Ocular-Surface Regeneration Therapies for Eye Disorders: The State of the Art
Abstract
:1. Introduction
2. Corneal Ocular Surface
2.1. Dry-Eye Disease
2.2. Neurotrophic Keratopathy
2.3. Neuropathic Corneal Pain
3. Corneal Limbus
3.1. Pterygium
3.2. Limbal Stem-Cell Deficiency
4. Corneal Endothelium
Fuchs Dystrophy
5. Conjunctiva
Mucous Membrane Pemphigoid
6. Gene Therapies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gipson, I.K. The Ocular Surface: The Challenge to Enable and Protect Vision: The Friedenwald Lecture. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4391–4398. [Google Scholar] [CrossRef] [Green Version]
- Bron, A.J.; de Paiva, C.S.; Chauhan, S.K.; Bonini, S.; Gabison, E.E.; Jain, S.; Knop, E.; Markoulli, M.; Ogawa, Y.; Perez, V.; et al. TFOS DEWS II Pathophysiology Report. Ocul. Surf. 2017, 15, 438–510. [Google Scholar] [CrossRef]
- Kalirajan, C.; Dukle, A.; Nathanael, A.J.; Oh, T.H.; Manivasagam, G. A Critical Review on Polymeric Biomaterials for Biomedical Applications. Polymers 2021, 13, 3015. [Google Scholar] [CrossRef] [PubMed]
- Baltatu, M.S.; Vizureanu, P.; Sandu, A.V.; Florido-Suarez, N.; Saceleanu, M.V.; Mirza-Rosca, J.C. New Titanium Alloys, Promising Materials for Medical Devices. Materials 2021, 14, 5934. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Yun, H.; Funderburgh, M.L.; Du, Y. Regenerative Therapy for the Cornea. Prog. Retin. Eye Res. 2022, 87, 101011. [Google Scholar] [CrossRef] [PubMed]
- Amador, C.; Shah, R.; Ghiam, S.; Kramerov, A.A.; Ljubimov, A.V. Gene Therapy in the Anterior Eye Segment. Curr. Gene Ther. 2021, 22, 104–131. [Google Scholar] [CrossRef]
- El Zarif, M.; Alió, J.L.; Alió del Barrio, J.L.; De Miguel, M.P.; Abdul Jawad, K.; Makdissy, N. Corneal Stromal Regeneration: A Review of Human Clinical Studies in Keratoconus Treatment. Front. Med. 2021, 8, 650724. [Google Scholar] [CrossRef]
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K.; et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef]
- Jones, L.; Downie, L.E.; Korb, D.; Benitez-del-Castillo, J.M.; Dana, R.; Deng, S.X.; Dong, P.N.; Geerling, G.; Hida, R.Y.; Liu, Y.; et al. TFOS DEWS II Management and Therapy Report. Ocul. Surf. 2017, 15, 575–628. [Google Scholar] [CrossRef]
- Borgia, A.; Raimondi, R.; Fossati, G.; De Rosa, F.P.; Romano, V.; Borroni, D.; Vigo, L.; Scorcia, V.; Giannaccare, G. Device-Based Therapies as a Boost of Conventional Treatment in Dry Eye Disease. Expert Rev. Ophthalmol. 2022, 17, 387–393. [Google Scholar] [CrossRef]
- Baudouin, C.; Aragona, P.; Van Setten, G.; Rolando, M.; Irkeç, M.; Del Castillo, J.B.; Geerling, G.; Labetoulle, M.; Bonini, S. Diagnosing the Severity of Dry Eye: A Clear and Practical Algorithm. Br. J. Ophthalmol. 2014, 98, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
- Freire, V.; Andollo, N.; Etxebarria, J.; Hernáez-Moya, R.; Durán, J.A.; Morales, M.C. Corneal Wound Healing Promoted by 3 Blood Derivatives: An in Vitro and in Vivo Comparative Study. Cornea 2014, 33, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Harloff, S.; Hartwig, D.; Kasper, K.; Wedel, T.; Müller, M.; Geerling, G. Epitheliotrophic Capacity of Serum Eye Drops from Healthy Donors versus Serum from Immunosuppressed Patients with Rheumatoid Arthritis. Klin. Monbl. Augenheilkd 2008, 225, 200–206. [Google Scholar] [CrossRef]
- Watson, S.L.; Secker, G.A.; Daniels, J.T. The Effect of Therapeutic Human Serum Drops on Corneal Stromal Wound-Healing Activity. Curr. Eye Res. 2009, 33, 641–652. [Google Scholar] [CrossRef]
- Urzua, C.A.; Vasquez, D.H.; Huidobro, A.; Hernandez, H.; Alfaro, J. Randomized Double-Blind Clinical Trial of Autologous Serum Versus Artificial Tears in Dry Eye Syndrome. Curr. Eye Res. 2012, 37, 684–688. [Google Scholar] [CrossRef]
- Semeraro, F.; Forbice, E.; Nascimbeni, G.; Taglietti, M.; Romano, V.; Guerra, G.; Costagliola, C. Effect of Autologous Serum Eye Drops in Patients with Sjögren Syndrome-Related Dry Eye: Clinical and In Vivo Confocal Microscopy Evaluation of the Ocular Surface. In Vivo 2016, 30, 931–938. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.; Chung, S.H.; Jeon, S.; Kwok, S.K.; Park, S.H.; Kim, M.S. Comparison of Clinical Efficacies of Autologous Serum Eye Drops in Patients with Primary and Secondary Sjögren Syndrome. Cornea 2014, 33, 663–667. [Google Scholar] [CrossRef]
- Aggarwal, S.; Kheirkhah, A.; Cavalcanti, B.M.; Cruzat, A.; Colon, C.; Brown, E.; Borsook, D.; Prüss, H.; Hamrah, P. Autologous Serum Tears for Treatment of Photoallodynia in Patients with Corneal Neuropathy: Efficacy and Evaluation with In Vivo Confocal Microscopy. Ocul. Surf. 2015, 13, 250–262. [Google Scholar] [CrossRef] [Green Version]
- Yoon, K.C. Use of Umbilical Cord Serum in Ophthalmology. Chonnam Med. J. 2014, 50, 82–85. [Google Scholar] [CrossRef] [Green Version]
- Alio, J.L.; Colecha, J.R.; Pastor, S.; Rodriguez, A.; Artola, A. Symptomatic Dry Eye Treatment with Autologous Platelet-Rich Plasma. Ophthalmic Res. 2007, 39, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Yan, N.; Huang, Y.; Cao, G.; Deng, J.; Deng, Y. Effects of Nerve Growth Factor on Nerve Regeneration after Corneal Nerve Damage. Int. J. Clin. Exp. Med. 2014, 7, 4584. [Google Scholar]
- Study to Evaluate Safety and Efficacy of Cenegermin (Oxervate®) vs. Vehicle in Severe Sjogren’s Dry Eye Disease (NGF0221–PROTEGO-2 Study)—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT05136170 (accessed on 10 June 2023).
