Development and Evaluation of Chitosan-Based Food Coatings for Exotic Fruit Preservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chitosan Extraction and Characterization
2.2. Preparation of Chitosan Films
2.3. Characterization of Chitosan Films
2.3.1. Film Thickness
2.3.2. Water Vapor Permeability
2.3.3. Tensile Strength
2.3.4. Analysis of Porosity
2.4. Feijoa Coating Using Chitosan Films
2.5. Microbiological Evaluation
3. Results and Discussion
3.1. Chitosan Characterization
3.2. Chitosan Biofilm Preparation
3.3. Evaluation of Chitosan Films
3.4. Feijoa Coating Using Chitosan Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, F. Chemical and biological properties of feijoa (Acca sellowiana). Trends Food Sci. Technol. 2018, 81, 121–131. [Google Scholar] [CrossRef]
- Fischer, G.; Parra-Coronado, A.; Balaguera-López, H.E. Aspectos del cultivo y la fisiología de la feijoa (Acca sellowiana [Berg] Burret). Una revisión. Cienc. Agric. 2020, 17, 11–24. [Google Scholar] [CrossRef]
- Dragland, I.S.; Rukke, H.V.; Stenhagen, I.S.R.; Lönn-Stensrud, J.; Kopperud, H.M. Antibacterial and Antibiofilm Effect of Low Viscosity Chitosan against Staphylococcus epidermidis. Int. J. Microbiol. 2016, 2016, 9159761. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.; Chen, J.; Zhou, M.; Zhu, M.; Li, Z.; Gao, S.; Ou, J.; Xu, D.; Wu, M.; Jiang, S.; et al. Combating Pseudomonas aeruginosa Biofilms by a Chitosan-PEG-Peptide Conjugate via Changes in Assembled Structure. ACS Appl. Mater. Interfaces 2020, 12, 13731–13738. [Google Scholar] [CrossRef] [PubMed]
- Al-Harthy, A.-A.; Mawson, A.; East, A. Investigations on extending shelf life of feijoa fruits with cool storage conditions. Acta Hortic. 2008, 804, 255–262. [Google Scholar] [CrossRef]
- Romanazzi, G.; Feliziani, E.; Baños, S.B.; Sivakumar, D. Shelf life extension of fresh fruit and vegetables by chitosan treatment. Crit. Rev. Food Sci. Nutr. 2016, 57, 579–601. [Google Scholar] [CrossRef] [PubMed]
- Petriccione, M.; De Sanctis, F.; Pasquariello, M.S.; Mastrobuoni, F.; Rega, P.; Scortichini, M.; Mencarelli, F. The Effect of Chitosan Coating on the Quality and Nutraceutical Traits of Sweet Cherry During Postharvest Life. Food Bioprocess Technol. 2014, 8, 394–408. [Google Scholar] [CrossRef]
- Maringgal, B.; Hashim, N.; Tawakkal, I.S.M.A.; Mohamed, M.T.M. Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends Food Sci. Technol. 2020, 96, 253–267. [Google Scholar] [CrossRef]
- Tikhonov, V.E.; Stepnova, E.A.; Babak, V.G.; Yamskov, I.A.; Palma-Guerrero, J.; Jansson, H.-B.; Lopez-Llorca, L.V.; Salinas, J.; Gerasimenko, D.V.; Avdienko, I.D.; et al. Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl)succinoyl/-derivatives. Carbohydr. Polym. 2006, 64, 66–72. [Google Scholar] [CrossRef]
- Nandeeshkumar, P.; Sudisha, J.; Ramachandra, K.K.; Prakash, H.; Niranjana, S.; Shekar, S.H. Chitosan induced resistance to downy mildew in sunflower caused by Plasmopara halstedii. Physiol. Mol. Plant Pathol. 2008, 72, 188–194. [Google Scholar] [CrossRef]
- Sarmento, B.; Goycoolea, F.M.; Sosnik, A.; das Neves, J. Chitosan and Chitosan Derivatives for Biological Applications: Chemistry and Functionalization. Int. J. Carbohydr. Chem. 2011. [Google Scholar] [CrossRef]
- Sharp, R.G. A Review of the Applications of Chitin and Its Derivatives in Agriculture to Modify Plant-Microbial Interactions and Improve Crop Yields. Agronomy 2013, 3, 757–793. [Google Scholar] [CrossRef]
