Optimization of Aqueous Extraction of Polyphenols from Cuminum cyminum Seeds Using Response Surface Methodology and Assessment of Biological Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals, Reagents, Media, and Microorganisms
2.2.1. Chemicals and Reagents
2.2.2. Media and Microorganisms
2.3. Dry Matter in C. cyminum
2.4. The Extraction Procedure
2.5. Experimental Design
2.6. Measurement of the Total Phenolic Content
2.7. Antiradical Activity
2.8. High-Performance Liquid Chromatography Analysis
2.9. Antibacterial and Antifungal Activity Assay
2.9.1. Preparation of the Inoculum
2.9.2. Antibacterial and Antifungal Activities Using Disc Diffusion Method
2.9.3. Determination of the Minimum Inhibitory Concentration and the Minimum Bactericidal Concentration
2.10. Determination of In Vitro Anti-Tumor Activity of C. cyminum Seeds Extracts
2.10.1. Cell Culture and Treatment
2.10.2. MTT Assay
2.11. Statistical Analysis
3. Results and Discussion
3.1. Selection of Solid to Liquid Ratio
3.2. Influence of Time and Temperature on TPC Yield and DPPH Inhibition Percentage
3.3. Optimization of Extraction
3.4. Antibacterial Activity
3.5. Antitumor Activity of the Optimal Conditions for WB Extracts
3.6. High-Performance Liquid Chromatography (HPLC) Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaudhry, Z.; Khera, R.A.; Hanif, M.A.; Ayub, M.A.; Sumrra, S.H. Cumin. In Medicinal Plants of South Asia: Novel Sources for Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2019; pp. 165–178. [Google Scholar] [CrossRef]
- Johri, R.K. Cuminum cyminum and Carum carvi: An update. Pharmacogn. Rev. 2011, 5, 63. [Google Scholar] [CrossRef] [PubMed]
- Leporatti, M.L.; Ghedira, K. Comparative analysis of medicinal plants used in traditional medicine in Italy and Tunisia. J. Ethnobiol. Ethnomedicine BMC 2009, 5, 31. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Zhang, Y.; Zhang, X.; Feng, J. Antifungal Activity and Biochemical Response of Cuminic Acid against Phytophthora capsici Leonian. Molecules 2016, 21, 756. [Google Scholar] [CrossRef] [PubMed]
- Al-Yahya, M.A. Phytochemical studies of the plants used in traditional medicine of Saudi Arabia. Int. J. Crude Drug Res. 1986, 25, 65–71. [Google Scholar] [CrossRef]
- Abbaszadegan, A.; Gholami, A.; Ghahramani, Y.; Ghareghan, R.; Ghareghan, M.; Kazemi, A.; Iraji, A.; Ghasemi, Y. Antimicrobial and cytotoxic activity of cuminum cyminum as an intracanal medicament compared to chlorhexidine gel. Iran. Endod. J. 2016, 11, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Arun, K.B.; Aswathi, U.; Venugopal, V.V.; Madhavankutty, T.S.; Nisha, P. Nutraceutical properties of cumin residue generated from Ayurvedic industries using cell line models. J. Food Sci. Technol. 2016, 53, 3814–3824. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, S.; Tabatabaei, M.J.; Mohammad Jafari, R.; Shemirani, F.; Tavakoli, S.; Mofasseri, M.; Tofighi, Z. Cuminum cyminum fruits as source of luteolin-7-O-glucoside, potent cytotoxic flavonoid against breast cancer cell lines. Nat. Prod. Res. 2020, 34, 1602–1606. [Google Scholar] [CrossRef]
- Dinparvar, S.; Bagirova, M.; Allahverdiyev, A.M.; Abamor, E.S.; Safarov, T.; Aydogdu, M.; Aktas, D. A nanotechnology-based new approach in the treatment of breast cancer: Biosynthesized silver nanoparticles using Cuminum cyminum L. seed extract. J. Photochem. Photobiol. B Biol. 2020, 208, 111902. [Google Scholar] [CrossRef]
- Merah, O.; Sayed-Ahmad, B.; Talou, T.; Saad, Z.; Cerny, M.; Grivot, S.; Evon, P.; Hijazi, A. Biochemical Composition of Cumin Seeds, and Biorefining Study. Biomolecules 2020, 10, 1054. [Google Scholar] [CrossRef]
- Pardavella, I.; Daferera, D.; Tselios, T.; Skiada, P.; Giannakou, I. The Use of Essential Oil and Hydrosol Extracted from Cuminum cyminum Seeds for the Control of Meloidogyne incognita and Meloidogyne javanica. Plants 2020, 10, 46. [Google Scholar] [CrossRef]
- Goswami, S.; Saikia, D.; Parasar, D.P.; Loying, S.; Telenga, K. Phytochemical Analysis and Antibacterial Activity of Methanolic and Aqueous Extracts of Cumin (Cuminum cyminum) Seeds. 2021. Available online: www.botanyjournals.com. (accessed on 18 August 2023).