- Fong, P.; Shih, K.; Lam, P.; Chan, T.; Jhanji, V.; Tong, L. Role of Tear Film Biomarkers in the Diagnosis and Management of Dry Eye Disease. Taiwan J. Ophthalmol. 2019, 9, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Benitez-del-Castillo Sánchez, J.; Morillo-Rojas, M.D.; Galbis-Estrada, C.; Pinazo-Duran, M.D. Determinación de Mediadores de La Respuesta Inmune e Inflamación En Lágrimas: Cambios En Ojo Seco y Glaucoma Frente a Población Sana. Arch. Soc. Esp. Oftalmol. 2017, 92, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Enríquez-de-Salamanca, A.; Castellanos, E.; Stern, M.E.; Fernández, I.; Carreño, E.; García-Vázquez, C.; Herreras, J.M.; Calonge, M. Tear Cytokine and Chemokine Analysis and Clinical Correlations in Evaporative-Type Dry Eye Disease. Mol. Vis. 2010, 16, 862. [Google Scholar] [PubMed]
- López-Miguel, A.; Tesón, M.; Martín-Montañez, V.; Enríquez-De-Salamanca, A.; Stern, M.E.; González-García, M.J.; Calonge, M. Clinical and Molecular Inflammatory Response in Sjögren Syndrome-Associated Dry Eye Patients under Desiccating Stress. Am. J. Ophthalmol. 2016, 161, 133–141.e2. [Google Scholar] [CrossRef] [Green Version]
- Pflugfelder, S.C.; de Paiva, C.S. The Pathophysiology of Dry Eye Disease: What We Know and Future Directions for Research. Ophthalmology 2017, 124, S4–S13. [Google Scholar] [CrossRef]
- Aragona, P.; Aguennouz, M.; Rania, L.; Postorino, E.; Sommario, M.S.; Roszkowska, A.M.; De Pasquale, M.G.; Pisani, A.; Puzzolo, D. Matrix Metalloproteinase 9 and Transglutaminase 2 Expression at the Ocular Surface in Patients with Different Forms of Dry Eye Disease. Ophthalmology 2015, 122, 62–71. [Google Scholar] [CrossRef]
- Dua, H.S.; Said, D.G.; Messmer, E.M.; Rolando, M.; Benitez-del-Castillo, J.M.; Hossain, P.N.; Shortt, A.J.; Geerling, G.; Nubile, M.; Figueiredo, F.C.; et al. Neurotrophic Keratopathy. Prog. Retin. Eye Res. 2018, 66, 107–131. [Google Scholar] [CrossRef] [Green Version]
- Labetoulle, M.; Baudouin, C.; Calonge, M.; Merayo-Lloves, J.; Boboridis, K.G.; Akova, Y.A.; Aragona, P.; Geerling, G.; Messmer, E.M.; Benítez-del-Castillo, J. Role of Corneal Nerves in Ocular Surface Homeostasis and Disease. Acta Ophthalmol. 2019, 97, 137–145. [Google Scholar] [CrossRef]
- Deeks, E.D.; Lamb, Y.N. Cenegermin: A Review in Neurotrophic Keratitis. Drugs 2020, 80, 489–494. [Google Scholar] [CrossRef]
- Mantelli, F.; Allegretti, M.; Chao, W.; Filatori, I.; Battigello, P.; Vaja, V.; Goodman, J.; Sinigaglia, F. Phase I/II Randomized, Double-Masked, Vehicle-Controlled Trial of Recombinant Human Nerve Growth Factor (RhNGF) Eye Drops in Stage 2/3 Neurotrophic Keratitis. Investig. Ophthalmol. Vis. Sci. 2017, 58, 1172. [Google Scholar]
- Mastropasqua, L.; Lanzini, M.; Dua, H.S.; D’Uffizi, A.; Di Nicola, M.; Calienno, R.; Bondì, J.; Said, D.G.; Nubile, M. In Vivo Evaluation of Corneal Nerves and Epithelial Healing After Treatment with Recombinant Nerve Growth Factor for Neurotrophic Keratopathy. Am. J. Ophthalmol. 2020, 217, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Mead, O.; Tighe, S.; Tseng, S. Amniotic Membrane Transplantation for Managing Dry Eye and Neurotrophic Keratitis. Taiwan J. Ophthalmol. 2020, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, K.; Chikama, T.; Nakamura, M.; Nishida, T. Differential Distribution of Subchains of the Basement Membrane Components Type IV Collagen and Laminin Among the Amniotic Membrane, Cornea, and Conjunctiva. Cornea 1999, 18, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Meller, D.; Tseng, S.C.G. Conjunctival Epithelial Cell Differentiation on Amniotic Membrane. Investig. Ophthalmol. Vis. Sci. 1999, 40, 878–886. [Google Scholar]
- Terzis, J.K.; Dryer, M.M.; Bodner, B.I. Corneal Neurotization: A Novel Solution to Neurotrophic Keratopathy. Plast. Reconstr. Surg. 2009, 123, 112–120. [Google Scholar] [CrossRef]
- Belmonte, C.; Nichols, J.J.; Cox, S.M.; Brock, J.A.; Begley, C.G.; Bereiter, D.A.; Dartt, D.A.; Galor, A.; Hamrah, P.; Ivanusic, J.J.; et al. TFOS DEWS II Pain and Sensation Report. Ocul. Surf. 2017, 15, 404–437. [Google Scholar] [CrossRef] [Green Version]
- Goyal, S.; Hamrah, P. Understanding Neuropathic Corneal Pain—Gaps and Current Therapeutic Approaches. Semin. Ophthalmol. 2016, 31, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Shtein, R.M.; Sugar, A.; Soong, H.K.; Woodward, M.A.; De Loss, K.; Mian, S.I. Long-Term Use of Autologous Serum 50% Eye Drops for the Treatment of Dry Eye Disease. Cornea 2014, 33, 1245–1251. [Google Scholar] [CrossRef]
- Hamrah, P.; Qazi, Y.; Shahatit, B.; Dastjerdi, M.H.; Pavan-Langston, D.; Jacobs, D.S.; Rosenthal, P. Corneal Nerve and Epithelial Cell Alterations in Corneal Allodynia: An In Vivo Confocal Microscopy Case Series. Ocul. Surf. 2017, 15, 139–151. [Google Scholar] [CrossRef]
- Chui, J.; di Girolamo, N.; Wakefield, D.; Coroneo, M.T. The Pathogenesis of Pterygium: Current Concepts and Their Therapeutic Implications. Ocul. Surf. 2008, 6, 24–43. [Google Scholar] [CrossRef] [PubMed]
- Shahraki, T.; Arabi, A.; Feizi, S. Pterygium: An Update on Pathophysiology, Clinical Features, and Management. Ther. Adv. Ophthalmol. 2021, 13, 251584142110201. [Google Scholar] [CrossRef] [PubMed]
