Discovery of Innate Immune Response mRNAs That Are Impacted by Structure-Specific Oral Baker’s Yeast Beta Glucan Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval and Consent to Participate
2.2. Experimental Model and Participants
2.3. Blood Sample Collection
2.4. Total RNA Extraction and mRNA Expression Analysis
2.5. False Positive/False Negative Control
2.6. Data Reporting
3. Results
3.1. Overview of Results and Discussion
3.2. Names of mRNAs Significant with BYBG
3.3. Dectin-1 and Trained Innate Immunity
3.4. Innate Immune Response
3.5. PAMP, DAMP, and the Inflammatory Response
3.6. Global Pathway Enrichment
4. Discussion
4.1. Overview of Findings
4.2. Dectin-1 and Trained Innate Immunity
4.3. Innate Immune Response
4.4. PAMP, DAMP, and Inflammatory Response
4.5. Study Limitations
5. Conclusions
6. Practical Applications and Generalizability of Results
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arts, R.J.W.; Moorlag, S.; Novakovic, B.; Li, Y.; Wang, S.Y.; Oosting, M.; Kumar, V.; Xavier, R.J.; Wijmenga, C.; Joosten, L.A.B.; et al. BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity. Cell Host Microbe 2018, 23, 89–100.e5. [Google Scholar] [CrossRef]
- Debisarun, P.A.; Kilic, G.; de Bree, L.C.J.; Pennings, L.J.; van Ingen, J.; Benn, C.S.; Aaby, P.; Dijkstra, H.; Lemmers, H.; Dominguez-Andres, J.; et al. The impact of BCG dose and revaccination on trained immunity. Clin. Immunol. 2023, 246, 109208. [Google Scholar] [CrossRef]
- Leentjens, J.; Kox, M.; Stokman, R.; Gerretsen, J.; Diavatopoulos, D.A.; van Crevel, R.; Rimmelzwaan, G.F.; Pickkers, P.; Netea, M.G. BCG Vaccination Enhances the Immunogenicity of Subsequent Influenza Vaccination in Healthy Volunteers: A Randomized, Placebo-Controlled Pilot Study. J. Infect. Dis. 2015, 212, 1930–1938. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Joosten, L.A.; Latz, E.; Mills, K.H.; Natoli, G.; Stunnenberg, H.G.; O’Neill, L.A.; Xavier, R.J. Trained immunity: A program of innate immune memory in health and disease. Science 2016, 352, aaf1098. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; van Crevel, R. BCG-Induced protection: Effects on innate immune memory. Semin. Immunol. 2014, 26, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Quintin, J.; Cheng, S.C.; van der Meer, J.W.; Netea, M.G. Innate immune memory: Towards a better understanding of host defense mechanisms. Curr. Opin. Immunol. 2014, 29, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Walk, J.; de Bree, L.C.J.; Graumans, W.; Stoter, R.; van Gemert, G.J.; van de Vegte-Bolmer, M.; Teelen, K.; Hermsen, C.C.; Arts, R.J.W.; Behet, M.C.; et al. Outcomes of controlled human malaria infection after BCG vaccination. Nat. Commun. 2019, 10, 874. [Google Scholar] [CrossRef]
- van der Meer, J.W.; Joosten, L.A.; Riksen, N.; Netea, M.G. Trained immunity: A smart way to enhance innate immune defence. Mol. Immunol. 2015, 68, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Upchurch, K.; Horton, J.; Wiest, M.; Zurawski, S.; Millard, M.; Kane, R.R.; Joo, H.; Miller, L.A.; Oh, S. Dectin-1 Controls TSLP-Induced Th2 Response by Regulating STAT3, STAT6, and p50-RelB Activities in Dendritic Cells. Front. Immunol. 2021, 12, 678036. [Google Scholar] [CrossRef]
- Ellefsen, C.F.; Struzek, A.M.; Scherliess, R.; Hiorth, M.; Samuelsen, A.B.C. Preparation of Albatrellus ovinus beta-Glucan Microparticles with Dectin-1a Binding Properties. ACS Appl. Bio Mater. 2023, 6, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
