubMed]
- Nasri, M. Protein Hydrolysates and Biopeptides: Production, Biological Activities, and Applications in Foods and Health Benefits. A Review, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 81. [Google Scholar]
- Pihlanto, A. Bioactive Peptides: Functionality and Production. Agro Food Ind. Hi-Tech 2006, 17, 24–26. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Aluko, R.E. Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. J. Food Sci. 2012, 77, R11–R24. [Google Scholar] [CrossRef] [PubMed]
- Kose, A.; Oncel, S.S. Design of Melanogenesis Regulatory Peptides Derived from Phycocyanin of the Microalgae Spirulina platensis. Peptides 2022, 152, 170783. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.; Mora, L.; Lucakova, S. Identification of Bioactive Peptides from Nannochloropsis Oculata Using a Combination of Enzymatic Treatment, in Silico Analysis and Chemical Synthesis. Biomolecules 2022, 12, 1806. [Google Scholar] [CrossRef] [PubMed]
- Tejano, L.A.; Peralta, J.P.; Yap, E.E.S.; Panjaitan, F.C.A.; Chang, Y.-W. Prediction of Bioactive Peptides from Chlorella Sorokiniana Proteins Using Proteomic Techniques in Combination with Bioinformatics Analyses. Int. J. Mol. Sci. 2019, 20, 1786. [Google Scholar] [CrossRef]
- Al Abdallah, Q.; Nixon, B.T.; Fortwendel, J.R. The Enzymatic Conversion of Major Algal and Cyanobacterial Carbohydrates to Bioethanol. Front. Energy Res. 2016, 4, 36. [Google Scholar] [CrossRef]
- Beermann, C.; Hartung, J. Physiological Properties of Milk Ingredients Released by Fermentation. Food Funct. 2013, 4, 185–199. [Google Scholar] [CrossRef]
- Htet, A.N.; Noguchi, M.; Ninomiya, K.; Tsuge, Y.; Kuroda, K.; Kajita, S.; Masai, E.; Katayama, Y.; Shikinaka, K.; Otsuka, Y.; et al. Application of Microalgae Hydrolysate as a Fermentation Medium for Microbial Production of 2-Pyrone 4,6-Dicarboxylic Acid. J. Biosci. Bioeng. 2018, 125, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Ovissipour, M.; Safari, R.; Motamedzadegan, A.; Shabanpour, B. Chemical and Biochemical Hydrolysis of Persian Sturgeon (Acipenser persicus) Visceral Protein. Food Bioprocess Technol. 2012, 5, 460–465. [Google Scholar] [CrossRef]
- Nirmal, N.; Khanashyam, A.C.; Shah, K.; Awasti, N.; Sajith Babu, K.; Ucak, İ.; Afreen, M.; Hassoun, A.; Tuanthong, A. Plant Protein-Derived Peptides: Frontiers in Sustainable Food System and Applications. Front. Sustain. Food Syst. 2024, 8, 1292297. [Google Scholar] [CrossRef]
- Martínez-Maqueda, D.; Hernández-Ledesma, B.; Amigo, L.; Miralles, B.; Gómez-Ruiz, J.Á. Extraction/Fractionation Techniques for Proteins and Peptides and Protein Digestion. In Proteomics in Foods: Principles and Applications; Toldrá, F., Nollet, L.M.L., Eds.; Springer: Boston, MA, USA, 2013; pp. 21–50. ISBN 978-1-4614-5626-1. [Google Scholar]
- Sheih, I.C.; Fang, T.J.; Wu, T.K. Isolation and Characterisation of a Novel Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptide from the Algae Protein Waste. Food Chem. 2009, 115, 279–284. [Google Scholar] [CrossRef]