- Ghiasian, L.; Samavat, B.; Hadi, Y.; Arbab, M.; Abolfathzadeh, N. Recurrent Pterygium: A Review. J. Curr. Ophthalmol. 2021, 33, 367. [Google Scholar] [CrossRef] [PubMed]
- Van Acker, S.I.; Van den Bogerd, B.; Haagdorens, M.; Siozopoulou, V.; Ní Dhubhghaill, S.; Pintelon, I.; Koppen, C. Pterygium—The Good, the Bad, and the Ugly. Cells 2021, 10, 1567. [Google Scholar] [CrossRef]
- Palewski, M.; Budnik, A.; Konopińska, J. Evaluating the Efficacy and Safety of Different Pterygium Surgeries: A Review of the Literature. Int. J. Environ. Res. Public Health 2022, 19, 11357. [Google Scholar] [CrossRef]
- Janson, B.J.; Sikder, S. Surgical Management of Pterygium. Ocul. Surf. 2014, 12, 112–119. [Google Scholar] [CrossRef]
- Kodavoor, S.; Preethi, V.; Dandapani, R. Profile of Complications in Pterygium Surgery—A Retrospective Analysis. Indian J. Ophthalmol. 2021, 69, 1697–1701. [Google Scholar] [CrossRef]
- Clearfield, E.; Hawkins, B.S.; Kuo, I.C. Conjunctival Autograft Versus Amniotic Membrane Transplantation for Treatment of Pterygium: Findings from a Cochrane Systematic Review. Am. J. Ophthalmol. 2017, 182, 8–17. [Google Scholar] [CrossRef]
- Fernandes, M.; Sangwan, V.S.; Bansal, A.K.; Gangopadhyay, N.; Sridhar, M.S.; Garg, P.; Aasuri, M.K.; Nutheti, R.; Rao, G.N. Outcome of Pterygium Surgery: Analysis over 14 Years. Eye 2004, 19, 1182–1190. [Google Scholar] [CrossRef] [Green Version]
- Romano, V.; Cruciani, M.; Conti, L.; Fontana, L. Fibrin Glue versus Sutures for Conjunctival Autografting in Primary Pterygium Surgery. Cochrane Database Syst. Rev. 2016, 2016, CD011308. [Google Scholar] [CrossRef]
- Zeng, W.; Dai, H.; Luo, H. Evaluation of Autologous Blood in Pterygium Surgery with Conjunctival Autograft. Cornea 2019, 38, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Zein, H.; Ismail, A.; Abdelmongy, M.; Elsherif, S.; Hassanen, A.; Muhammad, B.; Assaf, F.; Elsehili, A.; Negida, A.; Yamane, S.; et al. Autologous Blood for Conjunctival Autograft Fixation in Primary Pterygium Surgery: A Systematic Review and Meta-Analysis. Curr. Pharm. Des. 2018, 24, 4197–4204. [Google Scholar] [CrossRef]
- Akbari, M.; Soltani-Moghadam, R.; Elmi, R.; Kazemnejad, E. Comparison of Free Conjunctival Autograft versus Amniotic Membrane Transplantation for Pterygium Surgery. J. Curr. Ophthalmol. 2017, 29, 282–286. [Google Scholar] [CrossRef]
- Lee, B.W.H.; Sidhu, A.S.; Francis, I.C.; Coroneo, M.T. 5-Fluorouracil in Primary, Impending Recurrent and Recurrent Pterygium: Systematic Review of the Efficacy and Safety of a Surgical Adjuvant and Intralesional Antimetabolite. Ocul. Surf. 2022, 26, 128–141. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, Z.; Dai, H.; Yan, M.; Luo, H.; Ke, M.; Cai, X. Anti-Fibrotic, Anti-VEGF or Radiotherapy Treatments as Adjuvants for Pterygium Excision: A Systematic Review and Network Meta-Analysis. BMC Ophthalmol. 2017, 17, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taher, N.O.; Alnabihi, A.N.; Hersi, R.M.; Alrajhi, R.K.; Alzahrani, R.A.; Batais, W.T.; Mofti, A.H.; Alghamdi, S.A. Amniotic Membrane Transplantation and Conjunctival Autograft Combined with Mitomycin C for the Management of Primary Pterygium: A Systematic Review and Meta-Analysis. Front. Med. 2022, 9, 3361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Bao, N.; Liang, K.; Tao, L. Adjuvant Use of Cyclosporine a in the Treatment of Primary Pterygium: A Systematic Review and Meta-Analysis. Cornea 2018, 37, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Frucht-Pery, J.; Raiskup, F.; Ilsar, M.; Landau, D.; Orucov, F.; Solomon, A. Conjunctival Autografting Combined with Low-Dose Mitomycin C for Prevention of Primary Pterygium Recurrence. Am. J. Ophthalmol. 2006, 141, 1044–1050.e2. [Google Scholar] [CrossRef]
- Mai, W.; Chen, M.; Huang, M.; Zhong, J.; Chen, J.; Liu, X.; Deng, J.; Yang, X.; Ye, W.; Zhang, R.; et al. Targeting Platelet-Derived Growth Factor Receptor β Inhibits the Proliferation and Motility of Human Pterygial Fibroblasts. Expert Opin. Ther. Targets 2019, 23, 805–817. [Google Scholar] [CrossRef]
- Joe, A.W.; Yeung, S.N. Concise Review: Identifying Limbal Stem Cells: Classical Concepts and New Challenges. Stem Cells Transl. Med. 2014, 3, 318–322. [Google Scholar] [CrossRef]
- Ramos, T.; Scott, D.; Ahmad, S. An Update on Ocular Surface Epithelial Stem Cells: Cornea and Conjunctiva. Stem Cells Int. 2015, 2015, 601731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Buskirk, E.M. The Anatomy of the Limbus. Eye 1989, 3, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, Q.; Xu, J.; Deng, S.X. The Diagnosis of Limbal Stem Cell Deficiency. Ocul. Surf. 2018, 16, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Kate, A.; Basu, S. A Review of the Diagnosis and Treatment of Limbal Stem Cell Deficiency. Front. Med. 2022, 9, 1502. [Google Scholar] [CrossRef] [PubMed]
- Ganger, A.; Singh, A.; Kalaivani, M.; Gupta, N.; Vanathi, M.; Mohanty, S.; Tandon, R. Outcomes of Surgical Interventions for the Treatment of Limbal Stem Cell Deficiency. Indian J. Med. Res. 2021, 154, 51–61. [Google Scholar] [CrossRef]
- Mohanna, S.; Elahi, S.; Panthier, C.; Gatinel, D. Surgical Approaches to Autologous Limbal Stem Cell Transplantation (LSCT) Following Severe Corneal Chemical Burns. J. Fr. Ophtalmol. 2022, 45, 352–357. [Google Scholar] [CrossRef]