- Mata-Martinez, P.; Bergon-Gutierrez, M.; Del Fresno, C. Dectin-1 Signaling Update: New Perspectives for Trained Immunity. Front. Immunol. 2022, 13, 812148. [Google Scholar] [CrossRef] [PubMed]
- Moerings, B.G.J.; de Graaff, P.; Furber, M.; Witkamp, R.F.; Debets, R.; Mes, J.J.; van Bergenhenegouwen, J.; Govers, C. Continuous Exposure to Non-Soluble beta-Glucans Induces Trained Immunity in M-CSF-Differentiated Macrophages. Front. Immunol. 2021, 12, 672796. [Google Scholar] [CrossRef]
- Walachowski, S.; Tabouret, G.; Fabre, M.; Foucras, G. Molecular Analysis of a Short-term Model of beta-Glucans-Trained Immunity Highlights the Accessory Contribution of GM-CSF in Priming Mouse Macrophages Response. Front. Immunol. 2017, 8, 1089. [Google Scholar] [CrossRef] [PubMed]
- McFarlin, B.K.; Venable, A.S.; Carpenter, K.C.; Henning, A.L.; Ogenstad, S. Oral Supplementation with Baker’s Yeast beta Glucan Is Associated with Altered Monocytes, T Cells and Cytokines Following a Bout of Strenuous Exercise. Front. Physiol. 2017, 8, 786. [Google Scholar] [CrossRef] [PubMed]
- Mah, E.; Kaden, V.N.; Kelley, K.M.; Liska, D.J. Soluble and Insoluble Yeast beta-Glucan Differentially Affect Upper Respiratory Tract Infection in Marathon Runners: A Double-Blind, Randomized Placebo-Controlled Trial. J. Med. Food 2020, 23, 416–419. [Google Scholar] [CrossRef]
- Mah, E.; Kaden, V.N.; Kelley, K.M.; Liska, D.J. Beverage Containing Dispersible Yeast beta-Glucan Decreases Cold/Flu Symptomatic Days After Intense Exercise: A Randomized Controlled Trial. J. Diet. Suppl. 2020, 17, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, K.C.; Breslin, W.L.; Davidson, T.; Adams, A.; McFarlin, B.K. Baker’s yeast beta-glucan supplementation increases monocytes and cytokines post-exercise: Implications for infection risk? Br. J. Nutr. 2013, 109, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Talbott, S.; Talbott, J. Effect of BETA 1, 3/1, 6 GLUCAN on Upper Respiratory Tract Infection Symptoms and Mood State in Marathon Athletes. J. Sports Sci. Med. 2009, 8, 509–515. [Google Scholar] [PubMed]
- Renke, G.; Baesso, T.; Paes, R.; Renke, A. beta-Glucan “Trained Immunity” Immunomodulatory Properties Potentiate Tissue Wound Management and Accelerate Fitness Recover. Immunotargets Ther. 2022, 11, 67–73. [Google Scholar] [CrossRef] [PubMed]
- McFarlin, B.K.; Carpenter, K.C.; Davidson, T.; McFarlin, M.A. Baker’s yeast beta glucan supplementation increases salivary IgA and decreases cold/flu symptomatic days after intense exercise. J. Diet. Suppl. 2013, 10, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Gary, M.A.; Tanner, E.A.; Davis, A.A.; McFarlin, B.K. Combined bead-based multiplex detection of RNA and protein biomarkers: Implications for understanding the time course of skeletal muscle injury and repair. Methods 2019, 158, 92–96. [Google Scholar] [CrossRef]
- Wang, D.; Eraslan, B.; Wieland, T.; Hallstrom, B.; Hopf, T.; Zolg, D.P.; Zecha, J.; Asplund, A.; Li, L.H.; Meng, C.; et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol. Syst. Biol. 2019, 15, e8503. [Google Scholar] [CrossRef] [PubMed]
- Sriram, K.; Wiley, S.Z.; Moyung, K.; Gorr, M.W.; Salmeron, C.; Marucut, J.; French, R.P.; Lowy, A.M.; Insel, P.A. Detection and Quantification of GPCR mRNA: An Assessment and Implications of Data from High-Content Methods. ACS Omega 2019, 4, 17048–17059. [Google Scholar] [CrossRef] [PubMed]
