Spectrofluorimetric Analysis of Riboflavin Content during Kombucha Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Kombucha Preparation and Fermentation
2.2. Determination of B2 Content
3. Results and Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Greenwalt, C.J.; Steinkraus, K.H.; Ledford, R.A. Kombucha, the fermented tea: Microbiology, composition, and claimed health effects. J. Food Prot. 2000, 63, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A review on kombucha tea—Microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr. Rev. Food Sci. Food Saf. 2014, 13, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Kapp, J.M.; Sumner, W. Kombucha: A systematic review of the empirical evidence of human health benefit. Ann. Epidemiol. 2019, 30, 66–70. [Google Scholar] [CrossRef]
- De Oliveira, P.V.; da Silva Júnior, A.H.; de Oliveira, C.R.S.; Assumpção, C.F.; Ogeda, C.H. Kombucha benefits, risks and regulatory frameworks: A review. Food Chem. Adv. 2023, 2, 100288. [Google Scholar] [CrossRef]
- Paramithiotis, S.; Patra, J.K.; Kotseridis, Y.; Dimopoulou, M. Fermented Beverages Revisited: From Terroir to Customized Functional Products. Fermentation 2024, 10, 57. [Google Scholar] [CrossRef]
- Ojo, A.O.; de Smidt, O. Microbial Composition, Bioactive Compounds, Potential Benefits and Risks Associated with Kombucha: A Concise Review. Fermentation 2023, 9, 472. [Google Scholar] [CrossRef]
- Ayed, L.; Ben Abid, S.; Hamdi, M. Development of a beverage from red grape juice fermented with the kombucha consortium. Ann. Microbiol. 2016, 67, 111–121. [Google Scholar] [CrossRef]
- Emiljanowicz, K.E.; Malinowska-Pańczyk, E. Kombucha from alternative raw materials—The review. Crit. Rev. Food Sci. Nutr. 2019, 60, 3185–3194. [Google Scholar] [CrossRef] [PubMed]
- Kanurić, K.G.; Milanović, S.D.; Ikonić, B.B.; Lončar, E.S.; Iličić, M.D.; Vukić, V.R.; Vukić, D.V. Kinetics of lactose fermentation in milk with kombucha starter. J. Food Drug Anal. 2018, 26, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- De Miranda, J.F.; Ruiz, L.F.; Silva, C.B.; Uekane, T.M.; Silva, K.A.; Gonzalez, A.G.M.; Fernandes, F.F.; Lima, A.R. Kombucha: A review of substrates, regulations, composition, and biological properties. J. Food Sci. 2022, 87, 503–527. [Google Scholar] [CrossRef]
- Tu, C.; Tang, S.; Azi, F.; Hu, W.; Dong, M. Use of kombucha consortium to transform soy whey into a novel functional beverage. J. Funct. Foods. 2019, 52, 81–89. [Google Scholar] [CrossRef]
- Battikh, H.; Bakhrouf, A.; Ammar, E. Antimicrobial effect of kombucha analogues. LWT—Food Sci. Technol. 2012, 47, 71–77. [Google Scholar] [CrossRef]
- Reiss, J. Influence of different sugars on the metabolism of the tea fungus. Zeitschrift fur Lebensmittel Untersuchung und Forschung. 1994, 198, 258–261. [Google Scholar] [CrossRef]
- Malbaša, R.; Lončar, E.; Djurić, M.; Došenović, I. Effect of sucrose concentration on the products of Kombucha fermentation on molasses. Food Chem. 2008, 108, 926–932. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.; Taillandier, P. Understanding kombucha tea fermentation: A review. J. Food Sci. 2018, 83, 580–588. [Google Scholar] [CrossRef]
- Bishop, P.; Pitts, E.R.; Budner, D.; Thompson-Witrick, K.A. Chemical composition of kombucha. Beverages 2022, 8, 45. [Google Scholar] [CrossRef]
- Mauer-Petrovska, B.; Petrushevska-Tozi, L. Mineral and water soluble vitamin content in the kombucha drink. Int. J. Food Sci. 2000, 35, 201–205. [Google Scholar] [CrossRef]
- Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Čanadanović-Brunet, J.M. Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chem. 2011, 127, 1727–1731. [Google Scholar] [CrossRef]
- Salbaša, R.V.; Maksimović, M.Z.; Lončar, E.S.; Branković, T.I. The Influence of Starter Cultures on the Content of Vitamin B2 in Tea Fungus Beverages. Cent. Eur. J. Occup. Environ. Med. 2004, 10, 79–83. [Google Scholar]
- Santana, J.E.G.; Coutinho, H.D.M.; da Costa, J.G.M.; Menezes, J.M.C.; do Nascimento Melo Junior, H.; Teixeira, V.F.; Teixeira, R.N.P. Spectrofluorimetric analyzes of thiamine and riboflavin in monofloral honey varieties of africanized bees (Apis mellifera). Food Chem. 2021, 357, 129756. [Google Scholar] [CrossRef]
- Skoog, D.A.; Holler, F.J.; Crouch, S.R. Principles of Instrumental Analysis, 7th ed.; Cengage Learning: Boston, MA, USA, 2016; pp. 399–418. [Google Scholar]
- Pesez, M.; Bartos, J. Colorimetric and Fluorimetric Analysis of Organic Compounds and Drugs; Marcel Dekker Inc.: New York, NY, USA, 1974. [Google Scholar]
- Sievers, M.; Lanini, C.; Weber, A.; Schuler-Schmid, U.; Teuber, M. Microbiology and fermentation balance in a kombucha beverage obtained from a tea fungus fermentation. Syst. Appl. Microbiol. 1995, 18, 590–594. [Google Scholar] [CrossRef]
- Drossler, P.; Holzer, W.; Penzkofer, A.; Hegemann, P. pH dependence of the absorption and emission behaviour of riboflavin in aqueous solution. Chem. Phys. 2002, 282, 429–439. [Google Scholar] [CrossRef]
- Xia, X.; Dai, Y.; Wu, H.; Liu, X.; Wang, Y.; Yin, L.; Wang, T.; Li, X.; Zhou, J. Kombucha fermentation enhances the health-promoting properties of soymilk beverage. J. Funct. Foods 2019, 62, 103549. [Google Scholar] [CrossRef]
- Duyvis, M.G.; Hilhorst, R.; Laane, C.; Evans, D.J.; Schmedding, D.J. Role of riboflavin in beer flavor instability: Determination of levels of riboflavin and its origin in beer by fluorometric apoprotein titration. J. Agric. Food Chem. 2002, 13, 1548–1552. [Google Scholar] [CrossRef] [PubMed]
- USDA Government. Available online: https://www.nal.usda.gov/sites/default/files/page-files/riboflavin.pdf (accessed on 7 June 2024).
γ(Sucrose)/g dm−3 | |||
---|---|---|---|
Day | 70 | 90 | 100 |
0 | 3.73 | 3.72 | 3.71 |
1 | 3.8 | 3.76 | 3.75 |
3 | 3.48 | 3.32 | 3.35 |
6 | 3.29 | 3.15 | 3.18 |
7 | 3.08 | 2.88 | 3.03 |
8 | 3 | 2.84 | 2.94 |
9 | 2.98 | 2.82 | 2.93 |
10 | 2.89 | 2.78 | 2.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čakić Semenčić, M.; Biedrzycka, A.; Kiczor, A.; Beluhan, S.; Šupljika, F. Spectrofluorimetric Analysis of Riboflavin Content during Kombucha Fermentation. BioTech 2024, 13, 20. https://doi.org/10.3390/biotech13020020
Čakić Semenčić M, Biedrzycka A, Kiczor A, Beluhan S, Šupljika F. Spectrofluorimetric Analysis of Riboflavin Content during Kombucha Fermentation. BioTech. 2024; 13(2):20. https://doi.org/10.3390/biotech13020020
Chicago/Turabian StyleČakić Semenčić, Mojca, Adrianna Biedrzycka, Anna Kiczor, Sunčica Beluhan, and Filip Šupljika. 2024. "Spectrofluorimetric Analysis of Riboflavin Content during Kombucha Fermentation" BioTech 13, no. 2: 20. https://doi.org/10.3390/biotech13020020
APA StyleČakić Semenčić, M., Biedrzycka, A., Kiczor, A., Beluhan, S., & Šupljika, F. (2024). Spectrofluorimetric Analysis of Riboflavin Content during Kombucha Fermentation. BioTech, 13(2), 20. https://doi.org/10.3390/biotech13020020