- Jurkunas, U.; Johns, L.; Armant, M. Cultivated Autologous Limbal Epithelial Cell Transplantation: New Frontier in the Treatment of Limbal Stem Cell Deficiency. Am. J. Ophthalmol. 2022, 239, 244–268. [Google Scholar] [CrossRef]
- Masood, F.; Chang, J.H.; Akbar, A.; Song, A.; Hu, W.Y.; Azar, D.T.; Rosenblatt, M.I. Therapeutic Strategies for Restoring Perturbed Corneal Epithelial Homeostasis in Limbal Stem Cell Deficiency: Current Trends and Future Directions. Cells 2022, 11, 3247. [Google Scholar] [CrossRef]
- Shanbhag, S.; Patel, C.; Goyal, R.; Donthineni, P.; Singh, V.; Basu, S. Simple Limbal Epithelial Transplantation (SLET): Review of Indications, Surgical Technique, Mechanism, Outcomes, Limitations, and Impact. Indian J. Ophthalmol. 2019, 67, 1265–1277. [Google Scholar] [CrossRef]
- Kheirkhah, A.; Raju, V.K.; Tseng, S.C.G. Minimal Conjunctival Limbal Autograft for Total Limbal Stem Cell Deficiency. Cornea 2008, 27, 730–733. [Google Scholar] [CrossRef]
- Le, Q.; Chauhan, T.; Yung, M.; Tseng, C.H.; Deng, S.X. Outcomes of Limbal Stem Cell Transplant: A Meta-Analysis. JAMA Ophthalmol. 2020, 138, 660–670. [Google Scholar] [CrossRef]
- Ilari, L.; Daya, S.M. Long-Term Outcomes of Keratolimbal Allograft for the Treatment of Severe Ocular Surface Disorders. Ophthalmology 2002, 109, 1278–1284. [Google Scholar] [CrossRef]
- Pellegrini, G.; Traverso, C.E.; Franzi, A.T.; Zingirian, M.; Cancedda, R.; De Luca, M. Long-Term Restoration of Damaged Corneal Surfaces with Autologous Cultivated Corneal Epithelium. Lancet 1997, 349, 990–993. [Google Scholar] [CrossRef]
- Rama, P.; Matuska, S.; Paganoni, G.; Spinelli, A.; De Luca, M.; Pellegrini, G. Limbal Stem-Cell Therapy and Long-Term Corneal Regeneration. N. Engl. J. Med. 2010, 363, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Schwab, I.R.; Reyes, M.; Isseroff, R.R. Successful Transplantation of Bioengineered Tissue Replacements in Patients with Ocular Surface Disease. Cornea 2000, 19, 421–426. [Google Scholar] [CrossRef]
- Ay, R.; Ui, F.A.J.; Sai, T.; An, K.A.J.; Hen, C. Reconstruction of Damaged Corneas by Transplantation of Autologous Limbal Epithelial Cells. N. Engl. J. Med. 2000, 343, 86–93. [Google Scholar] [CrossRef]
- Sangwan, V.S.; Basu, S.; MacNeil, S.; Balasubramanian, D. Simple Limbal Epithelial Transplantation (SLET): A Novel Surgical Technique for the Treatment of Unilateral Limbal Stem Cell Deficiency. Br. J. Ophthalmol. 2012, 96, 931–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amescua, G.; Atallah, M.; Nikpoor, N.; Galor, A.; Perez, V.L. Modified Simple Limbal Epithelial Transplantation Using Cryopreserved Amniotic Membrane for Unilateral Limbal Stem Cell Deficiency. Am. J. Ophthalmol. 2014, 158, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Nishida, K.; Yamato, M.; Hayashida, Y.; Watanabe, K.; Yamamoto, K.; Adachi, E.; Nagai, S.; Kikuchi, A.; Maeda, N.; Watanabe, H.; et al. Corneal Reconstruction with Tissue-Engineered Cell Sheets Composed of Autologous Oral Mucosal Epithelium. N. Engl. J. Med. 2004, 351, 1187–1196. [Google Scholar] [CrossRef] [Green Version]
- Burillon, C.; Huot, L.; Justin, V.; Nataf, S.; Chapuis, F.; Decullier, E.; Damour, O. Cultured Autologous Oral Mucosal Epithelial Cell Sheet (CAOMECS) Transplantation for the Treatment of Corneal Limbal Epithelial Stem Cell Deficiency. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1325–1331. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Lee, H.J.; Ryu, J.S.; Kim, Y.H.; Jeon, S.; Oh, J.Y.; Choung, H.K.; Khwarg, S.I.; Wee, W.R.; Kim, M.K. Prospective Clinical Trial of Corneal Reconstruction with Biomaterial-Free Cultured Oral Mucosal Epithelial Cell Sheets. Cornea 2018, 37, 76–83. [Google Scholar] [CrossRef]
- Deng, S.X.; Kruse, F.; Gomes, J.A.P.; Chan, C.C.; Daya, S.; Dana, R.; Figueiredo, F.C.; Kinoshita, S.; Rama, P.; Sangwan, V.; et al. Global Consensus on the Management of Limbal Stem Cell Deficiency. Cornea 2020, 39, 1291–1302. [Google Scholar] [CrossRef]
- Atallah, M.R.; Palioura, S.; Perez, V.L.; Amescua, G. Limbal Stem Cell Transplantation: Current Perspectives. Clin. Ophthalmol. 2016, 10, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Goldman, D.R.; Hubschman, J.P.; Aldave, A.J.; Chiang, A.; Huang, J.S.; Bourges, J.L.; Schwartz, S.D. Postoperative Posterior Segment Complications in Eyes Treated with the Boston Type i Keratoprosthesis. Retina 2013, 33, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.B.; Shtein, R.M.; Kaufman, S.C.; Deng, S.X.; Rosenblatt, M.I.; Lum, F. Boston Keratoprosthesis: Outcomes and Complications: A Report by the American Academy of Ophthalmology. Ophthalmology 2015, 122, 1504–1511. [Google Scholar] [CrossRef] [PubMed]
- Sasamoto, Y.; Ksander, B.R.; Frank, M.H.; Frank, N.Y. Repairing the Corneal Epithelium Using Limbal Stem Cells or Alternative Cell-Based Therapies. Expert Opin. Biol. Ther. 2018, 18, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Knight, R.J.; Deng, S.X. Future Regenerative Therapies for Corneal Disease. Curr. Opin. Ophthalmol. 2023, 34, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.; Alvarado, J.; Jusrer, R.; Maglio, M. Prenatal and Postnatal Cellularity of the Human Corneal Endothelium. A Quantitative Histologic Study. Investig. Ophthalmol. Vis. Sci. 1984, 25, 312–322. [Google Scholar]
