The Influence of Polishing on the Mechanical Properties of Zirconia—A Systematic Review
Abstract
:1. Introduction
2. Methodology
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Study Selection and Data Extraction
2.4. Risk of Bias Evaluation
3. Results
3.1. Search and Selection
3.2. Risk of Bias in Individual Studies
3.3. Study Characteristics
3.4. Synthesis of Results
3.4.1. Experimental Groups
3.4.2. Polishing Systems
3.4.3. Mechanical Properties
3.4.4. Roughness
3.4.5. Phase Transformation
4. Discussion
4.1. Mechanical Properties
4.2. Roughness
4.3. Phase Transformation
4.4. Future Perspective
5. Conclusions
- Roughness of the ground surface is decreased by all types of polishing.
- Fine polishing is not detrimental to flexural strength and can in fact result in a slight enhancement of flexural strength.
- Fracture strength, toughness and wear resistance improve after diamond rubber polishing, while hardness is reduced.
- Local temperature increase from dental polishing does not induce the T → M phase transformation of zirconia.
- M phase transformation induced by preliminary grinding of zirconia can be partially eliminated through adequate polishing of the affected surface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McLean, J.W.; Hughes, T.H. The reinforcement of dental porcelain with ceramic oxides. Br. Dent. J. 1965, 119, 251–267. [Google Scholar]
- Malkondu, Ö.; Tinastepe, N.; Akan, E.; Kazazoğlu, E. An overview of monolithic zirconia in dentistry. Biotechnol. Biotechnol. Equip. 2016, 30, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Kheur, M.; Lakha, T.; Shaikh, S.; Kheur, S.; Qamri, B.; Zhen, L.W.; Husain, N.A.-H.; Özcan, M. A Comparative Study on Simulated Chairside Grinding and Polishing of Monolithic Zirconia. Materials 2022, 15, 2202. [Google Scholar] [CrossRef]
- Bapat, R.A.; Yang, H.J.; Chaubal, T.V.; Dharmadhikari, S.; Abdulla, A.M.; Arora, S.; Rawal, S.; Kesharwani, P. Review on synthesis, properties and multifarious therapeutic applications of nanostructured zirconia in dentistry. RSC Adv. 2022, 12, 12773–12793. [Google Scholar] [CrossRef]
- Talibi, M.; Kaur, K.; Parmar, H. Do you know your ceramics? Part 5: Zirconia. Br. Dent. J. 2022, 232, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Weigl, P.; Sander, A.; Wu, Y.; Felber, R.; Lauer, H.C.; Rosentritt, M. In-vitro performance and fracture strength of thin monolithic zirconia crowns. J. Adv. Prosthodont. 2018, 10, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Prott, L.S.; Spitznagel, F.A.; Bonfante, E.A.; Malassa, M.A.; Gierthmuehlen, P.C. Monolithic zirconia crowns: Effect of thickness reduction on fatigue behavior and failure load. J. Adv. Prosthodont. 2021, 13, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Schweiger, J.; Bomze, D.; Schwentenwein, M. 3D Printing of Zirconia–What is the Future? Curr. Oral Health Rep. 2019, 6, 339–343. [Google Scholar] [CrossRef]
- Yin, L.; Nakanishi, Y.; Alao, A.-R.; Song, X.-F.; Abduo, J.; Zhang, Y. A Review of Engineered Zirconia Surfaces in Biomedical Applications. Procedia CIRP 2017, 65, 284–290. [Google Scholar] [CrossRef]
- Pfefferle, R.; Lümkemann, N.; Wiedenmann, F.; Stawarczyk, B. Different polishing methods for zirconia: Impact on surface, optical, and mechanical properties. Clin. Oral Investig. 2019, 24, 395–403. [Google Scholar] [CrossRef]