- Souza, M.P.; Vaz, A.F.M.; Cerqueira, M.A.; Texeira, J.A.; Vicente, A.A.; Carneiro-Da-Cunha, M.G. Effect of an Edible Nanomultilayer Coating by Electrostatic Self-Assembly on the Shelf Life of Fresh-Cut Mangoes. Food Bioprocess Technol. 2014, 8, 647–654. [Google Scholar] [CrossRef]
- Xing, Y.; Xu, Q.; Li, X.; Chen, C.; Ma, L.; Li, S.; Che, Z.; Lin, H. Chitosan-Based Coating with Antimicrobial Agents: Preparation, Property, Mechanism, and Application Effectiveness on Fruits and Vegetables. Int. J. Polym. Sci. 2016, 2016, 4851730. [Google Scholar] [CrossRef]
- Zhang, X.; Ismail, B.B.; Cheng, H.; Jin, T.Z.; Qian, M.; Arabi, S.A.; Liu, D.; Guo, M. Emerging chitosan-essential oil films and coatings for food preservation—A review of advances and applications. Carbohydr. Polym. 2021, 273, 118616. [Google Scholar] [CrossRef]
- Marcela, D.; Sierra, E.; Patricia, C.; Orozco, O.; Quintana, M.A.; Ospina, W.A. Optimización de un protocolo de extracción de quitina y quitosano desde caparazones de crustáceos. Optimization protocol for chitin and chitosan extraction from crustacean shells. Sci. Tech. Año XVIII 2013, 18, 260–266. [Google Scholar]
- Gómez-Ríos, D.; Barrera-Zapata, R.; Ríos-Estepa, R. Comparison of process technologies for chitosan production from shrimp shell waste: A techno-economic approach using Aspen Plus®. Food Bioprod. Process. 2017, 103, 49–57. [Google Scholar] [CrossRef]
- Martínez-Camacho, A.; Cortez-Rocha, M.; Ezquerra-Brauer, J.; Graciano-Verdugo, A.Z.; Rodriguez-Félix, F.; Castillo-Ortega, M.; Yépiz-Gómez, M.; Plascencia-Jatomea, M. Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydr. Polym. 2010, 82, 305–315. [Google Scholar] [CrossRef]
- Gontard, N.; Guilbert, S. Bio-packaging: Technology and properties of edible and/or biodegradable material of agricultural origin. In Food Packaging and Preservation; Springer: Boston, MA, USA, 1994; pp. 159–181. [Google Scholar] [CrossRef]
- Escobar-Sierra, D.M.; Perea-Mesa, Y.P. Manufacturing and evaluation of Chitosan, PVA and Aloe Vera hydrogels for skin applications. Dyna 2017, 84, 134–142. [Google Scholar] [CrossRef]
- Shiekh, R.A.; Malik, M.A.; Al-Thabaiti, S.A.; Shiekh, M.A. Chitosan as a Novel Edible Coating for Fresh Fruits. Food Sci. Technol. Res. 2013, 19, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.; Argüelles-Monal, W.; Desbrières, J.; Rinaudo, M. An infrared investigation in relation with chitin and chitosan characterization. Polymer 2001, 42, 3569–3580. [Google Scholar] [CrossRef]
- Reshad, R.A.I.; Alam Jishan, T.; Chowdhury, N.N. Chitosan and its Broad Applications: A Brief Review. J. Clin. Exp. Investig. 2021, 12, em00779. [Google Scholar] [CrossRef]
- Cui, J.; Yu, Z.; Lau, D. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study. Int. J. Mol. Sci. 2016, 17, 61. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Meng, X.; Meng, J.; Khan, I.H.; Dai, L.; Khan, A.; An, X.; Zhang, J.; Huq, T.; Ni, Y. Chitosan as A Preservative for Fruits and Vegetables: A Review on Chemistry and Antimicrobial Properties. J. Bioresour. Bioprod. 2019, 4, 11–21. [Google Scholar] [CrossRef]
- Weska, R.; Moura, J.; Batista, L.; Rizzi, J.; Pinto, L. Optimization of deacetylation in the production of chitosan from shrimp wastes: Use of response surface methodology. J. Food Eng. 2007, 80, 749–753. [Google Scholar] [CrossRef]