- Warren, S. Simultaneous, Multiplexed Detection of RNA and Protein on the NanoString((R)) nCounter((R)) Platform. Methods Mol. Biol. 2018, 1783, 105–120. [Google Scholar] [CrossRef]
- McFarlin, B.K.; Sass, T.N.; Bridgeman, E.A. Optimization of RNA Extraction from Dry Blood Spots for Nanostring Analysis. Curr. Protoc. 2023, 3, e708. [Google Scholar] [CrossRef]
- Tanner, E.A.; Gary, M.A.; Michalik, S.; Davis, A.A.; McFarlin, B.K. Optimized Curcumin, Pomegranate Extract, and Methylsulfonylmethane Reduce Acute, Systemic Inflammatory Response to a Half-marathon Race. Altern. Ther. Health Med. 2022, 28, 72–81. [Google Scholar] [PubMed]
- Tanner, E.A.; Gary, M.A.; Davis, A.A.; Michalik, S.; McFarlin, B.K. Alterations in Systemic Inflammatory Response Following a Half-Marathon Race with a Combined Curcumin and Pomegranate Supplement: A Feasibility Study. J. Diet. Suppl. 2021, 18, 461–477. [Google Scholar] [CrossRef]
- McFarlin, B.K.; Bridgeman, E.A.; Vingren, J.L.; Hill, D.W. Dry blood spot samples to monitor immune-associated mRNA expression in intervention studies: Impact of Baker’s yeast beta glucan. Methods 2023, 219, 39–47. [Google Scholar] [CrossRef]
- McFarlin, B.K.; Tanner, E.A.; Hill, D.W.; Vingren, J.L. Prebiotic/probiotic supplementation resulted in reduced visceral fat and mRNA expression associated with adipose tissue inflammation, systemic inflammation, and chronic disease risk. Genes Nutr. 2022, 17, 15. [Google Scholar] [CrossRef] [PubMed]
- McFarlin, B.K.; Hill, D.W.; Vingren, J.L.; Curtis, J.H.; Tanner, E.A. Dietary Polyphenol and Methylsulfonylmethane Supplementation Improves Immune, DAMP Signaling, and Inflammatory Responses During Recovery From All-Out Running Efforts. Front. Physiol. 2021, 12, 712731. [Google Scholar] [CrossRef] [PubMed]
- Fries-Craft, K.; Kilburn-Kappeler, L.R.; Aldrich, C.G.; Bobeck, E.A. Dietary yeast beta 1,3/1,6 glucan supplemented to adult Labrador Retrievers alters peripheral blood immune cell responses to vaccination challenge without affecting protective immunity. J. Anim. Sci. 2023, 101, skad029. [Google Scholar] [CrossRef]
- Pedro, A.R.V.; Lima, T.; Frois-Martins, R.; Leal, B.; Ramos, I.C.; Martins, E.G.; Cabrita, A.R.J.; Fonseca, A.J.M.; Maia, M.R.G.; Vilanova, M.; et al. Dectin-1-Mediated Production of Pro-Inflammatory Cytokines Induced by Yeast beta-Glucans in Bovine Monocytes. Front. Immunol. 2021, 12, 689879. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Yin, L.; Shen, X.; Dai, Y.; Wang, J.; Yin, D.; Zhang, D.; Pan, X. beta-Glucans from Trametes versicolor (L.) Lloyd Is Effective for Prevention of Influenza Virus Infection. Viruses 2022, 14, 237. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, T.; Tang, C.; Kadoki, M.; Oshima, K.; Hattori, M.; Saijo, S.; Adachi, Y.; Ohno, N.; Iwakura, Y. beta-Glucans in food modify colonic microflora by inducing antimicrobial protein, calprotectin, in a Dectin-1-induced-IL-17F-dependent manner. Mucosal Immunol. 2018, 11, 763–773. [Google Scholar] [CrossRef]
- Roesner, L.M.; Ernst, M.; Chen, W.; Begemann, G.; Kienlin, P.; Raulf, M.K.; Lepenies, B.; Werfel, T. Human thioredoxin, a damage-associated molecular pattern and Malassezia-crossreactive autoallergen, modulates immune responses via the C-type lectin receptors Dectin-1 and Dectin-2. Sci. Rep. 2019, 9, 11210. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Y.; Liu, J.; Kang, R.; Tang, D. The circadian clock protects against ferroptosis-induced sterile inflammation. Biochem. Biophys. Res. Commun. 2020, 525, 620–625. [Google Scholar] [CrossRef] [PubMed]