- Gain, P.; Jullienne, R.; He, Z.; Aldossary, M.; Acquart, S.; Cognasse, F.; Thuret, G. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol. 2016, 134, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Spinozzi, D.; Miron, A.; Bruinsma, M.; Dapena, I.; Kocaba, V.; Jager, M.J.; Melles, G.R.J.; Ni Dhubhghaill, S.; Oellerich, S. New Developments in Corneal Endothelial Cell Replacement. Acta Ophthalmol. 2021, 99, 712–729. [Google Scholar] [CrossRef]
- Braunstein, R.E.; Airiani, S.; Chang, M.A.; Odrich, M.G. Corneal Edema Resolution after “Descemetorhexis”. J. Cataract. Refract. Surg. 2003, 29, 1436–1439. [Google Scholar] [CrossRef]
- Zvi, T.; Nadav, B.; Itamar, K.; Tova, L. Inadvertent Descemetorhexis. J. Cataract. Refract. Surg. 2005, 31, 234–235. [Google Scholar] [CrossRef]
- Dirisamer, M.; Ham, L.; Dapena, I.; Van Dijk, K.; Melles, G.R.J. Descemet Membrane Endothelial Transfer: “Free-Floating” Donor Descemet Implantation as a Potential Alternative to “Keratoplasty”. Cornea 2012, 31, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Soh, Y.Q.; Peh, G.; George, B.L.; Seah, X.Y.; Primalani, N.K.; Adnan, K.; Mehta, J.S. Predicative Factors for Corneal Endothelial Cell Migration. Investig. Ophthalmol. Vis. Sci. 2016, 57, 338–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okumura, N.; Matsumoto, D.; Fukui, Y.; Teramoto, M.; Imai, H.; Kurosawa, T.; Shimada, T.; Kruse, F.; Schlötzer-Schrehardt, U.; Kinoshita, S.; et al. Feasibility of Cell-Based Therapy Combined with Descemetorhexis for Treating Fuchs Endothelial Corneal Dystrophy in Rabbit Model. PLoS ONE 2018, 13, e0191306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleyen, I.; Saelens, I.E.Y.; Van Dooren, B.T.H.; Van Rij, G. Spontaneous Corneal Clearing after Descemet’s Stripping. Ophthalmology 2013, 120, 215. [Google Scholar] [CrossRef]
- Price, F.W.; Price, M.O. Spontaneous Corneal Clearance Despite Graft Detachment after Descemet Membrane Endothelial Keratoplasty. Am. J. Ophthalmol. 2010, 149, 173–174. [Google Scholar] [CrossRef] [PubMed]
- Koenig, S.B. Planned Descemetorhexis Without Endothelial Keratoplasty in Eyes with Fuchs Corneal Endothelial Dystrophy. Cornea 2015, 34, 1149–1151. [Google Scholar] [CrossRef] [PubMed]
- Iovieno, A.; Neri, A.; Soldani, A.M.; Adani, C.; Fontana, L. Descemetorhexis without Graft Placement for the Treatment of Fuchs Endothelial Dystrophy: Preliminary Results and Review of the Literature. Cornea 2017, 36, 637–641. [Google Scholar] [CrossRef]
- Borkar, D.S.; Veldman, P.; Colby, K.A. Treatment of Fuchs Endothelial Dystrophy by Descemet Stripping without Endothelial Keratoplasty. Cornea 2016, 35, 1267–1273. [Google Scholar] [CrossRef]
- Malyugin, B.E.; Izmaylova, S.B.; Malyutina, E.A.; Antonova, O.P.; Gelyastanov, A.M. Clinical and Functional Results of One-Step Phaco Surgery and Central Descemetorhexis for Cataract and Fuchs Primary Endothelial Corneal Dystrophy. Vestn. Oftalmol. 2017, 133, 16–22. [Google Scholar] [CrossRef]
- Davies, E.; Pineda, R. Corneal Tomography Changes and Refractive Outcomes after Descemet Stripping Without Endothelial Keratoplasty. Cornea 2019, 38, 817–819. [Google Scholar] [CrossRef] [PubMed]
- Moloney, G.; Petsoglou, C.; Ball, M.; Kerdraon, Y.; Höllhumer, R.; Spiteri, N.; Beheregaray, S.; Hampson, J.; D’Souza, M.; Devasahayam, R.N. Descemetorhexis without Grafting for Fuchs Endothelial Dystrophy-Supplementation with Topical Ripasudil. Cornea 2017, 36, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.J.; Kane, S.; Dhaliwal, D.K. Descemetorhexis without Endothelial Keratoplasty Versus DMEK for Treatment of Fuchs Endothelial Corneal Dystrophy. Cornea 2018, 37, 1479–1483. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, H.; Koizumi, N.; Okumura, N.; Suganami, H.; Kinoshita, S. Morphological Changes of Human Corneal Endothelial Cells after Rho-Associated Kinase Inhibitor Eye Drop (Ripasudil) Administration: A Prospective Open-Label Clinical Study. PLoS ONE 2015, 10, e0136802. [Google Scholar] [CrossRef] [Green Version]
- Davies, E.; Jurkunas, U.; Pineda, R. Predictive Factors for Corneal Clearance after Descemetorhexis without Endothelial Keratoplasty. Cornea 2018, 37, 137–140. [Google Scholar] [CrossRef]
- Macsai, M.S.; Shiloach, M. Use of Topical Rho Kinase Inhibitors in the Treatment of Fuchs Dystrophy after Descemet Stripping Only. Cornea 2019, 38, 529–534. [Google Scholar] [CrossRef]
- Moloney, G.; Garcerant Congote, D.; Hirnschall, N.; Arsiwalla, T.; Luiza Mylla Boso, A.; Toalster, N.; D’Souza, M.; Devasahayam, R.N. Descemet Stripping Only Supplemented with Topical Ripasudil for Fuchs Endothelial Dystrophy 12-Month Outcomes of the Sydney Eye Hospital Study. Cornea 2021, 40, 320–326. [Google Scholar] [CrossRef]
- A Safety and Efficacy Study of Corneal Injection for Endothelial Dysfunction Using Human Corneal Endothelial Cell Therapy in Subjects with Corneal Edema Secondary to Endothelial Dysfunction—Tabular View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/record/NCT05309135 (accessed on 10 June 2023).