- Zambrowicz, A.; Timmer, M.; Polanowski, A.; Lubec, G.; Trziszka, T. Manufacturing of Peptides Exhibiting Biological Activity. Amino Acids 2013, 44, 315–320. [Google Scholar] [CrossRef]
- Scopes, R.K. Protein Purification: Principles and Practice; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Ersson, B.; Rydén, L.; Janson, J.-C. Introduction to Protein Purification. In Protein Purification: Principles, High Resolution Methods, and Applications; Wiley: Hoboken, NJ, USA, 2011; pp. 1–22. [Google Scholar]
- Liu, S.; Li, Z.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Recent advances on protein separation and purification methods. Adv. Colloid Interface Sci. 2020, 284, 102254. [Google Scholar] [CrossRef]
- Martinez-Villaluenga, C.; Peñas, E.; Frias, J. Bioactive Peptides in Fermented Foods: Production and Evidence for Health Effects. Fermented Foods Health Dis. Prev. 2017, 23–47. [Google Scholar] [CrossRef]
- Mora, L.; Aristoy, M.-C.; Toldrá, F. Bioactive Peptides. Encycl. Food Chem. 2019, 381–389. [Google Scholar] [CrossRef]
- Kang, K.H.; Ryu, B.M.; Kim, S.K.; Qian, Z.J. Characterization of Growth and Protein Contents from Microalgae Navicula Incerta with the Investigation of Antioxidant Activity of Enzymatic Hydrolysates. Food Sci. Biotechnol. 2011, 20, 183–191. [Google Scholar] [CrossRef]
- Sheih, I.C.; Wu, T.K.; Fang, T.J. Antioxidant Properties of a New Antioxidative Peptide from Algae Protein Waste Hydrolysate in Different Oxidation Systems. Bioresour. Technol. 2009, 100, 3419–3425. [Google Scholar] [CrossRef]
- Sheih, I.C.; Fang, T.J.; Wu, T.K.; Lin, P.H. Anticancer and Antioxidant Activities of the Peptide Fraction from Algae Protein Waste. J. Agric. Food Chem. 2010, 58, 1202–1207. [Google Scholar] [CrossRef] [PubMed]
- Suetsuna, K.; Chen, J.-R. Identification of Antihypertensive Peptides from Peptic Digest of Two Microalgae, Chlorella Vulgaris and Spirulina Platensis. Mar. Biotechnol. 2001, 3, 305–309. [Google Scholar] [CrossRef]
- Suetsuna, K.; Nakano, T. Identification of an Antihypertensive Peptide from Peptic Digest of Wakame (Undaria pinnatifida). J. Nutr. Biochem. 2000, 11, 450–454. [Google Scholar] [CrossRef]
- Sato, M.; Hosokawa, T.; Yamaguchi, T.; Nakano, T.; Muramoto, K.; Kahara, T.; Funayama, K.; Kobayashi, A.; Nakano, T. Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Wakame (Undaria pinnatifida) and Their Antihypertensive Effect in Spontaneously Hypertensive Rats. J. Agric. Food Chem. 2002, 50, 6245–6252. [Google Scholar] [CrossRef]
- Suetsuna, K.; Maekawa, K.; Chen, J.R. Antihypertensive Effects of Undaria pinnatifida (Wakame) Peptide on Blood Pressure in Spontaneously Hypertensive Rats. J. Nutr. Biochem. 2004, 15, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Nagoya, K.; HAGino, H.; HAWAi, M. Antihypertensive Effect of Oligopeptides Derived from Nori on Rats. Jpn. J. Med. Pharm. Sci 2000, 43, 529–538. [Google Scholar]
- Ko, S.C.; Kim, D.; Jeon, Y.J. Protective Effect of a Novel Antioxidative Peptide Purified from a Marine Chlorella ellipsoidea Protein against Free Radical-Induced Oxidative Stress. Food Chem. Toxicol. 2012, 50, 2294–2302. [Google Scholar] [CrossRef]