- Chavali, R.; Lin, C.P.; Lawson, N.C. Evaluation of Different Polishing Systems and Speeds for Dental Zirconia: Evaluation of Zirconia Polishing Systems and Speed. J. Prosthodont. 2017, 26, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Anusavice, K.J.; Antonson, S.A. Materials and Processes for Cutting, Grinding, Finishing, and Polishing. In Phillips’ Science of Dental Materials; Elsevier: Amsterdam, The Netherlands, 2013; pp. 231–253. [Google Scholar]
- Miyazaki, T.; Nakamura, T.; Matsumura, H.; Ban, S.; Kobayashi, T. Current status of zirconia restoration. J. Prosthodont. Res. 2013, 57, 236–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaidya, A.; Pathak, K. Mechanical stability of dental materials. In Applications of Nanocomposite Materials in Dentistry; Asiri, A.M., Inamuddin, Mohammad, A., Eds.; Woodhead Publishing: Soston, UK, 2019; Volume 17, pp. 285–305. [Google Scholar]
- Ilie, N.; Hilton, T.J.; Heintze, S.D.; Hickel, R.; Watts, D.C.; Silikas, N.; Stansbury, J.W.; Cadenaro, M.; Ferracane, J.L. Academy of Dental Materials guidance—Resin composites: Part I—Mechanical properties. Dent. Mater. 2017, 33, 880–894. [Google Scholar] [CrossRef] [PubMed]
- Gautam, C.; Joyner, J.; Gautam, A.; Rao, J.; Vajtai, R. Zirconia based dental ceramics: Structure, mechanical properties, biocompatibility and applications. Dalton Trans. Int. J. Inorg. Chem. 2016, 45, 19194–19215. [Google Scholar] [CrossRef]
- Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent. Mater. 2016, 32, e327–e337. [Google Scholar] [CrossRef]
- Jitwirachot, K.; Rungsiyakull, P.; Holloway, J.A.; Jia-Mahasap, W. Wear Behavior of Different Generations of Zirconia: Present Literature. Int. J. Dent. 2022, 2022, 9341616. [Google Scholar] [CrossRef]
- Zhang, Y.; Sailer, I.; Lawn, B.R. Fatigue of dental ceramics. J. Dent. 2013, 41, 1135–1147. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lam, W.Y.; Luk, H.W.; Øilo, M.; Shih, K.; Botelho, M.G. The adverse effects of tungsten carbide grinding on the strength of dental zirconia. Dent. Mater. 2020, 36, 560–569. [Google Scholar] [CrossRef]
- Guazzato, M.; Quach, L.; Albakry, M.; Swain, M.V. Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic. J. Dent. 2005, 33, 9–18. [Google Scholar] [CrossRef]
- Pereira, G.; Fraga, S.; Montagner, A.; Soares, F.; Kleverlaan, C.; Valandro, L. The effect of grinding on the mechanical behavior of Y-TZP ceramics: A systematic review and meta-analyses. J. Mech. Behav. Biomed. Mater. 2016, 63, 417–442. [Google Scholar] [CrossRef]
- Pereira, G.; Silvestri, T.; Camargo, R.; Rippe, M.; Amaral, M.; Kleverlaan, C.; Valandro, L. Mechanical behavior of a Y-TZP ceramic for monolithic restorations: Effect of grinding and low-temperature aging. Mater. Sci. Eng. C 2016, 63, 70–77. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; the PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faggion, C.M., Jr. Guidelines for Reporting Pre-clinical In Vitro Studies on Dental Materials. J. Evid. -Based Dent. Pract. 2012, 12, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.; Shang, Z.; Luo, X.; Jin, T.; Luo, H. Rapid fabrication of ultra-smooth Y-TZP bioceramic surfaces by dual-axis wheel polishing: Process development and tribological characterization. J. Manuf. Process. 2020, 55, 276–287. [Google Scholar] [CrossRef]