- Strijbis, K.; Tafesse, F.G.; Fairn, G.D.; Witte, M.D.; Dougan, S.K.; Watson, N.; Spooner, E.; Esteban, A.; Vyas, V.K.; Fink, G.R.; et al. Bruton’s Tyrosine Kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages. PLoS Pathog. 2013, 9, e1003446. [Google Scholar] [CrossRef] [PubMed]
- Chistiakov, D.A.; Myasoedova, V.A.; Revin, V.V.; Orekhov, A.N.; Bobryshev, Y.V. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology 2018, 223, 101–111. [Google Scholar] [CrossRef]
- Geller, A.E.; Shrestha, R.; Woeste, M.R.; Guo, H.; Hu, X.; Ding, C.; Andreeva, K.; Chariker, J.H.; Zhou, M.; Tieri, D.; et al. The induction of peripheral trained immunity in the pancreas incites anti-tumor activity to control pancreatic cancer progression. Nat. Commun. 2022, 13, 759. [Google Scholar] [CrossRef]
- Mei, C.; Meng, F.; Wang, X.; Yan, S.; Zheng, Q.; Zhang, X.; Fu, W.; Xue, J.; Wang, S.; He, Y.; et al. CD30L is involved in the regulation of the inflammatory response through inducing homing and differentiation of monocytes via CCL2/CCR2 axis and NF-kappaB pathway in mice with colitis. Int. Immunopharmacol. 2022, 110, 108934. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Ruan, X.; Chen, X.; Zheng, B.; Wu, X.; Deng, Z.; Yang, Z.; Wang, F.; Qin, S.; Jiang, H. The Long Noncoding RNA Gm9866/Nuclear Factor-kappaB Axis Promotes Macrophage Polarization. Mediat. Inflamm. 2023, 2023, 9991916. [Google Scholar] [CrossRef]
- Hollander, M.J.; Malaker, S.A.; Riley, N.M.; Perez, I.; Abney, N.M.; Gray, M.A.; Maxson, J.E.; Cochran, J.R.; Bertozzi, C.R. Mutational screens highlight glycosylation as a modulator of colony-stimulating factor 3 receptor (CSF3R) activity. J. Biol. Chem. 2023, 299, 104755. [Google Scholar] [CrossRef]
- Ma, W.; Huang, G.; Wang, Z.; Wang, L.; Gao, Q. IRF7: Role and regulation in immunity and autoimmunity. Front. Immunol. 2023, 14, 1236923. [Google Scholar] [CrossRef] [PubMed]
- Rahabi, M.; Jacquemin, G.; Prat, M.; Meunier, E.; AlaEddine, M.; Bertrand, B.; Lefevre, L.; Benmoussa, K.; Batigne, P.; Aubouy, A.; et al. Divergent Roles for Macrophage C-type Lectin Receptors, Dectin-1 and Mannose Receptors, in the Intestinal Inflammatory Response. Cell Rep. 2020, 30, 4386–4398.e5. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, M.; Ohta, K.; Fukada, S.; Akagi, M.; Kato, H.; Ishida, Y.; Naruse, T.; Takechi, M.; Shigeishi, H.; Nishi, H.; et al. Effects of CEACAM1 in oral keratinocytes on HO-1 expression induced by Candida beta-glucan particles. J. Appl. Oral Sci. 2022, 30, e20220158. [Google Scholar] [CrossRef]
- Thomas, D.C. The phagocyte respiratory burst: Historical perspectives and recent advances. Immunol. Lett. 2017, 192, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Kong, J.; Wang, X.; Wei, W.; Xie, W.; Yu, X.F. Structural insight into the assembly of human anti-HIV dynamin-like protein MxB/Mx2. Biochem. Biophys. Res. Commun. 2015, 456, 197–201. [Google Scholar] [CrossRef]
- Claviere, M.; Lavedrine, A.; Lamiral, G.; Bonnet, M.; Verlhac, P.; Petkova, D.S.; Espert, L.; Duclaux-Loras, R.; Lucifora, J.; Rivoire, M.; et al. Measles virus-imposed remodeling of the autophagy machinery determines the outcome of bacterial coinfection. Autophagy 2023, 19, 858–872. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, J.K.; Jung, C.H.; Kim, Y.J.; Jung, E.J.; Lee, S.H.; Choi, H.R.; Son, Y.S.; Shim, S.M.; Jeon, S.M.; et al. Chemical modulation of SQSTM1/p62-mediated xenophagy that targets a broad range of pathogenic bacteria. Autophagy 2022, 18, 2926–2945. [Google Scholar] [CrossRef] [PubMed]