- De Moura, C.M.; de Moura, J.M.; Soares, N.M.; de Almeida Pinto, L.A. Evaluation of molar weight and deacetylation degree of chitosan during chitin deacetylation reaction: Used to produce biofilm. Chem. Eng. Process. Process Intensif. 2011, 50, 351–355. [Google Scholar] [CrossRef]
- Patricia Miranda, S.; Garnica, O.; Lara-Sagahon, V.; Cárdenas, G. WATER VAPOR PERMEABILITY AND MECHANICAL PROPERTIES OF CHITOSAN COMPOSITE FILMS. J. Chil. Chem. Soc. 2004, 49, 173–178. [Google Scholar] [CrossRef]
- Tarique, J.; Sapuan, S.M.; Khalina, A. Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Sci. Rep. 2021, 11, 1–17. [Google Scholar] [CrossRef]
- Tanada-Palmu, P.S.; Grosso, C.R. Effect of edible wheat gluten-based films and coatings on refrigerated strawberry (Fragaria ananassa) quality. Postharvest Biol. Technol. 2005, 36, 199–208. [Google Scholar] [CrossRef]
- Li, F.; Ye, Q.; Gao, Q.; Chen, H.; Shi, S.Q.; Zhou, W.; Li, X.; Xia, C.; Li, J. Facile Fabrication of Self-Healable and Antibacterial Soy Protein-Based Films with High Mechanical Strength. ACS Appl. Mater. Interfaces 2019, 11, 16107–16116. [Google Scholar] [CrossRef]
- Akrami, S.; Saki, M.; Hossaeini, S.M.M.; Sabahi, S.; Noori, S.M.A. Application of soy protein-based films and coatings on the shelf life of food products: A mini-review of recent publications with emphasis on nanotechnology. J. Food Meas. Charact. 2022. [Google Scholar] [CrossRef]
- Miri, S.M.; Salari, M.; Ahmadpour, A. Physicochemical Responses of ‘Kinnow’ Mandarins to Wax and Polyethylene Covering During Cold Storage. Open Agric. 2018, 3, 678–683. [Google Scholar] [CrossRef]
- Ali, A.; Muhammad, M.T.M.; Sijam, K.; Siddiqui, Y. Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chem. 2011, 124, 620–626. [Google Scholar] [CrossRef]
- Pavinatto, A.V.; de Almeida Mattos, A.V.; Malpass, A.C.G.; Okura, M.H.; Balogh, D.T.; Sanfelice, R.C. Coating with chitosan-based edible films for mechanical/biological protection of strawberries. Int. J. Biol. Macromol. 2020, 151, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Altomare, L.; Draghi, L.; Chiesa, R.; De Nardo, L. Morphology tuning of chitosan films via electrochemical deposition. Mater. Lett. 2012, 78, 18–21. [Google Scholar] [CrossRef]
- Wiles, J.; Vergano, P.; Barron, F.; Bunn, J.; Testin, R. Water Vapor Transmission Rates and Sorption Behavior of Chitosan Films. J. Food Sci. 2000, 65, 1175–1179. [Google Scholar] [CrossRef]
- Rodríguez, M.; Arjona, H.; Fischer, G.; Campos, H.; Chaparro, M. Aspectos Anatómicos del Desarrollo del Fruto de Feijoa [Acca sellowiana (O. Berg) Burret]. Rev. Fac. Nac. Agron. 2010, 63, 5267–5273. [Google Scholar]
- Kerch, G. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends Food Sci. Technol. 2015, 46, 159–166. [Google Scholar] [CrossRef]
- Yin, C.; Huang, C.; Wang, J.; Liu, Y.; Lu, P.; Huang, L. Effect of Chitosan- and Alginate-Based Coatings Enriched with Cinnamon Essential Oil Microcapsules to Improve the Postharvest Quality of Mangoes. Materials 2019, 12, 2039. [Google Scholar] [CrossRef]
- Adiletta, G.; Di Matteo, M.; Petriccione, M. Multifunctional Role of Chitosan Edible Coatings on Antioxidant Systems in Fruit Crops: A Review. Int. J. Mol. Sci. 2021, 22, 2633. [Google Scholar] [CrossRef]