- Pittayachawan, P.; McDonald, A.; Young, A.; Knowles, J.C. Flexural strength, fatigue life, and stress-induced phase transformation study of Y-TZP dental ceramic. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 88B, 366–377. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, I.H.G.; da Silva, N.R.; Vila-Nova, T.E.L.; de Fatima Dantas de Almeida, L.; Veríssimo, A.H.; de Melo, R.M.; Zhang, Y.; de Assunção e Souza, R.O. Effect of finishing/polishing techniques and aging on topography, C. albicans adherence, and flexural strength of ultra-translucent zirconia: An in situ study. Clin. Oral Investig. 2021, 26, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Vila-Nova, T.E.L.; de Carvalho, I.H.G.; Moura, D.M.D.; Batista, A.U.D.; Zhang, Y.; Paskocimas, C.A.; Bottino, M.A.; e Souza, R.O.D.A. Effect of finishing/polishing techniques and low temperature degradation on the surface topography, phase transformation and flexural strength of ultra-translucent ZrO2 ceramic. Dent. Mater. 2020, 36, e126–e139. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Lee, M.-H.; Bae, T.-S.; Song, K.-Y. Effect of finishing condition on fracture strength of monolithic zirconia crowns. Dent. Mater. J. 2019, 38, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Khayat, W.; Chebib, N.; Finkelman, M.; Khayat, S.; Ali, A. Effect of grinding and polishing on roughness and strength of zirconia. J. Prosthet. Dent. 2018, 119, 626–631. [Google Scholar] [CrossRef]
- Buciumeanu, M.; Queiroz, J.; Martinelli, A.; Silva, F.; Henriques, B. The effect of surface treatment on the friction and wear behavior of dental Y-TZP ceramic against human enamel. Tribol. Int. 2017, 116, 192–198. [Google Scholar] [CrossRef]
- Mohammadi-Bassir, M.; Babasafari, M.; Rezvani, M.B.; Jamshidian, M. Effect of coarse grinding, overglazing, and 2 polishing systems on the flexural strength, surface roughness, and phase transformation of yttrium-stabilized tetragonal zirconia. J. Prosthet. Dent. 2017, 118, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhao, J.; Si, W.; Wang, X. Two-body wear performance of dental colored zirconia after different surface treatments. J. Prosthet. Dent. 2016, 116, 584–590. [Google Scholar] [CrossRef]
- Hjerppe, J.; Närhi, T.O.; Vallittu, P.K.; Lassila, L.V. Surface roughness and the flexural and bend strength of zirconia after different surface treatments. J. Prosthet. Dent. 2016, 116, 577–583. [Google Scholar] [CrossRef]
- Schatz, C.; Strickstrock, M.; Roos, M.; Edelhoff, D.; Eichberger, M.; Zylla, I.-M.; Stawarczyk, B. Influence of Specimen Preparation and Test Methods on the Flexural Strength Results of Monolithic Zirconia Materials. Materials 2016, 9, 180. [Google Scholar] [CrossRef] [Green Version]
- Chong, B.J.; Thangavel, A.K.; Rolton, S.B.; Guazzato, M.; Klineberg, I.J. Clinical and laboratory surface finishing procedures for zirconia on opposing human enamel wear: A laboratory study. J. Mech. Behav. Biomed. Mater. 2015, 50, 93–103. [Google Scholar] [CrossRef]
- Traini, T.; Gherlone, E.; Parabita, S.F.; Caputi, S.; Piattelli, A. Fracture toughness and hardness of a Y-TZP dental ceramic after mechanical surface treatments. Clin. Oral Investig. 2013, 18, 707–714. [Google Scholar] [CrossRef]