- Klaile, E.; Prada Salcedo, J.P.; Klassert, T.E.; Besemer, M.; Bothe, A.K.; Durotin, A.; Muller, M.M.; Schmitt, V.; Luther, C.H.; Dittrich, M.; et al. Antibody ligation of CEACAM1, CEACAM3, and CEACAM6, differentially enhance the cytokine release of human neutrophils in responses to Candida albicans. Cell. Immunol. 2022, 371, 104459. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hua, S.; Song, L. The versatile defender: Exploring the multifaceted role of p62 in intracellular bacterial infection. Front. Cell. Infect. Microbiol. 2023, 13, 1180708. [Google Scholar] [CrossRef] [PubMed]
- Ostendorf, T.; Zillinger, T.; Andryka, K.; Schlee-Guimaraes, T.M.; Schmitz, S.; Marx, S.; Bayrak, K.; Linke, R.; Salgert, S.; Wegner, J.; et al. Immune Sensing of Synthetic, Bacterial, and Protozoan RNA by Toll-like Receptor 8 Requires Coordinated Processing by RNase T2 and RNase 2. Immunity 2020, 52, 591–605.e6. [Google Scholar] [CrossRef]
- Bovin, L.F.; Brynskov, J.; Hegedus, L.; Jess, T.; Nielsen, C.H.; Bendtzen, K. Gene expression profiling in autoimmune diseases: Chronic inflammation or disease specific patterns? Autoimmunity 2007, 40, 191–201. [Google Scholar] [CrossRef]
- Bovin, L.F.; Rieneck, K.; Workman, C.; Nielsen, H.; Sorensen, S.F.; Skjodt, H.; Florescu, A.; Brunak, S.; Bendtzen, K. Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor. Immunol. Lett. 2004, 93, 217–226. [Google Scholar] [CrossRef]
- Qiu, Z.; Dyer, K.D.; Xie, Z.; Radinger, M.; Rosenberg, H.F. GATA transcription factors regulate the expression of the human eosinophil-derived neurotoxin (RNase 2) gene. J. Biol. Chem. 2009, 284, 13099–13109. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.S. IFIT1: A dual sensor and effector molecule that detects non-2′-O methylated viral RNA and inhibits its translation. Cytokine Growth Factor Rev. 2014, 25, 543–550. [Google Scholar] [CrossRef]
- Hatano, Y.; Taniuchi, S.; Masuda, M.; Tsuji, S.; Ito, T.; Hasui, M.; Kobayashi, Y.; Kaneko, K. Phagocytosis of heat-killed Staphylococcus aureus by eosinophils: Comparison with neutrophils. APMIS 2009, 117, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Cham, L.B.; Adomati, T.; Li, F.; Ali, M.; Lang, K.S. CD47 as a Potential Target to Therapy for Infectious Diseases. Antibodies 2020, 9, 44. [Google Scholar] [CrossRef]
- Nuvolone, M.; Paolucci, M.; Sorce, S.; Kana, V.; Moos, R.; Matozaki, T.; Aguzzi, A. Prion pathogenesis is unaltered in the absence of SIRPalpha-mediated “don’t-eat-me” signaling. PLoS ONE 2017, 12, e0177876. [Google Scholar] [CrossRef] [PubMed]
- Sladek, V.; Smak, P.; Tvaroska, I. How E-, L-, and P-Selectins Bind to sLe(x) and PSGL-1: A Quantification of Critical Residue Interactions. J. Chem. Inf. Model. 2023, 63, 5604–5618. [Google Scholar] [CrossRef] [PubMed]
- de Vries, M.; Nwozor, K.O.; Muizer, K.; Wisman, M.; Timens, W.; van den Berge, M.; Faiz, A.; Hackett, T.L.; Heijink, I.H.; Brandsma, C.A. The relation between age and airway epithelial barrier function. Respir. Res. 2022, 23, 43. [Google Scholar] [CrossRef] [PubMed]