- Lee, S.H.; Chang, D.U.; Lee, B.J.; Jeon, Y.J. Antioxidant Activity of Solubilized Tetraselmis Suecica and Chlorella Ellipsoidea by Enzymatic Digests. J. Food Sci. Nutr. 2009, 14, 21–28. [Google Scholar] [CrossRef]
- Shih, M.F.; Cherng, J.Y. Protective Effects of Chlorella-Derived Peptide Against UVC-Induced Cytotoxicity through Inhibition of Caspase-3 Activity and Reduction of the Expression of Phosphorylated FADD and Cleaved PARP-1 in Skin Fibroblasts. Molecules 2012, 17, 9116–9128. [Google Scholar] [CrossRef]
- Yurika, N.; Montuori, E.; Lauritano, C. Marine Microalgal Products with Activities against Age-Related Cardiovascular Diseases. Mar. Drugs 2024, 22, 229. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Kumar, S.; Bhat, H.F. Bioactive Peptides of Animal Origin: A Review. J. Food Sci. Technol. 2015, 52, 5377–5392. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Ming, L.; Yi, S.; Zhanxia, L.; Yongquan, W.; Chi, L. The Antihypertensive Effect of Peptides: A Novel Alternative to Drugs? Peptides 2008, 29, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Li, G.H.; Le, G.W.; Shi, Y.H.; Shrestha, S. Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Food Proteins and Their Physiological and Pharmacological Effects. Nutr. Res. 2004, 24, 469–486. [Google Scholar] [CrossRef]
- Elbandy, M. Anti-Inflammatory Effects of Marine Bioactive Compounds and Their Potential as Functional Food Ingredients in the Prevention and Treatment of Neuroinflammatory Disorders. Molecules 2023, 28, 2. [Google Scholar] [CrossRef] [PubMed]
- Sarmadi, B.H.; Ismail, A. Antioxidative Peptides from Food Proteins: A Review. Peptides 2010, 31, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Senadheera, T.R.L.; Dave, D.; Shahidi, F. Antioxidant Potential and Physicochemical Properties of Protein Hydrolysates from Body Parts of North Atlantic Sea Cucumber (Cucumaria frondosa). Food Prod. Process. Nutr. 2021, 3, 3. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- King, T.A.; Kandemir, J.M.; Walsh, S.J.; Spring, D.R. Photocatalytic Methods for Amino Acid Modification. Chem. Soc. Rev. 2021, 50, 39–57. [Google Scholar] [CrossRef] [PubMed]
- Dean, R.T.; Fu, S.; Stocker, R.; Davies, M.J. Biochemistry and Pathology of Radical-Mediated Protein Oxidation. Biochem. J. 1997, 324, 1–18. [Google Scholar] [CrossRef]
- Elias, R.J.; Kellerby, S.S.; Decker, E.A. Antioxidant Activity of Proteins and Peptides. Crit. Rev. Food Sci. Nutr. 2008, 48, 430–441. [Google Scholar] [CrossRef]
- Davies, M.J. Radical-Mediated Protein Oxidation. In The Pathology of Protein Oxidation; Oxford Academic: Oxford, UK, 1997; pp. 207–218. [Google Scholar]
- Guedes, A.C.; Amaro, H.M.; Malcata, F.X. Microalgae as Sources of High Added-Value Compounds-a Brief Review of Recent Work. Biotechnol. Prog. 2011, 27, 597–613. [Google Scholar] [CrossRef]
- Olena, Z.; Yang, Y.; Yin, T.T.; Yan, X.T.; Rao, H.L.; Xun, X.; Dong, X.; Wu, C.L.; He, H.L. Simultaneous Preparation of Antioxidant Peptides and Lipids from Microalgae by Pretreatment with Bacterial Proteases. Bioresour. Technol. 2022, 348, 126759. [Google Scholar] [CrossRef]