- Preis, V.; Behr, M.; Handel, G.; Schneider-Feyrer, S.; Hahnel, S.; Rosentritt, M. Wear performance of dental ceramics after grinding and polishing treatments. J. Mech. Behav. Biomed. Mater. 2012, 10, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Aboushelib, M.N.; Wang, H. Effect of surface treatment on flexural strength of zirconia bars. J. Prosthet. Dent. 2010, 104, 98–104. [Google Scholar] [CrossRef]
- Papanagiotou, H.P.; Morgano, S.M.; Giordano, R.A.; Pober, R. In vitro evaluation of low-temperature aging effects and finishing procedures on the flexural strength and structural stability of Y-TZP dental ceramics. J. Prosthet. Dent. 2006, 96, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Seghi, R.; Daher, T.; Caputo, A. Relative flexural strength of dental restorative ceramics. Dent. Mater. 1990, 6, 181–184. [Google Scholar] [CrossRef]
- Scherrer, S.S.; Lohbauer, U.; Della Bona, A.; Vichi, A.; Tholey, M.J.; Kelly, J.R.; van Noort, R.; Cesar, P.F. ADM guidance—Ceramics: Guidance to the use of fractography in failure analysis of brittle materials. Dent. Mater. 2017, 33, 599–620. [Google Scholar] [CrossRef]
- Husain, N.A.-H.; Özcan, M. A Study on Topographical Properties and Surface Wettability of Monolithic Zirconia after Use of Diverse Polishing Instruments with Different Surface Coatings. J. Prosthodont. 2018, 27, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Pereira, G.; Amaral, M.; Simoneti, R.; Rocha, G.; Cesar, P.; Valandro, L. Effect of grinding with diamond-disc and -bur on the mechanical behavior of a Y-TZP ceramic. J. Mech. Behav. Biomed. Mater. 2014, 37, 133–140. [Google Scholar] [CrossRef]
- Zinelis, S.; Brantley, W. 3-Structure/property relationships in orthodontic ceramics. In Orthodontic Applications of Biomaterials; Eliades, T., Brantley, W.A., Eds.; Woodhead Publishing: Soston, UK, 2017; pp. 61–71. [Google Scholar]
- Cesar, P.F.; Della Bona, A.; Scherrer, S.S.; Tholey, M.; van Noort, R.; Vichi, A.; Kelly, R.; Lohbauer, U. ADM guidance—Ceramics: Fracture toughness testing and method selection. Dent. Mater. 2017, 33, 575–584. [Google Scholar] [CrossRef]
- Yoshimura, M. Phase stability of zirconia. Am. Ceram. Soc. Bull. 1988, 67, 12. [Google Scholar]
- Delong, R. Intra-oral restorative materials wear: Rethinking the current approaches: How to measure wear. Dent. Mater. 2006, 22, 702–711. [Google Scholar] [CrossRef]
- Janyavula, S.; Lawson, N.; Cakir, D.; Beck, P.; Ramp, L.C.; Burgess, J.O. The wear of polished and glazed zirconia against enamel. J. Prosthet. Dent. 2013, 109, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Etman, M.K.; Woolford, M.; Dunne, S. Quantitative measurement of tooth and ceramic wear: In vivo study. Int. J. Prosthodont. 2008, 21, 245–252. [Google Scholar]
- Zhou, Z.R.; Yu, H.Y.; Zheng, J.; Qian, L.M.; Yan, Y. Dental Biotribology, 1st ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Kim, H.-K.; Kim, S.-H.; Lee, J.-B.; Han, J.-S.; Yeo, I.-S. Effect of polishing and glazing on the color and spectral distribution of monolithic zirconia. J. Adv. Prosthodont. 2013, 5, 296–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Zhao, Y.; Zheng, S.; Xue, J.; Zhou, J.; Tang, Y.; Jiang, L.; Li, W. Effect of enamel morphology on nanoscale adhesion forces of streptococcal bacteria: An AFM study. Scanning 2015, 37, 313–321. [Google Scholar] [CrossRef]
- Kawai, K.; Urano, M.; Ebisu, S. Effect of surface roughness of porcelain on adhesion of bacteria and their synthesizing glucans. J. Prosthet. Dent. 2000, 83, 664–667. [Google Scholar] [CrossRef] [PubMed]
