Bioenergy Production from Sorghum Distillers Grains via Dark Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock, Inocula and Reactor for Biohydrogen Production
2.2. Analytical Methods
3. Results and Discussion
3.1. HPR and HY
3.2. Characteristics of Effluent Quality
3.3. Electricity Generation
3.4. Other Implications of the Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dincer, I. Green methods for hydrogen production. Int. J. Hydrogen Energy 2012, 37, 1954–1971. [Google Scholar] [CrossRef]
- IEA. Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach. International Energy Agency. 2023. Available online: https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach (accessed on 21 October 2024).
- Kanwal, F.; Torriero, A.A.J. Biohydrogen—A green fuel for sustainable energy solutions. Energies 2022, 15, 7783. [Google Scholar] [CrossRef]
- EBA. Biohydrogen: Affordable, Green and Yet Overlooked. European Biogas Association. 2023. Available online: https://www.europeanbiogas.eu/biohydrogen-affordable-green-and-yet-overlooked/ (accessed on 21 October 2024).
- Machhirake, N.P.; Vanapalli, K.R.; Kumar, S.; Mohanty, B. Biohydrogen from waste feedstocks: An energy opportunity for decarbonization in developing countries. Environ. Res. 2024, 252, 119028. [Google Scholar] [CrossRef] [PubMed]
- Lay, C.H.; Sen, B.; Huang, S.C.; Chen, C.C.; Lin, C.Y. Sustainable bioenergy production from tofu-processing wastewater by anaerobic hydrogen fermentation for onsite energy recovery. Renew. Energy 2013, 58, 60–67. [Google Scholar] [CrossRef]
- Tsegaye, B.; Abolore, R.; Arora, A.; Jaiswal, S.; Amit, K.; Jaiswal, A.K. Chapter 22—Biohydrogen production from agro-industry waste (green hydrogen): Current and future outlooks. In Value-Addition in Agri-Food Industry Waste Through Enzyme Technology; Academic Press: Cambridge, MA, USA, 2023; pp. 329–344. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chang, R.C. Hydrogen production during the anaerobic acidogenic conversion of glucose. J. Chem. Technol. Biotechnol. 1999, 74, 498–500. [Google Scholar] [CrossRef]
- Fang, H.H.P.; Zhang, T. Anaerobic Technology; Imperial College Press: London, UK, 2015; p. 55. ISBN 978-1-78236-790-3. [Google Scholar]
- Ahmad, A.; Rambabu, K.; Hasan, S.W.; Show, P.L.; Banat, F. Biohydrogen production through dark fermentation: Recent trends and advances in transition to a circular bioeconomy. Int. J. Hydrogen Energy 2024, 52, 335–357. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Feng, X.; Wang, X.; Huang, J. Biohydrogen production from cornstalk wastes by anaerobic fermentation with activated sludge. Int. J. Hydrogen Energy 2010, 35, 3092–3099. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Wang, X.; Yang, H.; Guo, L. Enhanced biohydrogen production from cornstalk through a two-step fermentation: Dark fermentation and photofermentation. Int. J. Energy Res. 2017, 41, 2091–2501. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Silva, E.L. Potato waste as feedstock to produce biohydrogen and organic acids: A comparison of acid and alkaline pretreatments using response surface methodology. J. Environ. Manag. 2022, 323, 116308. [Google Scholar] [CrossRef]
- Cao, J.; Xu, C.; Zhou, R.; Duan, G.; Lin, A.; Yang, X.; You, S.; Zhou, Y.; Yang, G. Potato peel waste for fermentative biohydrogen production using different pretreated culture. Bioresour. Technol. 2022, 362, 127866. [Google Scholar] [CrossRef]
- Sustainability Report 2023. Available online: https://www.kkl.com.tw/upload/9/2023121113374684853.pdf (accessed on 20 August 2024). (In Chinese).