- Kang, K.-H.; Qian, Z.-J.; Ryu, B.; Karadeniz, F.; Kim, D.; Kim, S.-K. Antioxidant Peptides from Protein Hydrolysate of Microalgae Navicula Incerta and Their Protective Effects in Hepg2/CYP2E1 Cells Induced by Ethanol. Phytother. Res. 2012, 26, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Barrett, K.E.; Barman, S.M.; Boitano, S.; Brooks, H. Ganong’s Review of Medical Physiology. In LANGE Basic Science; McGraw-Hill: New York, NY, USA, 2012. [Google Scholar]
- Cutrell, S.; Alhomoud, I.S.; Mehta, A.; Talasaz, A.H.; Van Tassell, B.; Dixon, D.L. ACE-Inhibitors in Hypertension: A Historical Perspective and Current Insights. Curr. Hypertens. Rep. 2023, 25, 243–250. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Peng, C.; Jiao, R.; Wong, Y.M.; Yang, N.; Huang, Y. Anti-Hypertensive Nutraceuticals and Functional Foods. J. Agric. Food Chem. 2009, 57, 4485–4499. [Google Scholar] [CrossRef] [PubMed]
- Unger, T. The Role of the Renin-Angiotensin System in the Development of Cardiovascular Disease. Am. J. Cardiol. 2002, 89, 3–9. [Google Scholar] [CrossRef]
- Alper, A.B.; Calhoun, D.A. Contemporary Management of Refractory Hypertension. Curr. Hypertens. Rep. 1999, 1, 402–407. [Google Scholar] [CrossRef]
- Fitzgerald, C.; Gallagher, E.; Tasdemir, D.; Hayes, M. Heart Health Peptides from Macroalgae and Their Potential Use in Functional Foods. J. Agric. Food Chem. 2011, 59, 6829–6836. [Google Scholar] [CrossRef]
- García, M.C.; Puchalska, P.; Esteve, C.; Marina, M.L. Vegetable Foods: A Cheap Source of Proteins and Peptides with Antihypertensive, Antioxidant, and Other Less Occurrence Bioactivities. Talanta 2013, 106, 328–349. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ledesma, B.; Del Mar Contreras, M.; Recio, I. Antihypertensive Peptides: Production, Bioavailability and Incorporation into Foods. In Advances in Colloid and Interface Science; Elsevier: Amsterdam, The Netherlands, 2011; Volume 165, pp. 23–35. [Google Scholar]
- Huang, P.L.; Huang, Z.; Mashimo, H.; Bloch, K.D.; Moskowitz, M.A.; Bevan, J.A.; Fishman, M.C. Hypertension in Mice Lacking the Gene for Endothelial Nitric Oxide Synthase. Nature 1995, 377, 239–242. [Google Scholar] [CrossRef]
- Thomas, G.D.; Zhang, W.; Victor, R.G. Nitric Oxide Deficiency as a Cause of Clinical Hypertension: Promising New Drug Targets for Refractory Hypertension. J. Am. Med. Assoc. 2001, 285, 2055–2057. [Google Scholar] [CrossRef] [PubMed]
- Barkia, I.; Al-Haj, L.; Abdul Hamid, A.; Zakaria, M.; Saari, N.; Zadjali, F. Indigenous Marine Diatoms as Novel Sources of Bioactive Peptides with Antihypertensive and Antioxidant Properties. Int. J. Food Sci. Technol. 2019, 54, 1514–1522. [Google Scholar] [CrossRef]
- Hayes, M.; Aluko, R.E.; Aurino, E.; Mora, L. Generation of Bioactive Peptides from Porphyridium Sp. and Assessment of Their Potential for Use in the Prevention of Hypertension, Inflammation and Pain. Mar. Drugs 2023, 21, 422. [Google Scholar] [CrossRef] [PubMed]