- Belli, R.; Scherrer, S.S.; Reich, S.; Petschelt, A.; Lohbauer, U. In vivo shell-like fractures of veneered-ZrO2 fixed dental prostheses. Case Stud. Eng. Fail. Anal. 2014, 2, 91–99. [Google Scholar] [CrossRef]
- Shanmugam, K.; Sahadevan, R. Bioceramics-an introductory overview. In Fundamental biomaterials: Ceramics; Anna University: Chennai, India, 2018; pp. 1–46. [Google Scholar]
- Billotte, W. Ceramic Biomaterials. In Biomedical Engineering Fundamentals; CRC Press: Boca Raton, FL, USA, 2014; pp. 527–560. [Google Scholar]
- Chevalier, J.; Gremillard, L.; Deville, S. Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants. Annu. Rev. Mater. Res. 2007, 37, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lawn, B. Novel Zirconia Materials in Dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Denry, I.; Kelly, J.R. State of the art of zirconia for dental applications. Dent. Mater. 2008, 24, 299–307. [Google Scholar] [CrossRef]
- Kosmač, T.; Oblak, C.; Jevnikar, P.; Funduk, N.; Marion, L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent. Mater. 1999, 15, 426–433. [Google Scholar] [CrossRef]
Search Strategy | |
---|---|
Population | Zirconia (Zirconium; Yttrium-stabilized tetragonal zirconia) |
Intervention | Zirconia samples received polishing |
Comparison | Untreated zirconia samples |
Outcome | Mechanical properties (Strength; Toughness; Hardness; Wear resistance) |
Study type | Quantitative study |
Items | de Carvalho et al. (2021) [28] | Lu et al. (2020) [26] | Vila-Nova et al. (2020) [29] | Wang et al. (2020) [20] | Pfefferle et al. (2019) [10] | Yin et al. (2019) [30] | Khayat et al. (2018) [31] | Buciumeanu et al. (2017) [32] | Mohammadi-Bassir et al. (2017) [33] | Bai et al. (2016) [34] | |
Author (Year) | |||||||||||
Abstract | Abstract 1 | Yes | No | Yes | Yes | Yes | No | Yes | No | Yes | Yes |
Introduction | Background and objectives 2a | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Background and objectives 2b | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Method | Intervention 3 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Outcomes 4 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Sample size 5 | No | No | No | Yes | No | No | Yes | No | No | No | |
Statistical methods 10 | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Results | Outcomes and estimation 11 | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Discussion | Limitations 12 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Other information | Funding 13 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | No |
Overall risk of bias | Low | Moderate | Low | Low | Low | Low | Low | Low | Low | Low | |
Items | Hjerppe et al. (2016) [35] | Schatz et al. (2016) [36] | Chong et al. (2015) [37] | Traini et al. (2013) [38] | Preis et al. (2012) [39] | Aboushelib and Wang (2010) [40] | Pittayachawan et al. (2009) [27] | Papanagiotou et al. (2006) [41] | Guazzato et al. (2005) [21] | ||
Author (Year) | |||||||||||
Abstract | Abstract 1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Introduction | Background and objectives 2a | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Background and objectives 2b | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | ||
Method | Intervention 3 | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | |
Outcomes 4 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | ||
Sample size 5 | No | Yes | No | Yes | No | Yes | No | No | No | ||
Statistical methods 10 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | ||
Results | Outcomes and estimation 11 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Discussion | Limitations 12 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Other information | Funding 13 | No | Yes | Yes | Yes | No | Yes | Yes | No | Yes | |
Overall risk of bias | Low | Low | Low | Low | Low | Low | Low | Low | Low |
Authors (Year) | Material(s) | Experimental Group (s) (Group Code) | Polishing Protocol | Measured Mechanical Property | Results |
---|---|---|---|---|---|
Pfefferle et al. (2019) | Zirconia (Ceramill Zolid HT+, XY406339G, Amann Girrbach, Koblach, Austria) |
|
|
|
|
Aboushelib and Wang (2010) | CAD/CAM zirconia milling blocks (Procera Zirconia; Nobel Biocare AB, Göteborg, Sweden) |
Three surface restoration methods:
|
|
|
|
Schatz et al. (2016) | Three pre-sintered monolithic zirconia:
|
|
|
|
|
Yin et al. (2019) | Pre-sintered zirconia (A3 12T, Liaoning Upcera, Benxi, China) |
|
|
|
|
Bai et al. (2016) | Pure white zirconia and pre-colored A2 zirconia (Upcera) |
|
|
|
|
de Carvalho et al. (2021) | Ultra-translucent Y-PSZ (Prettau Anterior, Zirkonzahn, Gais Italy) |
| Rubber polishing kit (Premium Compact kit, Dhpro, Paraná, Brazil) mounted to a handpiece and micromotor (500, Kavo, Joinville, SC, Brazil) at 12,000 rpm for 20 s per polisher until the thickness of the samples was equal to 0.5 mm |
|
|
Mohammadi-Bassir et al. (2017) | Pre-sintered Y-PSZ (Ceramill; Amman Girrbach GmbH) |
|
|
|
|
Wang et al. (2020) | Pre-sintered 3Y-TZP (Lava Plus high translucency zirconia, LOT: 3343987 and 3706728; 3M ESPE, Neuss, Germany) |
| 3-step StarGloss diamond porcelain polishers (Edenta AG, Switzerland) at 30,000 rpm for 2 min |
|
|
Khayat et al. (2018) | Y-TZP (Tizian Blank Translucent 98 mm Zirconium; Schütz) |
|
|
|
|
Pittayachawan et al. (2009) | Y-TZP (Cercon® disc, DeguDent GmbH, Germany) |
| DP suspension (Struers, UK) containing polycrystalline diamond (Struers, UK) of size 9 μm particle size for 20 min and finally 3 μm for 10 min at 150 rpm |
|
|
Hjerppe et al. (2016) | Y-TZP (Y2O3 3 mol%) (ICE Zirkon; Zirkonzahn GmbH) |
| Polishing brush (OptraFine; Ivoclar Vivadent AG) with diamond paste (Kohinoor) |
|
|
Vila-Nova et al. (2020) |
|
| Abrasive rubber polishers of extra-hard diamond-impregnated polyurethane (Premium Compact, Dhpro, Paraná, Brazil) at 12,000 rpm for 20 s per disk |
|
|
Papanagiotou et al. (2006) | Pre-sintered Y-TZP (Vita In-Ceram YZ; Vita Zahnfabrik) |
| Pink wheel (stock #5000564U0 medium, grit size 30 mm) and a gray wheel (#5000748U0; fine, grit size 10 mm) (Dialite polishing wheels; Brasseler USA, Savannah, Ga) at 6500 rpm |
|
|
Guazzato et al. (2005) | Fully sintered Y-TZP (5 wt% Y2O3) (DC- Zirkon, DCS Dental AG, Allschwil, Switzerland, Lot No 521) |
| Diamond discs of nominal grit size 90, 70, 30, 15, 9, 3 and 1 μm at 800 rpm under water coolant |
|
|
Traini et al. (2013) | Pre-sintered Y-TZP (Diazir, Diadem SAS, Louey, France) |
|
|
|
|
Buciumeanu et al. (2017) | Y-TZP (Zirkonzahn, Germany) |
|
|
|
|
Lu et al. (2020) | Y-TZP (Blue Whale Ceramic Technology Co., Ltd., Zhengzhou, China) | Dual-axis wheel polishing with four different tool offsets and four different wheel speeds | Dual-axis wheel polishing (DAWP) with diamond micropower (Saint-Gobain corporation, France) |