- Ishida, M.; Miyagawa, F.; Nishi, K.; Sugahara, T. Aqueous Extract from Cuminum cyminum L. Seed Alleviates Ovalbumin-Induced Allergic Rhinitis in Mouse via Balancing of Helper T Cells. Foods 2022, 11, 3224. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Bettaieb, I.; Bourgou, S.; Wannes, W.A.; Hamrouni, I.; Limam, F.; Marzouk, B. Essential oils, phenolics, and antioxidant activities of different parts of cumin (Cuminum cyminum L.). J. Agric. Food Chem. 2010, 58, 10410–10418. [Google Scholar] [CrossRef] [PubMed]
- Bettaieb, I.; Bourgou, S.; Sriti, J.; Msaada, K.; Limam, F.; Marzouk, B. Essential oils and fatty acids composition of Tunisian and Indian cumin (Cuminum cyminum L.) seeds: A comparative study. J. Sci. Food Agric. 2011, 91, 2100–2107. [Google Scholar] [CrossRef] [PubMed]
- Rebey, I.B.; Zakhama, N.; Karoui, I.J.; Marzouk, B. Polyphenol Composition and Antioxidant Activity of Cumin (Cuminum Cyminum L.) Seed Extract Under Drought. J. Food Sci. 2012, 77, C734–C739. [Google Scholar] [CrossRef] [PubMed]
- Alinian, S.; Razmjoo, J.; Zeinali, H. Flavonoids, anthocynins, phenolics and essential oil produced in cumin (Cuminum cyminum L.) accessions under different irrigation regimes. Ind. Crops Prod. 2016, 81, 49–55. [Google Scholar] [CrossRef]
- Thippeswamy, N.B.; Naidu, K.A. Antioxidant potency of cumin varieties-cumin, black cumin and bitter cumin-on antioxidant systems. Eur. Food Res. Technol. 2005, 220, 472–476. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef]
- Rebey, I.B.; Kefi, S.; Bourgou, S.; Ouerghemmi, I.; Ksouri, R.; Tounsi, M.S.; Marzouk, B. Ripening Stage and Extraction Method Effects on Physical Properties, Polyphenol Composition and Antioxidant Activities of Cumin (Cuminum cyminum L.) Seeds. Plant Foods Hum. Nutr. 2014, 69, 358–364. [Google Scholar] [CrossRef]
- Rezzoug, S.A.; Baghdadi, M.W.; Louka, N.; Boutekedjiret, C.; Allaf, K. Study of a new extraction process: Controlled instantaneous decompression. Application to the extraction of essential oil from rosemary leaves. Flavour Fragr. J. 1998, 13, 251–258. [Google Scholar] [CrossRef]
- Bicchi, C.; Binello, A.; Rubiolo, P. Determination of Phenolic Diterpene Antioxidants in Rosemary (Rosmarinus officinalis L.) with Different Methods of Extraction and Analysis. Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 2000, 11, 236–242. [Google Scholar] [CrossRef]
- Kaufmann, B.; Christen, P. Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochem. Anal. 2002, 13, 105–113. [Google Scholar] [CrossRef]
- Cacace, J.E.; Mazza, G. Optimization of Extraction of Anthocyanins from Black Currants with Aqueous Ethanol. J. Food Sci. 2003, 68, 240–248. [Google Scholar] [CrossRef]
- Ibañez, E.; Herrero, M.; Mendiola, J.A.; Castro-Puyana, M. Extraction and characterization of bioactive compounds with health benefits from marine resources: Macro and micro algae, cyanobacteria, and invertebrates. In Marine Bioactive Compounds: Sources, Characterization and Applications; Springer: Berlin/Heidelberg, Germany, 2012; Volume 9781461412472, pp. 55–98. [Google Scholar] [CrossRef]
- Maroun, R.G.; Rajha, H.N.; El Darra, N.; El Kantar, S.; Chacar, S.; Debs, E.; Vorobiev, E.; Louka, N. 8-Emerging technologies for the extraction of polyphenols from natural sources. Polyphen. Prop. Recovery Appl. 2018, 265–293. [Google Scholar] [CrossRef]