- Peh, G.S.L.; Beuerman, R.W.; Colman, A.; Tan, D.T.; Mehta, J.S. Human Corneal Endothelial Cell Expansion for Corneal Endothelium Transplantation: An Overview. Transplantation 2011, 91, 811–819. [Google Scholar] [CrossRef]
- Navaratnam, J.; Utheim, T.P.; Rajasekhar, V.K.; Shahdadfar, A. Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium. J. Funct. Biomater. 2015, 6, 917–945. [Google Scholar] [CrossRef] [Green Version]
- Peh, G.S.L.; Toh, K.P.; Ang, H.P.; Seah, X.Y.; George, B.L.; Mehta, J.S. Optimization of Human Corneal Endothelial Cell Culture: Density Dependency of Successful Cultures in Vitro. BMC Res. Notes 2013, 6, 176. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Joyce, N.C. Proliferative Response of Corneal Endothelial Cells from Young and Older Donors. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1743–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konomi, K.; Joyce, N.C. Comparison of Telomere Lengths of Human Corneal Endothelial Cells Between the Central and Peripheral Areas of Young and Older Donors. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4920. [Google Scholar]
- Choi, J.S.; Kim, E.Y.; Kim, M.J.; Khan, F.A.; Giegengack, M.; D’Agostino, R.; Criswell, T.; Khang, G.; Soker, S. Factors Affecting Successful Isolation of Human Corneal Endothelial Cells for Clinical Use. Cell Transplant. 2014, 23, 845–854. [Google Scholar] [CrossRef]
- Shao, C.; Fu, Y.; Lu, W.; Fan, X. Bone Marrow-Derived Endothelial Progenitor Cells: A Promising Therapeutic Alternative for Corneal Endothelial Dysfunction. Cells Tissues Organs 2011, 193, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Joyce, N.; Harris, D.; Markov, V.; Zhang, Z.; Saitta, B. Potential of Human Umbilical Cord Blood Mesenchymal Stem Cells to Heal Damaged Corneal Endothelium. Mol. Vis. 2012, 18, 547. [Google Scholar] [PubMed]
- Zhang, K.; Pang, K.; Wu, X. Isolation and Transplantation of Corneal Endothelial Cell–Like Cells Derived from In-Vitro-Differentiated Human Embryonic Stem Cells. Stem Cells Dev. 2014, 23, 1340–1354. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Chen, J.Z.; Shao, C.Y.; Li, C.Y.; Zhang, Y.D.; Lu, W.J.; Fu, Y.; Gu, P.; Fan, X. Treatment with Retinoic Acid and Lens Epithelial Cell-Conditioned Medium in Vitro Directed the Differentiation of Pluripotent Stem Cells towards Corneal Endothelial Cell-like Cells. Exp. Ther. Med. 2015, 9, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Yokoo, S.; Yamagami, S.; Yanagi, Y.; Uchida, S.; Mimura, T.; Usui, T.; Amano, S. Human Corneal Endothelial Cell Precursors Isolated by Sphere-Forming Assay. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1626–1631. [Google Scholar] [CrossRef] [Green Version]
- Mimura, T.; Shimomura, N.; Usui, T.; Noda, Y.; Kaji, Y.; Yamgami, S.; Amano, S.; Miyata, K.; Araie, M. Magnetic Attraction of Iron-Endocytosed Corneal Endothelial Cells to Descemet’s Membrane. Exp. Eye Res. 2003, 76, 745–751. [Google Scholar] [CrossRef]
- Mimura, T.; Yamagami, S.; Usui, T.; Ishii, Y.; Ono, K.; Yokoo, S.; Funatsu, H.; Araie, M.; Amano, S. Long-Term Outcome of Iron-Endocytosing Cultured Corneal Endothelial Cell Transplantation with Magnetic Attraction. Exp. Eye Res. 2005, 80, 149–157. [Google Scholar] [CrossRef]
- Mimura, T.; Yamagami, S.; Usui, T.; Seiichi; Honda, N.; Amano, S. Necessary Prone Position Time for Human Corneal Endothelial Precursor Transplantation in a Rabbit Endothelial Deficiency Model. Curr. Eye Res. 2009, 32, 617–623. [Google Scholar] [CrossRef]
- Okumura, N.; Kinoshita, S.; Koizumi, N. Application of Rho Kinase Inhibitors for the Treatment of Corneal Endothelial Diseases. J. Ophthalmol. 2017, 2017, 904. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, S.; Koizumi, N.; Ueno, M.; Okumura, N.; Imai, K.; Tanaka, H.; Yamamoto, Y.; Nakamura, T.; Inatomi, T.; Bush, J.; et al. Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy. N. Engl. J. Med. 2018, 378, 995–1003. [Google Scholar] [CrossRef]
- Foster, C.S. Cicatricial Pemphigoid. Trans. Am. Ophthalmol. Soc. 1986, 84, 527. [Google Scholar] [PubMed]
- Xu, H.H.; Werth, V.P.; Parisi, E.; Sollecito, T.P. Mucous Membrane Pemphigoid. Dent. Clin. N. Am. 2013, 57, 611–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radford, C.F.; Rauz, S.; Williams, G.P.; Saw, V.P.J.; Dart, J.K.G. Incidence, Presenting Features, and Diagnosis of Cicatrising Conjunctivitis in the United Kingdom. Eye 2012, 26, 1199–1208. [Google Scholar] [CrossRef] [Green Version]
- Branisteanu, D.C.; Stoleriu, G.; Branisteanu, D.E.; Boda, D.; Branisteanu, C.I.; Maranduca, M.A.; Moraru, A.; Stanca, H.T.; Zemba, M.; Balta, F. Ocular Cicatricial Pemphigoid (Review). Exp. Ther. Med. 2020, 20, 3379–3382. [Google Scholar] [CrossRef]
- Taurone, S.; Spoletini, M.; Ralli, M.; Gobbi, P.; Artico, M.; Imre, L.; Czakò, C.; Kovàcs, I.; Greco, A.; Micera, A. Ocular Mucous Membrane Pemphigoid: A Review. Immunol. Res. 2019, 67, 280–289. [Google Scholar] [CrossRef]