- Valdés, A.; Ramos, M.; Beltrán, A.; Jiménez, A.; Garrigós, M.C. State of the Art of Antimicrobial Edible Coatings for Food Packaging Applications. Coatings 2017, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Elsabee, M.Z.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C 2013, 33, 1819–1841. [Google Scholar] [CrossRef]
- Kuorwel, K.K.; Cran, M.J.; Sonneveld, K.; Miltz, J.; Bigger, S.W. Essential Oils and Their Principal Constituents as Antimicrobial Agents for Synthetic Packaging Films. J. Food Sci. 2011, 76, R164–R177. [Google Scholar] [CrossRef] [PubMed]
- El-tahlawy, K.F.; El-Bendary, M.A.; Elhendawy, A.G.; Hudson, S.M. The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydr. Polym. 2005, 60, 421–430. [Google Scholar] [CrossRef]
- Liu, H.; Du, Y.; Wang, X.; Sun, L. Chitosan kills bacteria through cell membrane damage. Int. J. Food Microbiol. 2004, 95, 147–155. [Google Scholar] [CrossRef] [PubMed]
Cell Culture | Medium * | Gram Staining | Description |
---|---|---|---|
Clostridium perfringes | TSN | Gram-positive bacillus | Presence or absence |
Escherichia coli | EMB | Gram-negative bacillus | Presence or absence |
Salmonella sp. | XLD | Gram-negative bacillus | Presence or absence |
Pseudomona Aeruginosa | Cetrimide | Gram-negative bacillus | Presence or absence |
Staphylococcus aureus | Baird parker | Gram-positive coccus | Presence or absence |
Aspergillus niger—Candida albicans | OGYE | Fungus | Fungus presence |
Evaluation | Sample 2 Extracted Chitosan (cm) | Sample 3 Extracted Chitosan (cm) | Commercial Chitosan (cm) |
---|---|---|---|
1 | 0.00552 | 0.00652 | 0.02270 |
2 | 0.00522 | 0.00822 | 0.02202 |
3 | 0.00712 | 0.00582 | 0.02230 |
4 | 0.00542 | 0.00922 | 0.02103 |
Average thickness | 0.00601 | 0.00852 | 0.02200 |
Deviation | 0.001294 | 0.0019 | 0.00073 |
Confidence interval | 0.000897 | 0.001326 | 0.0071 |
Sample | Elastic Limit (Pa) | Tensile Strength (Pa) | Young’s Modulus (Pa) |
---|---|---|---|
Commercial chitosan | 0.1142 | 0.2514 | 1.1001 |
Extracted chitosan sample 2 | 0.1400 | 0.3733 | 0.9739 |
Extracted chitosan sample 3 | 0.2629 | 0.6244 | 0.7325 |
Feijoa Samples | EMB Cell Culture (UFC/mL) | Baird-Parker Cell Culture (UFC/mL) | Cetrimide Cell Culture (UFC/mL) | OGY Cell Culture (UFC/mL) |
---|---|---|---|---|
Uncoated | 501,000 | 6,100,000 | 0 | Several fungi |
Commercial chitosan | 0 | 561,000 | 0 | 0 |
Chitosan Sample 2 | 0 | 510,000 | 0 | 0 |
Chitosan Sample 3 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zárate-Moreno, J.C.; Escobar-Sierra, D.M.; Ríos-Estepa, R. Development and Evaluation of Chitosan-Based Food Coatings for Exotic Fruit Preservation. BioTech 2023, 12, 20. https://doi.org/10.3390/biotech12010020
Zárate-Moreno JC, Escobar-Sierra DM, Ríos-Estepa R. Development and Evaluation of Chitosan-Based Food Coatings for Exotic Fruit Preservation. BioTech. 2023; 12(1):20. https://doi.org/10.3390/biotech12010020
Chicago/Turabian StyleZárate-Moreno, Juan Camilo, Diana Marcela Escobar-Sierra, and Rigoberto Ríos-Estepa. 2023. "Development and Evaluation of Chitosan-Based Food Coatings for Exotic Fruit Preservation" BioTech 12, no. 1: 20. https://doi.org/10.3390/biotech12010020
APA StyleZárate-Moreno, J. C., Escobar-Sierra, D. M., & Ríos-Estepa, R. (2023). Development and Evaluation of Chitosan-Based Food Coatings for Exotic Fruit Preservation. BioTech, 12(1), 20. https://doi.org/10.3390/biotech12010020