- Maksoud, S.; Abdel-Massih, R.M.; Rajha, H.N.; Louka, N.; Chemat, F.; Barba, F.J.; Debs, E. Citrus aurantium L. Active constituents, biological effects and extraction methods. an updated review. Molecules 2021, 26, 5832. [Google Scholar] [CrossRef] [PubMed]
- Park, C.Y.; Lee, K.-Y.; Gul, K.; Rahman, M.S.; Kim, A.-N.; Chun, J.; Kim, H.-J.; Choi, S.-G. Phenolics and antioxidant activity of aqueous turmeric extracts as affected by heating temperature and time. LWT 2019, 105, 149–155. [Google Scholar] [CrossRef]
- Chen, Q.; Shi, H.; Ho, C.-T. Effects of rosemary extracts and major constituents on lipid oxidation and soybean lipoxygenase activity. J. Am. Oil Chem. Soc. 1992, 69, 999–1002. [Google Scholar] [CrossRef]
- El Darra, N.; Rajha, H.N.; Debs, E.; Saleh, F.; El-Ghazzawi, I.; Louka, N.; Maroun, R.G. Comparative Study between Ethanolic and β -Cyclodextrin Assisted Extraction of Polyphenols from Peach Pomace. Int. J. Food Sci. 2018, 2018, 9491681. [Google Scholar] [CrossRef]
- Abi-Khattar, A.M.; Rajha, H.N.; Abdel-Massih, R.M.; Maroun, R.G.; Louka, N.; Debs, E. Intensification of polyphenol extraction from olive leaves using ired-irrad®, an environmentally-friendly innovative technology. Antioxidants 2019, 8, 227. [Google Scholar] [CrossRef]
- Hammoud, M.; Chokr, A.; Rajha, H.N.; Safi, C.; van Walsem, M.; Broek, L.A.M.v.D.; Debs, E.; Maroun, R.G.; Louka, N.; Rammal, H. Intensification of Polyphenols Extraction from Eryngium creticum Leaves Using Ired-Irrad® and Evaluation of Antibiofilm and Antibacterial Activities. Plants 2022, 11, 2458. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.J.; Rajha, H.N.; Debs, E.; Abi-Khattar, A.-M.; Khabbaz, S.; Dar, B.N.; Simirgiotis, M.J.; Castagnini, J.M.; Maroun, R.G.; Louka, N. Optimization of Polyphenols’ Recovery from Purple Corn Cobs Assisted by Infrared Technology and Use of Extracted Anthocyanins as a Natural Colorant in Pickled Turnip. Molecules 2022, 27, 5222. [Google Scholar] [CrossRef] [PubMed]
- Abi-Khattar, A.M.; Boussetta, N.; Rajha, H.N.; Abdel-Massih, R.M.; Louka, N.; Maroun, R.G.; Vorobiev, E.; Debs, E. Mechanical damage and thermal effect induced by ultrasonic treatment in olive leaf tissue. Impact on polyphenols recovery. Ultrason. Sonochem. 2022, 82, 105895. [Google Scholar] [CrossRef] [PubMed]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Karabegović, I.T.; Stojičević, S.S.; Veličković, D.T.; Nikolić, N.Č.; Lazić, M.L. Optimization of microwave-assisted extraction and characterization of phenolic compounds in cherry laurel (Prunus laurocerasus) leaves. Sep. Purif. Technol. 2013, 120, 429–436. [Google Scholar] [CrossRef]
- Abi-Khattar, A.M.; Rajha, H.N.; Abdel-Massih, R.M.; Habchi, R.; Maroun, R.G.; Debs, E.; Louka, N. Intensification of Vaporization by Decompression to the Vacuum’ (IVDV), a novel technology applied as a pretreatment to improve polyphenols extraction from olive leaves. Food Chem. 2021, 342, 128236. [Google Scholar] [CrossRef]
- Farah, D.M.H.; Zaibunnisa, A.H. Optimization of cocoa beans roasting process using Response Surface Methodology based on concentration of pyrazine and acrylamide. Int. Food Res. J. 2012, 19, 1355–1359. [Google Scholar]