- Kirzhner, M.; Jakobiec, F.A. Ocular Cicatricial Pemphigoid: A Review of Clinical Features, Immunopathology, Differential Diagnosis, and Current Management. Semin. Ophthalmol. 2011, 26, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Mondino, B.J.; Brown, S.I. Ocular Cicatricial Pemphigoid. Ophthalmology 1981, 88, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Coco, G.; Romano, V.; Menassa, N.; Borroni, D.; Iselin, K.; Finn, D.; Figueiredo, G.S.; Tacea, F.; Field, E.A.; Ahmad, S.; et al. Conjunctival Biopsy Site in Mucous Membrane Pemphigoid. Am. J. Ophthalmol. 2020, 216, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Lopez, S.N.; Cao, J.; Casas de Leon, S.; Dominguez, A.R. Utility of Direct Immunofluorescence Using Buccal Mucosal Biopsies in Those with Suspected Isolated Ocular Mucous Membrane Pemphigoid. Ophthalmology 2022, 129, 1171–1176. [Google Scholar] [CrossRef]
- Jollow, D.J.; Bradshaw, T.P.; Mcmillan, D.C. Dapsone-Induced Hemolytic Anemia. Drug Metab. Rev. 2008, 27, 107–124. [Google Scholar] [CrossRef]
- Georgoudis, P.; Sabatino, F.; Szentmary, N.; Palioura, S.; Fodor, E.; Hamada, S.; Scholl, H.P.N.; Gatzioufas, Z. Ocular Mucous Membrane Pemphigoid: Current State of Pathophysiology, Diagnostics and Treatment. Ophthalmol. Ther. 2019, 8, 5–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, J.; Maguire, A.M. Gene Therapy for Ocular Disease. Mol. Ther. 2000, 1, 501–505. [Google Scholar] [CrossRef]
- Borrás, T. Recent Developments in Ocular Gene Therapy. Exp. Eye Res. 2003, 76, 643–652. [Google Scholar] [CrossRef]
- Di Iorio, E.; Barbaro, V.; Alvisi, G.; Trevisan, M.; Ferrari, S.; Masi, G.; Nespeca, P.; Ghassabian, H.; Ponzin, D.; Palù, G. New Frontiers of Corneal Gene Therapy. Hum. Gene Ther. 2019, 30, 923–945. [Google Scholar] [CrossRef]
- Ljubimov, A. V Overview of Gene Therapy in Anterior Segment. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1037. [Google Scholar]
- Mohan, R.R.; Martin, L.M.; Sinha, N.R. Novel Insights into Gene Therapy in the Cornea. Exp. Eye Res. 2021, 202, 108361. [Google Scholar] [CrossRef]
- Vinciguerra, R.; Borgia, A.; Tredici, C.; Vinciguerra, P. Excimer Laser Tissue Interactions in the Cornea. Exp. Eye Res. 2021, 206, 108537. [Google Scholar] [CrossRef] [PubMed]
- Saghizadeh, M.; Kramerov, A.A.; Yu, F.; Shin, X.; Castro, M.G.; Ljubimov, A.V. Normalization of Wound Healing and Diabetic Markers in Organ Cultured Human Diabetic Corneas by Adenoviral Delivery of C-Met Gene. Investig. Ophthalmol. Vis. Sci. 2010, 51, 1970–1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramerov, A.A.; Saghizadeh, M.; Ljubimov, A.V. Adenoviral Gene Therapy for Diabetic Keratopathy: Effects on Wound Healing and Stem Cell Marker Expression in Human Organ-Cultured Corneas and Limbal Epithelial Cells. JoVE 2016, 2016, e54058. [Google Scholar] [CrossRef]
- Kramerov, A.A.; Shah, R.; Ding, H.; Holler, E.; Turjman, S.; Rabinowitz, Y.S.; Ghiam, S.; Maguen, E.; Svendsen, C.N.; Saghizadeh, M.; et al. Novel Nanopolymer RNA Therapeutics Normalize Human Diabetic Corneal Wound Healing and Epithelial Stem Cells. Nanomedicine 2021, 32, 102332. [Google Scholar] [CrossRef]
- Tong, Y.C.; Chang, S.F.; Kao, W.W.Y.; Liu, C.Y.; Liaw, J. Polymeric Micelle Gene Delivery of Bcl-XL via Eye Drop Reduced Corneal Apoptosis Following Epithelial Debridement. J. Control. Release 2010, 147, 76–83. [Google Scholar] [CrossRef]
- Ljubimov, A.V.; Saghizadeh, M. Progress in Corneal Wound Healing. Prog. Retin. Eye Res. 2015, 49, 17–45. [Google Scholar] [CrossRef] [Green Version]
- Shu, D.Y.; Lovicu, F.J. Myofibroblast Transdifferentiation: The Dark Force in Ocular Wound Healing and Fibrosis. Prog. Retin. Eye Res. 2017, 60, 44–65. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Mann, D.M.; Ruoslahti, E. Negative Regulation of Transforming Growth Factor-β by the Proteoglycan Decorin. Nature 1990, 346, 281–284. [Google Scholar] [CrossRef]
- Harper, J.R.; Spiro, R.C.; Gaarde, W.A.; Tamura, R.N.; Pierschbacher, M.D.; Noble, N.A.; Stecker, K.K.; Border, W.A. [12] Role of Transforming Growth Factor β and Decorin in Controlling Fibrosis. Methods Enzymol. 1994, 245, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Mohan, R.R.; Gupta, R.; Mehan, M.K.; Cowden, J.W.; Sinha, S. Decorin Transfection Suppresses Profibrogenic Genes and Myofibroblast Formation in Human Corneal Fibroblasts. Exp. Eye Res. 2010, 91, 238–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnelly, K.S.; Giuliano, E.A.; Sharma, A.; Tandon, A.; Rodier, J.T.; Mohan, R.R. Decorin-PEI Nanoconstruct Attenuates Equine Corneal Fibroblast Differentiation. Vet. Ophthalmol. 2014, 17, 162–169. [Google Scholar] [CrossRef]
- Sharma, A.; Rodier, J.T.; Tandon, A.; Klibanov, A.M.; Mohan, R.R. Attenuation of Corneal Myofibroblast Development through Nanoparticle-Mediated Soluble Transforming Growth Factor-β Type II Receptor (STGFβRII) Gene Transfer. Mol. Vis. 2012, 18, 2598. [Google Scholar]
- Wang, T.; Zhou, X.T.; Yu, Y.; Zhu, J.Y.; Dai, J.H.; Qu, X.M.; Le, Q.H.; Chu, R.Y. Inhibition of Corneal Fibrosis by Smad7 in Rats after Photorefractive Keratectomy. Chin. Med. J. 2013, 126, 1445–1450. [Google Scholar] [CrossRef]