- Liu, Y.; Liu, S.; Huang, C.; Ge, X.; Xi, B.; Mao, J. Chinese Baijiu distiller’s grains resourcing: Current progress and future prospects. Resour. Conserv. Recycl. 2022, 176, 105900. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Zeng, X.; Wang, Y.; Qin, H.; Song, P.; Hou, X.; Liu, S.; Ma, C.; Huang, Y.; et al. Comprehensive use of distillers’ grains derived from Chinese Baijiu: A review. J. Agric. Food Res. 2024, 18, 101439. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, H.; Shi, C.; Kobayashi, T.; Xu, K.Q. Nutrient augmentation enhances biogas production from sorghum mono-digestion. Waste Manag. 2021, 119, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Pasteris, A.M.; Heiermann, M.; Theuerl, S.; Plogsties, V.; Jost, C.; Prochnow, A.; Herrmann, C. Multi-advantageous sorghum as feedstock for biogas production: A comparison between single-stage and two-stage anaerobic digestion systems. J. Clean. Prod. 2022, 358, 131985. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, G.; Li, W.; Li, C.; Xu, G. Enhanced biogas production from sorghum stem by co-digestion with cow manure. Int. J. Hydrogen Energy 2016, 41, 9153–9158. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, W.; Jia, J.; Wang, A.; Li, L. Study on recovery of biogas from distillers grains wastewater by USR reactor. Procedia Eng. 2017, 205, 3743–3748. [Google Scholar] [CrossRef]
- Lu, Q.; Luo, Q.; Li, J.; Wang, X.; Ban, C.; Qin, J.; Tian, Y.; Tian, X.; Chen, X. Evaluation of the chemical composition, bioactive substance, gas production, and rumen fermentation parameters of four types of distiller’s grains. Molecules 2022, 27, 6134. [Google Scholar] [CrossRef]
- Chuang, Y.S.; Huang, C.Y.; Lay, C.H.; Chen, C.C.; Sen, B.; Lin, C.Y. Fermentative bioenergy production from distillers grains using mixed microflora. Int. J. Hydrogen Energy 2012, 37, 15547–15555. [Google Scholar] [CrossRef]
- Iram, A.; Cekmecelioglu, D.; Demirci, A. Distillers’ dried grains with solubles (DDGS) and its potential as fermentation feedstock. Appl. Microbiol. Biotechnol. 2020, 104, 6115–6128. [Google Scholar] [CrossRef]
- Mirzoyan, S.; Toleugazykyzy, A.; Bekbayev, K.; Trchounian, A.; Trchounian, K. Enhanced hydrogen gas production from mixture of beer spent grains (BSG) and distiller’s grains (DG) with glycerol by Escherichia coli. Int. J. Hydrogen Energy 2020, 45, 17233–17240. [Google Scholar] [CrossRef]
- Sargsyan, H.; Gabrielyan, L.; Trchounian, A. The distillers grains with solubles as a perspective substrate for obtaining biomass and producing bio-hydrogen by Rhodobacter sphaeroides. Biomass Bioenergy 2016, 90, 90–94. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Wu, S.-Y.; Lin, P.-J.; Chang, J.-S.; Hung, C.-H.; Lee, K.-S.; Lay, C.-H.; Chu, C.-Y.; Cheng, C.-H.; Chang, A.C.; et al. A pilot-scale high-rate biohydrogen production system with mixed microflora. Int. J. Hydrogen Energy 2011, 36, 8758–8764. [Google Scholar] [CrossRef]
- Ziara, R.M.M.; Miller, D.N.; Subbiah, J.; Dvorak, B.I. Lactate wastewater dark fermentation: The effect of temperature and initial pH on biohydrogen production and microbial community. Int. J. Hydrogen Energy 2019, 44, 661–673. [Google Scholar] [CrossRef]
- Weide, T.; Regalado, R.E.H.; Brugging, E.; Wichern, M.; Wetter, C. Biohydrogen production via dark fermentation with pig manure and glucose using pH-dependent feeding. Chem. Eng. Technol. 2020, 43, 1578–1587. [Google Scholar] [CrossRef]
- Delavar, M.A.; Wang, J. Numerical investigation of pH control on dark fermentation and hydrogen production in a microbioreactor. Fuel 2021, 292, 120355. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Lin, C.Y.; Chiang, C.C.; Nguyen, M.L.T.; Lay, C.H. Enhancement of fermentative biohydrogen production from textile desizing wastewater via coagulation-pretreatment. Int. J. Hydrogen Energy 2017, 42, 12153–12158. [Google Scholar] [CrossRef]