- Walana, W.; Wang, J.J.; Yabasin, I.B.; Ntim, M.; Kampo, S.; Al-Azab, M.; Elkhider, A.; Dogkotenge Kuugbee, E.; Cheng, J.W.; Gordon, J.R.; et al. IL-8 analogue CXCL8 (3-72) K11R/G31P, modulates LPS-induced inflammation via AKT1-NF-kbeta and ERK1/2-AP-1 pathways in THP-1 monocytes. Hum. Immunol. 2018, 79, 809–816. [Google Scholar] [CrossRef]
- de Carvalho-Costa, T.M.; do Carmo Neto, J.R.; Teodoro, A.G.F.; Soares, F.Z.; Rochael, L.P.; de Assuncao, T.F.S.; de Souza, B.C.; Matos, B.S.; Dos Santos, P.D.F.; Silva, D.A.A.; et al. Immunophenotypic Analysis of T Lymphocytes and Cytokine Production in Elderly Practicing Physical Activities and Its Relationship with Quality of Life and Depression. Oxidative Med. Cell. Longev. 2022, 2022, 7985596. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.S.; De Labastida Rivera, F.; Yan, J.; Corvino, D.; Das, I.; Zhang, P.; Kuns, R.; Chauhan, S.B.; Hou, J.; Li, X.Y.; et al. The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nat. Immunol. 2020, 21, 1205–1218. [Google Scholar] [CrossRef]
- Nie, J.; Carpenter, A.C.; Chopp, L.B.; Chen, T.; Balmaceno-Criss, M.; Ciucci, T.; Xiao, Q.; Kelly, M.C.; McGavern, D.B.; Belkaid, Y.; et al. The transcription factor LRF promotes integrin beta7 expression by and gut homing of CD8alphaalpha(+) intraepithelial lymphocyte precursors. Nat. Immunol. 2022, 23, 594–604. [Google Scholar] [CrossRef] [PubMed]
- McFarlin, B.K.; Flynn, M.G.; Campbell, W.W.; Craig, B.A.; Robinson, J.P.; Stewart, L.K.; Timmerman, K.L.; Coen, P.M. Physical activity status, but not age, influences inflammatory biomarkers and toll-like receptor 4. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 388–393. [Google Scholar] [CrossRef] [PubMed]
- McFarlin, B.K.; Flynn, M.G.; Campbell, W.W.; Stewart, L.K.; Timmerman, K.L. TLR4 is lower in resistance-trained older women and related to inflammatory cytokines. Med. Sci. Sports Exerc. 2004, 36, 1876–1883. [Google Scholar] [CrossRef]
- Bayer, A.L.; Alcaide, P. MyD88: At the heart of inflammatory signaling and cardiovascular disease. J. Mol. Cell. Cardiol. 2021, 161, 75–85. [Google Scholar] [CrossRef]
- Qing, F.; Liu, Z. Interferon regulatory factor 7 in inflammation, cancer and infection. Front. Immunol. 2023, 14, 1190841. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, M.; Jiang, S.; Wang, L.; Chen, H.; Liu, Z.; Qiu, L.; Song, L. A novel junctional adhesion molecule A (CgJAM-A-L) from oyster (Crassostrea gigas) functions as pattern recognition receptor and opsonin. Dev. Comp. Immunol. 2016, 55, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, D.; Sakai, H.; Sato, T.; Sato, F.; Nishimura, S.; Toyama-Sorimachi, N.; Bartsch, J.W.; Sehara-Fujisawa, A. Roles of ADAM8 in elimination of injured muscle fibers prior to skeletal muscle regeneration. Mech. Dev. 2015, 135, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Occhigrossi, L.; Rossin, F.; D’Eletto, M.; Farrace, M.G.; Ciccosanti, F.; Petrone, L.; Sacchi, A.; Nardacci, R.; Falasca, L.; Del Nonno, F.; et al. Transglutaminase 2 Regulates Innate Immunity by Modulating the STING/TBK1/IRF3 Axis. J. Immunol. 2021, 206, 2420–2429. [Google Scholar] [CrossRef]