- Gupta, S.; Rodier, J.T.; Sharma, A.; Giuliano, E.A.; Sinha, P.R.; Hesemann, N.P.; Ghosh, A.; Mohan, R.R. Targeted AAV5-Smad7 Gene Therapy Inhibits Corneal Scarring in Vivo. PLoS ONE 2017, 12, e0172928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrecilla, J.; del Pozo-Rodríguez, A.; Vicente-Pascual, M.; Solinís, M.Á.; Rodríguez-Gascón, A. Targeting Corneal Inflammation by Gene Therapy: Emerging Strategies for Keratitis. Exp. Eye Res. 2018, 176, 130–140. [Google Scholar] [CrossRef]
- Lai, C.M.; Spilsbury, K.; Brankov, M.; Zaknich, T.; Rakoczy, P.E. Inhibition of Corneal Neovascularization by Recombinant Adenovirus Mediated Antisense VEGF RNA. Exp. Eye Res. 2002, 75, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Tai, P.W.L.; Ai, J.; Gessler, D.J.; Su, Q.; Yao, X.; Zheng, Q.; Zamore, P.D.; Xu, X.; Gao, G. Transcriptome Profiling of Neovascularized Corneas Reveals MiR-204 as a Multi-Target Biotherapy Deliverable by RAAVs. Mol. Ther. Nucleic Acids 2018, 10, 349–360. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.N.; Yang, L.C.; Yang, C.T.; Lai, C.H.; Chen, M.F.; Chen, C.Y.; Chen, C.H.; Wu, P.C.; Kou, H.K.; Chen, Y.J.; et al. Inhibition of Corneal Neovascularization with Plasmid Pigment Epithelium-Derived Factor (p-PEDF) Delivered by Synthetic Amphiphile INTeraction-18 (SAINT-18) Vector in an Experimental Model of Rat Corneal Angiogenesis. Exp. Eye Res. 2009, 89, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Torrecilla, J.; Gómez-Aguado, I.; Vicente-Pascual, M.; del Pozo-Rodríguez, A.; Solinís, M.Á.; Rodríguez-Gascón, A. MMP-9 Downregulation with Lipid Nanoparticles for Inhibiting Corneal Neovascularization by Gene Silencing. Nanomaterials 2019, 9, 631. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, F.; Xu, Y.; Zhang, W.; Hu, Y.; Fu, Y.; Xu, W.; Ge, S.; Fan, X.; Lu, L. Cholesterol Modification of SDF-1-Specific SiRNA Enables Therapeutic Targeting of Angiogenesis through Akt Pathway Inhibition. Exp. Eye Res. 2019, 184, 64–71. [Google Scholar] [CrossRef]
- Trousdale, M.D.; Zhu, Z.; Stevenson, D.; Schechter, J.E.; Ritter, T.; Mircheff, A.K. Expression of TNF Inhibitor Gene in the Lacrimal Gland Promotes Recovery of Tear Production and Tear Stability and Reduced Immunopathology in Rabbits with Induced Autoimmune Dacryoadenitis. J. Autoimmune Dis. 2005, 2, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, P.B.; Samant, D.M.; Selvam, S.; Wei, R.H.; Wang, Y.; Stevenson, D.; Schechter, J.E.; Apparailly, F.; Mircheff, A.K.; Trousdale, M.D. Adeno-Associated Virus–Mediated IL-10 Gene Transfer Suppresses Lacrimal Gland Immunopathology in a Rabbit Model of Autoimmune Dacryoadenitis. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5137–5144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, Z.; Yin, H.; Cabrera-Pérez, J.; Guimaro, M.C.; Afione, S.; Michael, D.G.; Glenton, P.; Patel, A.; Swaim, W.D.; Zheng, C.; et al. Aquaporin Gene Therapy Corrects Sjögren’s Syndrome Phenotype in Mice. Proc. Natl. Acad. Sci. USA 2016, 113, 5694–5699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disease | Therapies |
---|---|
Dry-eye disease | Autologous serum tears Insulin-like growth factor Recombinant human nerve growth factor (rh-NGF) |
Neurotrophic keratopathy | Recombinant human nerve growth factor (rh-NGF) Amniotic membrane Conjunctival flap Corneal neurotization |
Neuropathic corneal pain | Autologous serum tears Contact lens amniotic membrane |
Pterygium | Conjunctival autologous graft Amniotic membrane Antimetabolites:
|
Limbal stem-cell deficiency | Autologous or allogenic limbal-cell transplant Cultivated limbal epithelial transplantation (CLET) Simple limbal epithelial transplantation (SLET) |
Fuchs dystrophy | Descemetorhexis without endothelial keratoplasty (DWEK) RHO-kinase inhibitors (ROCK-I) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Posarelli, M.; Romano, D.; Tucci, D.; Giannaccare, G.; Scorcia, V.; Taloni, A.; Pagano, L.; Borgia, A. Ocular-Surface Regeneration Therapies for Eye Disorders: The State of the Art. BioTech 2023, 12, 48. https://doi.org/10.3390/biotech12020048
Posarelli M, Romano D, Tucci D, Giannaccare G, Scorcia V, Taloni A, Pagano L, Borgia A. Ocular-Surface Regeneration Therapies for Eye Disorders: The State of the Art. BioTech. 2023; 12(2):48. https://doi.org/10.3390/biotech12020048
Chicago/Turabian StylePosarelli, Matteo, Davide Romano, Davide Tucci, Giuseppe Giannaccare, Vincenzo Scorcia, Andrea Taloni, Luca Pagano, and Alfredo Borgia. 2023. "Ocular-Surface Regeneration Therapies for Eye Disorders: The State of the Art" BioTech 12, no. 2: 48. https://doi.org/10.3390/biotech12020048
APA StylePosarelli, M., Romano, D., Tucci, D., Giannaccare, G., Scorcia, V., Taloni, A., Pagano, L., & Borgia, A. (2023). Ocular-Surface Regeneration Therapies for Eye Disorders: The State of the Art. BioTech, 12(2), 48. https://doi.org/10.3390/biotech12020048