- Kan, N.R. Effects of pH, Hydraulic Retention Time and Food-Microorganisms Ratio on Fermentative Biohydrogen Production from High Strength Distilers Grains. Master’s Thesis, Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, 2002. (In Chinese). [Google Scholar]
- Ren, N.Q.; Chua, H.; Chan, S.Y.; Tsang, Y.F.; Wang, Y.J.; Shin, N. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Bioresour. Technol. 2007, 98, 1774–1780. [Google Scholar] [CrossRef]
- Lin, C.Y.; Leu, H.J.; Lee, K.H. Hydrogen production from beverage wastewater via dark fermentation and room-temperature methane reforming. Int. J. Hydrogen Energy 2016, 41, 21736–21746. [Google Scholar] [CrossRef]
- Thong, S.O.; Mamimin, C.; Kongjan, P.; Reungsang, A. Chapter Six—Two-stage fermentation process for bioenergy and biochemicals production from industrial and agricultural wastewater. Adv. Bioenergy 2020, 5, 249–308. [Google Scholar] [CrossRef]
- Ding, H.; Barlaz, M.A.; Reyes, F.L.; Call, D.F. Influence of inoculum type on volatile fatty acid and methane production in short-term anaerobic food waste digestion tests. ACS Sustain. Chem. Eng. 2022, 10, 17071–17080. [Google Scholar] [CrossRef]
- Schievano, A.; Tenca, A.; Lonati, S.; Manzini, E.; Adani, F. Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass? Appl. Energy 2014, 124, 335–342. [Google Scholar] [CrossRef]
- Dinh, P.V.; Fujiwara, T. Biogas production and energy balance in a two-stage anaerobic digestion of fruit and vegetable waste: Thermophilic versus mesophilic. Fermentation 2023, 9, 601. [Google Scholar] [CrossRef]
- Zheng, X.; Li, R. Critical review on two-stage anaerobic digestion with H2 and CH4 production from various wastes. Water 2024, 16, 1608. [Google Scholar] [CrossRef]
- CHEN ENGINE Co., Ltd. Available online: https://www.findcompany.com.tw/en/CHEN%20ENGINE%20CO.,%20LTD. (accessed on 20 August 2024).
- Kabeyi, M.J.B.; Olanrewaju, O.A. Technologies for biogas to electricity conversion. Energy Rep. 2022, 8, 774–786. [Google Scholar] [CrossRef]
- Patlolla, S.R.; Katsu, K.; Sharafian, A.; Wei, K.; Herrera, O.E.; Mérida, W. A review of methane pyrolysis technologies for hydrogen production. Renew. Sustain. Energy Rev. 2023, 181, 113323. [Google Scholar] [CrossRef]
- EIA. Hydrogen Explained-Production of Hydrogen. 2024. Available online: https://www.eia.gov/energyexplained/hydrogen/production-of-hydrogen.php (accessed on 21 October 2024).
- DOE. Fuel Cells. 2024. Available online: https://www.energy.gov/eere/fuelcells/fuel-cells (accessed on 21 October 2024).
- Bolzonella, D.; Battista, F.; Cavinato, C.; Gottardo, M.; Micolucci, F.; Lyberatos, G.; Pavan, P. Recent developments in biohythane production from household food wastes: A review. Bioresour. Technol. 2018, 257, 311–319. [Google Scholar] [CrossRef]
- Gattrell, M.; Gupta, N.; Co, A. Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Convers. Manag. 2007, 48, 1255–1265. [Google Scholar] [CrossRef]
- Hans, M.; Kumar, S. Biohythane production in two-stage anaerobic digestion system. Int. J. Hydrogen Energy 2019, 44, 17363–17380. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ta, D.T.; Lin, C.Y.; Chu, C.Y.; Ta, T.M.N. Biohythane production from swine manure and pineapple waste in a single-stage two-chamber digester using gel-entrapped anaerobic microorganisms. Int. J. Hydrogen Energy 2022, 47, 25245–25255. [Google Scholar] [CrossRef]
- EBA. Digestate Factsheet: The Value of Organic Fertilisers for Europe’s Economy, Society and Environment. European Biogas Association. 2015. Available online: https://europeanbiogas.eu/wp-content/uploads/2015/07/Digestate-paper-final-08072015.pdf (accessed on 21 October 2024).