- Gussen, H.; Hohlstein, P.; Bartneck, M.; Warzecha, K.T.; Buendgens, L.; Luedde, T.; Trautwein, C.; Koch, A.; Tacke, F. Neutrophils are a main source of circulating suPAR predicting outcome in critical illness. J. Intensive Care 2019, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Hamann, J.; Veninga, H.; de Groot, D.M.; Visser, L.; Hofstra, C.L.; Tak, P.P.; Laman, J.D.; Boots, A.M.; van Eenennaam, H. CD97 in leukocyte trafficking. Adv. Exp. Med. Biol. 2010, 706, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Zhang, Y.; Liu, W.; He, X.; Chen, W.; Liu, L.; Yang, L.; Wang, Y.; Wu, Y.; Liu, J. Transcriptome profiling reveals transcriptional regulation of VISTA in T cell activation. Mol. Immunol. 2023, 157, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Ahmad Mokhtar, A.M.; Salikin, N.H.; Haron, A.S.; Amin-Nordin, S.; Hashim, I.F.; Mohd Zaini Makhtar, M.; Zulfigar, S.B.; Ismail, N.I. RhoG’s Role in T Cell Activation and Function. Front. Immunol. 2022, 13, 845064. [Google Scholar] [CrossRef]
- Jansen, K.; Wirz, O.F.; van de Veen, W.; Tan, G.; Mirer, D.; Sokolowska, M.; Satitsuksanoa, P.; Message, S.D.; Kebadze, T.; Glanville, N.; et al. Loss of regulatory capacity in Treg cells following rhinovirus infection. J. Allergy Clin. Immunol. 2021, 148, 1016–1029.e16. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Yang, R.; Xue, D.; Li, R.; Tan, M.; Zeng, Z.; Xu, L.; Liu, L.; Song, Y.; Lin, F. Effects of a natural nutritional supplement on immune cell infiltration and immune gene expression in exercise-induced injury. Front. Nutr. 2022, 9, 987545. [Google Scholar] [CrossRef] [PubMed]
- Nawas, A.F.; Solmonson, A.; Gao, B.; DeBerardinis, R.J.; Minna, J.D.; Conacci-Sorrell, M.; Mendelson, C.R. IL-1beta mediates the induction of immune checkpoint regulators IDO1 and PD-L1 in lung adenocarcinoma cells. Cell Commun. Signal. 2023, 21, 331. [Google Scholar] [CrossRef]
- Yang, S.; Wang, J.; Brand, D.D.; Zheng, S.G. Role of TNF-TNF Receptor 2 Signal in Regulatory T Cells and Its Therapeutic Implications. Front. Immunol. 2018, 9, 784. [Google Scholar] [CrossRef]
Pathway | Baseline | Week 2 | Week 4 | Week 6 |
---|---|---|---|---|
Interferon Signaling | 1.006 * | 1.283 * | 1.387 * | 1.046 * |
Cell Migration and Adhesion | 1.062 * | 1.357 * | 1.248 * | 1.195 * |
Extracellular Matrix Remodeling | 0.982 | 1.491 * | 1.271 * | 1.047 * |
Cytokine Signaling | 0.912 | 1.206 * | 1.221 * | 0.913 |
TLR Signaling | 1.125 * | 1.226 * | 1.283 * | 1.199 * |
Antigen Presentation | 1.061 * | 1.174 * | 1.272 * | 1.074 * |
Metabolism | 0.966 | 1.239 * | 1.200 * | 1.036 * |
Complement Activation | 1.303 * | 1.676 * | 1.598 * | 1.472 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McFarlin, B.K.; Curtis, J.H.; Vingren, J.L.; Hill, D.W.; Bridgeman, E.A. Discovery of Innate Immune Response mRNAs That Are Impacted by Structure-Specific Oral Baker’s Yeast Beta Glucan Consumption. BioTech 2025, 14, 4. https://doi.org/10.3390/biotech14010004
McFarlin BK, Curtis JH, Vingren JL, Hill DW, Bridgeman EA. Discovery of Innate Immune Response mRNAs That Are Impacted by Structure-Specific Oral Baker’s Yeast Beta Glucan Consumption. BioTech. 2025; 14(1):4. https://doi.org/10.3390/biotech14010004
Chicago/Turabian StyleMcFarlin, Brian K., John H. Curtis, Jakob L. Vingren, David W. Hill, and Elizabeth A. Bridgeman. 2025. "Discovery of Innate Immune Response mRNAs That Are Impacted by Structure-Specific Oral Baker’s Yeast Beta Glucan Consumption" BioTech 14, no. 1: 4. https://doi.org/10.3390/biotech14010004
APA StyleMcFarlin, B. K., Curtis, J. H., Vingren, J. L., Hill, D. W., & Bridgeman, E. A. (2025). Discovery of Innate Immune Response mRNAs That Are Impacted by Structure-Specific Oral Baker’s Yeast Beta Glucan Consumption. BioTech, 14(1), 4. https://doi.org/10.3390/biotech14010004