- Zilversmit, D.B. Atherogenesis: A Postprandial Phenomenon. Circulation 1979, 60, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Munro, J.M.; Cotran, R.S. Biology of Disease. The Pathogenesis of Atherosclerosis: Atherogenesis and Inflammation. Lab. Investig. 1988, 58, 249–261. [Google Scholar] [PubMed]
- Channon, K.M. The Endothelium and the Pathogenesis of Atherosclerosis. Medicine 2006, 34, 173–177. [Google Scholar] [CrossRef]
- Ribeiro, F.; Alves, A.J.; Duarte, J.A.; Oliveira, J. Is Exercise Training an Effective Therapy Targeting Endothelial Dysfunction and Vascular Wall Inflammation? Int. J. Cardiol. 2010, 141, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al. Modifiable Risk Factors, Cardiovascular Disease, and Mortality in 155 722 Individuals from 21 High-Income, Middle-Income, and Low-Income Countries (PURE): A Prospective Cohort Study. Lancet 2020, 395, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Senadheera, T.R.L.; Hossain, A.; Shahidi, F. Marine Bioactives and Their Application in the Food Industry: A Review. Appl. Sci. 2023, 13, 12088. [Google Scholar] [CrossRef]
- Marcone, S.; Belton, O.; Fitzgerald, D.J. Milk-Derived Bioactive Peptides and Their Health Promoting Effects: A Potential Role in Atherosclerosis. Br. J. Clin. Pharmacol. 2017, 83, 152–162. [Google Scholar] [CrossRef]
- Singh, B.P.; Vij, S.; Hati, S. Functional Significance of Bioactive Peptides Derived from Soybean. Peptides 2014, 54, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Sirtori, C.R.; Galli, C.; Anderson, J.W.; Arnoldi, A. Nutritional and Nutraceutical Approaches to Dyslipidemia and Atherosclerosis Prevention: Focus on Dietary Proteins. Atherosclerosis 2009, 203, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Shih, M.; Chen, L.; Cherng, J. Chlorella 11-Peptide Inhibits the Production of Macrophage-Induced Adhesion Molecules and Reduces Endothelin-1 Expression and Endothelial Permeability. Mar. Drugs 2013, 11, 3861–3874. [Google Scholar] [CrossRef] [PubMed]
- Winkles, J.A.; Alberts, G.F.; Brogi, E.; Libby, P. Endothelin-1 and Endothelin Receptor mRNA Expression in Normal and Atherosclerotic Human Arteries. Biochem. Biophys. Res. Commun. 1993, 191, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.S.; Kim, S.K. Down-Regulation of Histamine-Induced Endothelial Cell Activation as Potential Anti-Atherosclerotic Activity of Peptides from Spirulina Maxima. Eur. J. Pharm. Sci. 2013, 50, 198–207. [Google Scholar] [CrossRef]
- Pei, Y.; Lui, Y.; Cai, S.; Zhou, C.; Hong, P.; Qian, Z.-J. A Novel Peptide Isolated from Microalgae Isochrysis Zhanjiangensis Exhibits Anti-Apoptosis and Anti-Inflammation in Ox-LDL Induced HUVEC to Improve Atherosclerosis. Plant Foods Hum. Nutr. 2022, 77, 181–189. [Google Scholar] [CrossRef]
Alga | Protein | Carbohydrates | Lipids |
---|---|---|---|
Anabaena cylindrica | 43–56 | 25–30 | 4–7 |
Aphanizomenon flos-aquae | 62 | 23 | 3 |
Arthrospira maxima | 60–71 | 13–16 | 6–7 |
Chlamydomonas rheinhardii | 48 | 17 | 21 |
Chlorella pyrenoidosa | 57 | 26 | 2 |
Chlorella vulgaris | 51–58 | 12–17 | 14–22 |