- Joudi-Sarighayeh, F.; Abbaspour-Gilandeh, Y.; Kaveh, M.; Szymanek, M.; Kulig, R. Response Surface Methodology Approach for Predicting Convective/Infrared Drying, Quality, Bioactive and Vitamin C Characteristics of Pumpkin Slices. Foods 2023, 12, 1114. [Google Scholar] [CrossRef]
- Setyani, W.; Murwanti, R.; Sulaiman, T.N.S.; Hertiani, T. Application of Response Surface Methodology (RSM) for the Optimization of Ultrasound-Assisted Extraction (UAE) of Moringa oleifera: Extraction Yield, Content of Bioactive Compounds, and Biological Effects In Vitro. Plants 2023, 12, 2455. [Google Scholar] [CrossRef]
- Brzezińska, R.; Górska, A.; Wirkowska-Wojdyła, M.; Piasecka, I. Response Surface Methodology as a Tool for Optimization of Extraction Process of Bioactive Compounds from Spent Coffee Grounds. Appl. Sci. 2023, 13, 7634. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total Phenol Analysis: Automation and Comparison with Manual Methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- Kallithraka, S.; Mohdaly, A.A.A.; Makris, D.P.; Kefalas, P. Determination of major anthocyanin pigments in Hellenic native grape varieties (Vitis vinifera sp.): Association with antiradical activity. J. Food Compos. Anal. 2005, 18, 375–386. [Google Scholar] [CrossRef]
- Rodríguez-Melcón, C.; Alonso-Calleja, C.; García-Fernández, C.; Carballo, J.; Capita, R. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for Twelve Antimicrobials (Biocides and Antibiotics) in Eight Strains of Listeria monocytogenes. Biology 2022, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lv, G.; Pan, H.; Fan, L. Optimisation of the microwave-assisted extraction process for six phenolic compounds in Agaricus blazei murrill. Int. J. Food Sci. Technol. 2012, 47, 24–31. [Google Scholar] [CrossRef]
- Patil, S.S.; Deshannavar, U.B.; Ramasamy, M.; Emani, S.; Khalilpoor, N.; Issakhov, A. Study of Extraction Kinetics of Total Polyphenols from Curry Leaves. Int. J. Chem. Eng. 2021, 2021, 9988684. [Google Scholar] [CrossRef]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Núñez, M.J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef] [PubMed]
- Bouhenni, H.; Doukani, K.; Hanganu, D.; Olah, N.-K.; Şekeroğlu, N.; Gezici, S.; Spinu, M.; Niculae, M. Comparative analysis on bioactive compounds and antioxidant activity of Algerian fenugreek (Trigonella foenum-graecum L.) and Syrian cumin (Cuminum cyminum L.) seeds. Herba Pol. 2021, 67, 18–34. [Google Scholar] [CrossRef]
- Pivec, T.; Kargl, R.; Maver, U.; Bračič, M.; Elschner, T.; Žagar, E.; Gradišnik, L.; Kleinschek, K.S. Chemical Structure–Antioxidant Activity Relationship of Water–Based Enzymatic Polymerized Rutin and Its Wound Healing Potential. Polymers 2019, 11, 1566. [Google Scholar] [CrossRef]
- Tobar-Delgado, E.; Mejía-España, D.; Osorio-Mora, O.; Serna-Cock, L. Rutin: Family Farming Products’ Extraction Sources, Industrial Applications and Current Trends in Biological Activity Protection. Molecules 2023, 28, 5864. [Google Scholar] [CrossRef]
- Zhang, H.M.; Zhao, L.; Li, H.; Xu, H.; Chen, W.W.; Tao, L. Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol. Med. 2014, 11, 92–100. [Google Scholar] [CrossRef]
- Zhao, J.; Li, G.; Bo, W.; Zhou, Y.; Dang, S.; Wei, J.; Li, X.; Liu, M. Multiple effects of ellagic acid on human colorectal carcinoma cells identified by gene expression profile analysis. Int. J. Oncol. 2017, 50, 613–621. [Google Scholar] [CrossRef]