|
|
Chong et al. (2015) | Unsintered Y-TZP (Vita Zahnfabrik, H. Rauter GmbH & Co. KG, Bad Säckingen, Germany, Material No. EC4YZ205, Batch No. 22410) |
|
|
|
|
Preis et al. (2012) | Three different Y-TZP (Cercon HT, DeguDent, Hanau, G); (Cercon base, DeguDent, Hanau, G); (Lava, 3M Espe, Seefeld, G) |
(2) Polishing–Grinding (3) Polishing–Grinding–Repolishing | Polishing set (Brasseler, 9545 C/M/F, Lemgo, G) |
|
|
Authors (Year) | Roughness Measured (Yes/No) | Post-Test Analysis | Main Findings | Phase Transformation Measured (Yes/No) | Post-Test Analysis | Main Findings |
---|---|---|---|---|---|---|
Pfefferle et al. (2019) | Yes |
|
| No | Nil | Nil |
Schatz et al. (2016) | Yes |
|
| Yes | X-ray diffraction (XRD) |
|
Yin et al. (2019) | Yes |
|
| Yes | XRD |
|
Bai et al. (2016) | Yes |
|
| No | Nil | Nil |
de Carvalho et al. (2021) | Yes |
|
| Yes | XRD | No notable tetragonal to monoclinic phase transformation induced by finishing/polishing |
Mohammadi-Bassir et al. (2017) | Yes |
|
| Yes | XRD |
|
Wang et al. (2020) | Yes |
|
| Yes | XRD | No changes in crystalline phases after all treatments |
Khayat et al. (2018) | Yes |
|
| No | Nil | Nil |
Pittayachawan et al. (2009) | No | Nil | Nil | Yes | XRD | Polishing resulted in phase transformation from one cubic phase (with larger lattice parameters) to the other cubic phase and tetragonal phase, and relieved some strain in cubic phase |
Hjerppe et al. (2016) | Yes |
|
| No | Nil | Nil |
Vila-Nova et al. (2020) | Yes |
|
| Yes | XRD | Monoclinic phase peaks were only observed in the conventional zirconia group with different finishing and polishing protocols |
Guazzato et al. (2005) | No | Nil | Nil | Yes | XRD | A negligible amount of monoclinic phase was found on polished surface |
Traini et al. (2013) | Yes |
|
| No | Nil | Nil |
Buciumeanu et al. (2017) | Yes |
|
| Yes | XRD |
|
Lu et al. (2020) | Yes | White-light interferometer (NewViewTM 7100, ZYGO, USA)SEM | Surface roughness of ground surface was reduced by polishingSurface roughnesses were proportional to the tool offset (polishing pressure) and wheel speed (polishing velocity)Polishing resulted in uniform and smooth surface topographies | Yes | XRD | No occurrence of phase transformations from DAWP process |
Chong et al. (2015) | Yes |
|
| No | Nil | Nil |
Preis et al. (2012) | Yes |
|
| No | Nil | Nil |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Aarts, J.M.; Ma, S.; Choi, J.J.E. The Influence of Polishing on the Mechanical Properties of Zirconia—A Systematic Review. Oral 2023, 3, 101-122. https://doi.org/10.3390/oral3010010
Liu X, Aarts JM, Ma S, Choi JJE. The Influence of Polishing on the Mechanical Properties of Zirconia—A Systematic Review. Oral. 2023; 3(1):101-122. https://doi.org/10.3390/oral3010010
Chicago/Turabian StyleLiu, Xiaoyun, John M. Aarts, Sunyoung Ma, and Joanne Jung Eun Choi. 2023. "The Influence of Polishing on the Mechanical Properties of Zirconia—A Systematic Review" Oral 3, no. 1: 101-122. https://doi.org/10.3390/oral3010010
APA StyleLiu, X., Aarts, J. M., Ma, S., & Choi, J. J. E. (2023). The Influence of Polishing on the Mechanical Properties of Zirconia—A Systematic Review. Oral, 3(1), 101-122. https://doi.org/10.3390/oral3010010