Dunaliella salina | 57 | 32 | 6 |
Euglena gracilis | 39–61 | 14–18 | 14–20 |
Porphyridium cruentum | 28–39 | 40–57 | 9–14 |
Scenedesmus obliquus | 50–56 | 10–17 | 12–14 |
Spirogyra sp. | 6–20 | 33–64 | 11–21 |
Spirulina platensis | 46–63 | 8–14 | 4–9 |
Synechococcus sp. | 63 | 15 | 11 |
Amino Acid Sequence of Bioactive Peptide | Source of Peptide | Reported Bioactivity | Hydrolytic Method | Reference |
---|---|---|---|---|
Glu-, Asp-, Lys-, Arg- | Navicula incerta | Antioxidative | Enzymatic–Pepsin | [56] |
Pro-Gly-Trp-Asn-Gln-Trp-Phe-Leu Val-Glu-Val-Leu-Pro-Pro-Ala-Glu-Leu, Val-Glu-Val-Leu-Pro-Pro-Ala-Glu-Leu | Navicula incerta | Hepatic fibrosis inhibitory effect (Cytotoxicity in HepG2/CYP2E1 cells) | Enzymatic–Papain | [56] |
Val-Glu-Cys-Iyr-Gly-Pro-Asn-Arg-Pro-Glu-Phe | Chlorella vulgaris | Antioxidative | Enzymatic–Pepsin | [57] |
Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Glu-Phe | Chlorella vulgaris | ACE inhibitory, Superoxide radical quenching | Enzymatic–Pepsin | [49] |
Val-Glu-Cys-Iyr-Gly-Pro-Asn-Arg-Pro-Glu-Phe | Chlorella vulgaris | Anti-proliferation | Enzymatic–Pepsin | [58] |
Ile-Val-Val-Glu | Chlorella vulgaris | ACE-I inhibitory | Enzymatic–Pepsin | [59] |
Ile-Ala-Glu | Spirulina platensis | ACE-I inhibitory | Enzymatic–Pepsin | [59] |
Ala-Ile-Tyr-Lys | Undaria pinnatifida | Antihypertensive | Enzymatic–Pepsin | [60] |
Val-Tyr | Undaria pinnatifida | Antihypertensive | Enzymatic–Proteases | [61] |
Tyr-His, Lys-Trp, Lys-Tyr, Lys-Phe, Phe-Tyr, Val-Trp, Val-Phe, Ile-Tyr, Ile-Trp, Val-Tyr | Undaria pinnatifida | Antihypertensive | Hot water extract | [62] |
Ala-Lys-Tyr-Ser-Tyr | Porphyra yezoensis | Antihypertensive | Pepsin | [63] |
Leu-Asn-Gly-Asp-Val-Trp | Chlorella ellipsiodea | Antioxidant activities | Pepsin | [64] |
Pro-Gly-Trp-Asn-Gln-Trp-Phe-Leu and Val-Glu-Val-Leu-Pro-Pro-Ala-Glu-Leu | Navicula incerta | Antioxidant activities | Papain, pepsin, α-chymotrypsin, pronase-E, and neutrase | [65] |
Peptide mixture | Chlorella pyrenoidosa | Antioxidant activities | - | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernando, R.; Sun, X.; Rupasinghe, H.P.V. Production of Bioactive Peptides from Microalgae and Their Biological Properties Related to Cardiovascular Disease. Macromol 2024, 4, 582-596. https://doi.org/10.3390/macromol4030035
Fernando R, Sun X, Rupasinghe HPV. Production of Bioactive Peptides from Microalgae and Their Biological Properties Related to Cardiovascular Disease. Macromol. 2024; 4(3):582-596. https://doi.org/10.3390/macromol4030035
Chicago/Turabian StyleFernando, Ranitha, Xiaohong Sun, and H. P. Vasantha Rupasinghe. 2024. "Production of Bioactive Peptides from Microalgae and Their Biological Properties Related to Cardiovascular Disease" Macromol 4, no. 3: 582-596. https://doi.org/10.3390/macromol4030035
APA StyleFernando, R., Sun, X., & Rupasinghe, H. P. V. (2024). Production of Bioactive Peptides from Microalgae and Their Biological Properties Related to Cardiovascular Disease. Macromol, 4(3), 582-596. https://doi.org/10.3390/macromol4030035