- Mady, F.; Shaker, M. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles. Int. J. Nanomedicine 2017, 12, 7405–7417. [Google Scholar] [CrossRef]
- Ceci, C.; Lacal, P.M.; Tentori, L.; De Martino, M.G.; Miano, R.; Graziani, G. Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients 2018, 10, 1756. [Google Scholar] [CrossRef]
Microorganism | Reference | |
---|---|---|
Gram-positive bacteria | Staphylococcus aureus | ATCC 25923 |
Gram-negative bacteria | Salmonella Typhimurium | ATCC 14028 |
Escherichia coli | ATCC 25922 | |
Pseudomonas aeruginosa | ATCC 27853 | |
Fungus | Candida albicans | ATCC 10231 |
Solid/Liquid Ratio (g/mL) | Average TPC (mgGAE/g DM) |
---|---|
1/10 | 12.15 ± 0.5 |
1/20 | 11.56 ± 1.6 |
1/30 | 11.29 ± 1.8 |
1/40 | 13.443 ± 3.4 |
1/50 | 12.083 ± 4.1 |
Runs | Variables | Responses | ||
---|---|---|---|---|
Temperature (°C) | Time (min) | TPC (mg GAE/g DM) | Trolox Equivalent (mg/mL) | |
1 | 31.7 | 75 | 10.43 | 0.29 |
2 | 40 | 30 | 14.24 | 0.28 |
3 | 40 | 120 | 10.97 | 0.3 |
4 | 60 | 11.55 | 9.31 | 0.27 |
5 | 60 | 75 | 11.11 | 0.46 |
6 | 60 | 75 | 11.07 | 0.5 |
7 | 60 | 75 | 12.08 | 0.34 |
8 | 60 | 75 | 12.42 | 0.35 |
9 | 60 | 138.45 | 14.7 | 0.48 |
10 | 80 | 30 | 10.45 | 0.45 |
11 | 80 | 120 | 13.09 | 0.5 |
12 | 88.2 | 75 | 12.38 | 0.51 |
TPC | 4.426 + 0.128*T + 0.024*t − 0.0009*T2 + 0.0002*T*t − 0.00002*t2 |
DPPH | −0.297 + 1.497*T + 0.420*t − 0.009*T2 + 0.0008*T*t − 0.002*t2 |
Parameters | Optimum Conditions | |
TPC | DPPH | |
Time (min) | 138 | 99.4 |
Temperature (°C) | 88.2 | 84.3 |
TPC (mg GAE/g DM) | 14.57 | - |
DPPH (mg trolox eq./mL) | - | 0.54 |
R-squared (R2) | 90 | 94 |
Parameters | Multiple Optimization | |
Time (min) | 133 | |
Temperature (°C) | 87 | |
TPC predicted (mg GAE/g DM) | 14.3 | |
TPC observed (mg GAE/g DM) | 14.7 | |
DPPH predicted (mg trolox eq/mL) | 0.51 | |
DPPH observed (mg trolox eq/mL) | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Tannir, H.; Houhou, D.; Debs, E.; Koubaa, M.; Jammoul, A.; Azakir, B.; Khalil, M.I.; El Darra, N.; Louka, N. Optimization of Aqueous Extraction of Polyphenols from Cuminum cyminum Seeds Using Response Surface Methodology and Assessment of Biological Activity. BioTech 2024, 13, 7. https://doi.org/10.3390/biotech13010007
El Tannir H, Houhou D, Debs E, Koubaa M, Jammoul A, Azakir B, Khalil MI, El Darra N, Louka N. Optimization of Aqueous Extraction of Polyphenols from Cuminum cyminum Seeds Using Response Surface Methodology and Assessment of Biological Activity. BioTech. 2024; 13(1):7. https://doi.org/10.3390/biotech13010007
Chicago/Turabian StyleEl Tannir, Hana, Diana Houhou, Espérance Debs, Mohamed Koubaa, Adla Jammoul, Bilal Azakir, Mahmoud I. Khalil, Nada El Darra, and Nicolas Louka. 2024. "Optimization of Aqueous Extraction of Polyphenols from Cuminum cyminum Seeds Using Response Surface Methodology and Assessment of Biological Activity" BioTech 13, no. 1: 7. https://doi.org/10.3390/biotech13010007
APA StyleEl Tannir, H., Houhou, D., Debs, E., Koubaa, M., Jammoul, A., Azakir, B., Khalil, M. I., El Darra, N., & Louka, N. (2024). Optimization of Aqueous Extraction of Polyphenols from Cuminum cyminum Seeds Using Response Surface Methodology and Assessment of Biological Activity. BioTech, 13(1), 7. https://doi.org/10.3390/biotech13010007