- Song, S.; Lim, J.W.; Lee, J.T.E.; Cheong, J.C.; Hoy, S.H.; Hu, Q.; Tan, J.K.; Chiam, Z.; Arora, S.; Lum, T.Q.; et al. Food-waste anaerobic digestate as a fertilizer: The agronomic properties of untreated digestate and biochar-filtered digestate residue. Waste Manag. 2021, 136, 143–152. [Google Scholar] [CrossRef]
Initial pH | Final pH | Initial COD (g/L) | Final ORP (mV) | Cumulative Gas (mL) | Cumulative H2 (mL) | H2 Content (%) | P * (mL) | Rm * (mL/min) | Λ * (h) | HPR * (L/L-d) | HY * (mL/g COD) | COD Consumption (%) ** |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4.5 | 4.3 | 145.6 | −116 | 345 ± 143 | 140 ± 97 | 28 | 135 | 1.9 | 40.5 | 0.76 | 21.4 | 9 |
5.0 | 4.6 | 133.6 | −134 | 454 ± 49 | 194 ± 33 | 46 | 184 | 7.4 | 13.5 | 2.96 | 62.3 | 25 |
5.5 | 4.9 | 132.2 | −165 | 464 ± 4 | 194 ± 9 | 45 | 162 | 7.6 | 1.2 | 3.00 | 61.3 | 13 |
6.0 | 5.0 | 131.6 | −177 | 507 ± 6 | 250 ± 2 | 55 | 210 | 7.6 | 1.2 | 3.04 | 61.4 | 17 |
6.5 | 4.7 | 126.2 | −208 | 544 ± 12 | 263 ± 2 | 53 | 228 | 8.0 | 1.4 | 3.20 | 58.3 | 21 |
Generators | Product Number | Power (kW) | Methane Content (%) ** | Air Consumption (m3/kWh) | Thermal Efficiency (%) |
---|---|---|---|---|---|
Sichuan Agricultural Machinery Institute | 0.8 G FZ | 1.357 | 73 | 0.868 | 23.45 |
Tai’an Electric Machinery Factory | 12 GFS32 | 12.85 | 78.45 | 0.492 | 33.99 |
Wujin Diesel Engine Factory | 195-Z | 13.52 | 71.2 | 0.4 | 35.39 |
Shanghai Internal Combustion Engine Institute | 5 GFZ | 5.62 | 72.35 | 0.687 | 26.78 |
Chongqing Power Plant | 1.2 kW | 1.52 | 77.05 | 0.76 | 29 |
Chen Engine * | 5.5 kW | 5.5 | >45 | 0.18 | >70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.-C.; Lin, C.-Y. Bioenergy Production from Sorghum Distillers Grains via Dark Fermentation. BioTech 2024, 13, 55. https://doi.org/10.3390/biotech13040055
Lu C-C, Lin C-Y. Bioenergy Production from Sorghum Distillers Grains via Dark Fermentation. BioTech. 2024; 13(4):55. https://doi.org/10.3390/biotech13040055
Chicago/Turabian StyleLu, Ching-Chun, and Chiu-Yue Lin. 2024. "Bioenergy Production from Sorghum Distillers Grains via Dark Fermentation" BioTech 13, no. 4: 55. https://doi.org/10.3390/biotech13040055
APA StyleLu, C.-C., & Lin, C.-Y. (2024). Bioenergy Production from Sorghum Distillers Grains via Dark Fermentation. BioTech, 13(4), 55. https://doi.org/10.3390/biotech13040055